
CEDRIC

Technical Report 700:

eb3 Attribute Definitions:

Formal Language and Application

Frédéric Gervais1,2

Marc Frappier2

Régine Laleau3
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2500, Boulevard de l’Université
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Abstract

eb3 is a trace-based formal language created for the specification of information
systems (IS). In this technical report, we present the eb3 formal language for
attribute definitions. Attributes, linked to entities and associations of an IS,
are computed in eb3 by recursive functions on the valid traces of the system.
The syntax and the main properties of the language are introduced. Then, we
aim at synthesizing imperative programs that correspond to eb3 attribute def-
initions. Thus, each eb3 action is translated into a transaction. eb3 attribute
definitions are analysed to determine the tables and the key values affected by
each action. Some key values are determined from SELECT statements that
correspond to first-order predicates in eb3 attribute definitions. To avoid in-
consistencies because of the sequencing of SQL statements in the transactions,
temporary variables and/or tables are introduced for these key values. We show
the main patterns for the SELECT statements used in the temporary variables
and/or tables. The SQL statements are then ordered by table. Generation of
DELETE statements is straightforward, and tests are defined in the trans-
actions to distinguish updates from insertions of tuples. Our algorithms are
illustrated by an example of a library management system. Finally, we briefly
present the tool called eb3tg, which implements the algorithms introduced in
this report.
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Chapter 1

Introduction

We are mainly interested in the formal specification of information systems (IS)
and in the synthesis of their implementation. In our viewpoint, an IS is a
software system that helps an organization to collect and to manipulate all its
relevant data. An IS also includes software applications and tools to query and
modify a database (DB), to friendly communicate query results to users and to
allow administrators to control and modify the whole system. The use of formal
methods to design IS [FSD03, Mam02, Ngu98] is justified by the relevant value
of data from corporations like banks, insurance companies, high-tech industries
or government organizations. eb3 [FSD03] is a trace-based formal language
created for the specification of IS. The behaviour of the system is specified by
means of process expressions that represent the finite traces accepted by the
system. Attributes, linked to entities and associations of the IS, are computed
in eb3 by recursive functions on the valid traces of the system.

1.1 An overview of eb3

An eb3 specification consists of the following elements:

1. A diagram describes the entity types and associations of the IS, and their
respective actions and attributes. It is based on entity-relationship (ER)
model concepts [Elm04] and uses a subset of the UML graphical notation
for class diagrams. This graphic is called ER diagram in the remainder of
the report.

2. A process expression, denoted by main, defines the valid input traces of
the system.

3. Input-output (I/O) rules assign an output to each valid input trace of the
system. Let R denote the set of I/O rules.

4. Recursive functions, defined on the valid input traces of main, assign val-
ues to entity type and associations attributes.

5. A graphical user interface (GUI) specification describes the functionalities
of Web interfaces used to interact with IS end-users.

5
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The denotational semantics of an eb3 specification is given by a relation R
defined on T (main) × O, where T (main) denotes the traces accepted by main
and O is the set of output events. Let trace denote the system trace, which
is a list comprised of valid input events accepted so far in the execution of the
system. Let t::σ denote the right append of an input event σ to trace t, and let
[ ] denote the empty trace. The operational behaviour of an eb3 specification
is defined as follows.

trace := [ ];
forever do

receive input event σ;
if main can accept trace::σ then

trace := trace::σ;
send output event o such that (trace, o) ∈ R;

else
send error message;

An input event σ is an instantiation of (the input parameters of) an action. The
signature of an action a is given by a declaration

a(q1 : T1, . . . , qn : Tn) : (qn+1 : Tn+1, . . . , qm : Tm)

where q1, . . . , qn are input parameters of types T1, . . . , Tn and qn+1, . . . , qm are
output parameters of types Tn+1, . . . , Tm. An instantiated action a(t1, ..., tn)
also constitutes an elementary process expression. The special symbol “ ” may
be used as an actual parameter of an action, to denote an arbitrary value of the
corresponding type.

Complex eb3 process expressions can be constructed from elementary pro-
cess expressions (instantiated actions) using the following operators: sequence
(.), choice (|), Kleene closure (^*), interleaving (|||), parallel composition
(||, i.e., CSP’s synchronisation on shared actions), guard (==>), process call,
and quantification of choice (|x : T : ...) and interleaving (|||x : T :
...). The eb3 notation is similar to CSP [Hoa85] but the main differences be-
tween eb3 and CSP are: i) eb3 allows one to use a single state variable, the
system trace, in predicates of guard statements; ii) eb3 uses a single operator,
concatenation (as in regular expressions), instead of prefixing and sequential
composition, which makes specifications easier to read and write.

The system trace is usually accessed through recursive functions that extract
relevant information from it. Relation R is defined using input-output rules and
recursive functions on the system trace.

The definition of a recursive function is written in a functional language style
(CAML) and traverses the system trace which is represented by a list. Standard
list operators are used, such as last and front which respectively return the
last element and all but the last element of a list; they return the special value
nil when the list is empty. Finally the symbol “ ” is used to pattern match
with any list element. The main principles of eb3 are described in [FSD03]. In
particular, the syntax and the semantics of eb3 process expressions are defined
in that paper.
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1.2 Outline

Chapter 2 is an introduction to the eb3 formal language for attribute defini-
tions. Then, the syntax of the language is presented in Chapter 3. Chapter 4
shows how to generate relational DB transactions that correspond to eb3 at-
tribute definitions. Then, Chapter 5 presents an overview of the tool eb3tg
which implements the algorithms introduced in Chapter 4. Finally, Chapter 6
concludes this report with some perspectives of our work.

To illustrate the main aspects of this report, we introduce an example of a
library management system. The library system has to manage book loans to
members:

1. A book is acquired by the library. It can be discarded, but only if it is not
borrowed.

2. A member must join the library in order to borrow a book.

3. A member can transfer a loan to another member.

4. A member can relinquish library membership only when all his loans are
returned or transferred.

5. A member can reserve a book if it is borrowed by another member.

6. A book can be borrowed by only one member at once.

7. A book can be reserved, even by several members, but only if it is bor-
rowed.

8. A book can be taken by the first member that has reserved it, once it has
been returned.

9. Loans and transfers are parameterized by the type of loans: permanent or
classic.

Figure 1.1 shows the ER diagram used to construct the specification. By
studying the requirements, we identify two main entity types, member and book,
and two associations between them, loan and reservation, with their corre-
sponding actions and attributes. Figure 1.2 provides the signature of actions.
The special type void is used to denote an action with no input-output rule;
the output of such an action is always ok. Some input parameters can be in-
stantiated by a default value, NULL, that denotes undefinedness. The input type
is then decorated with ^N.
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Acquire

Discard

book

Modify

title : Title_Type

bookKey  : bookKey_Set

member

memberKey : memberKey_Set

Register

Unregister

nbLoans :

loanDuration :

* 0 .. 1

reservation

Reserve

Take

Cancel

position :

Lend

Return

Transfer

dueDate :

* *

membRes

borrower

loan

Figure 1.1: ER diagram of the library

Acquire(bId:bookKey_Set,bTitle:Title_Type^N):void
Discard(bId:bookKey_Set):void
Modify(bId:bookKey_Set,newTitle:Title_Type^N):void
Register(mId:memberKey_Set,lD:NAT):void
Unregister(mId:memberKey_Set):void
Lend(bId:bookKey_Set,mId:memberKey_Set,typeOfLoan:Loan_Type):void
Return(bId:bookKey_Set):void
Transfer(bId:bookKey_Set,mId:memberKey_Set,typeOfLoan:Loan_Type):void
Reserve(bId:bookKey_Set,mId:memberKey_Set):void
Take(bId:bookKey_Set,mId:memberKey_Set,typeOfLoan:Loan_Type):void
Cancel(bId:bookKey_Set,mId:memberKey_Set):void

Figure 1.2: Signature of eb3 actions



Chapter 2

eb3 Attribute Definitions

The definition of an attribute in eb3 is a recursive function on the valid traces,
that is, the traces accepted by process expression main. This function computes
the attribute values. There are two kinds of attributes in a ER diagram: key
attributes and non-key attributes.

Conventions

In the following definitions, we distinguish functional terms from conditional
terms.

A functional term is a term composed of constants, variables and functions
of other functional terms. The data types in which constants and variables
are defined can be abstract or enumerated sets, useful basic types like N, Z, . . .,
Cartesian product of data types and finite powerset of data types.

A conditional term is of the form if pred then w1 else w2 end, where pred
is a predicate and wi is either a conditional term or a functional term. Hence,
a conditional term can include nested if statements, whereas a functional term
cannot contain an if statement.

Expression var(e) denotes the free variables of expression e. A ground term
t is a term without free variables. Thus, var(t) = ∅.

2.1 Key Attributes

In eb3, a key is used to identify instances of entity types or associations : each
key value corresponds to a distinct entity of the entity type.

Let e be an entity type with a key composed of attributes k1, . . . , km and
non-key attributes b1, . . . , bn. In eb3, the key of entity type e, that is defined by
a single attribute definition for the set {k1, . . . , km}, is a total function eKey of
type

eKey : T (main) → F(T1 × · · · × Tm)

where T1, . . . , Tm denote the types of key attributes k1, . . . , km and expression
F(S) denotes the set of finite subsets of set S. For instance, the type of the
function defining the key of entity type book (see Fig. 1.1) is

bookKey : T (main) → F(bookKey Set)

9
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In eb3, the recursive function defining an attribute is always given in a
CAML-like style [CM98]. The definition of the key of entity type e has the
following form.

eKey (s : T (main)) : F(T1 × · · · × Tm) ∆=
match last(s) with

⊥ : u0,
a1(−→p1) : u1,
. . .
an(−→pn) : un,

: eKey(front(s));

(2.1)

Expressions ⊥ : u0, a1(−→p1) : u1, ..., an(−→pn) : un and : eKey(front(s)) are
called input clauses. Expression last(s) returns ⊥ when s is the empty sequence.

In an input clause, expression ai(−→pi ) denotes a pattern matching expression,
where ai denotes an action label and −→pi denotes a list whose elements are either
variables, or the special symbol ‘ ’, which stands for a wildcard, or ground
functional terms. Expressions u0, . . . , un denote functional terms. For each
input clause, we must have var(ui) ⊆ var(−→pi ).

For key attribute definitions, a functional term of an input clause ai(−→pi ) : ui

is a set expression of the following form:

• ∅, a constant which denotes there is no entity,

• S, a set which represents the existing entities,

• eKey(front(s)) ∪ S, which denotes the addition of new entities,

• eKey(front(s)) − S, which denotes the removal of entities.

Set S is composed of elements of the following form:

• c, a constant from type T1 × · · · × Tm,

• v, a variable from var(−→pi ).

Let ass denote a l-ary association between l entity types e1, . . . , el with non-
key attributes b1, . . . , bn. In general, the key of association ass is formed with
the keys of its corresponding entity types. For every j ∈ {1, 2, . . . , l}, let us note
kj
1, . . . , k

j
mj

the key attributes of entity type ej . The key of ass is then defined
by considering all the key attributes of entity types e1, . . . , el:

ass : T (main) → F(Tk1
1
× · · · × Tk1

m1
× · · · × Tkl

1
× · · · × Tkl

ml
)

For instance, the key of association reservation is of type:

reservation : T (main) → F(bookKey Set × memberKey Set)

When the multiplicity of an association contains 0..1 or 1, then the key of the
association is even simpler. The standard rules and algorithms can be found
in [Elm04]. For instance, the key of association loan is of type:

loan : T (main) → F(bookKey Set)

because entity type member has a multiplicity of 0..1 and attribute borrower
denotes the unique borrower of a book.
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2.2 Non-Key Attributes

In eb3, each non-key attribute bi of an entity type or an association is defined
by a function bi of type

bi : T (main) × T1 × · · · × Tm → Ti

where T1, . . . , Tm denote the types of all the key attributes of the entity type
or the association and the codomain Ti is the type of non-key attribute bi.
The codomain of a non-key recursive function always include ⊥, to represent
undefinedness. Hence, eb3 recursive functions are total. For instance, the type
of the function associated to attribute nbLoans is

nbLoans : T (main) × memberKey Set → N

The definition of a non-key attribute bi has the following form.

bi (s : T (main),
−→
k : T1 × · · · × Tm) : Ti

∆=
match last(s) with

⊥ : u0,
a1(−→p1) : u1,
. . .
an(−→pn) : un,

: bj(front(s),
−→
k );

(2.2)

where bj is an attribute (j can be equal to i). Expression
−→
k denotes the list of

key attributes. Expressions u0, . . . , un denote either functional or conditional
terms. For each input clause, we must have var(uj) ⊆ var(−→pj ) ∪ var(

−→
k ).

For non-key attribute definitions, a functional term in expression uj is one
of the following forms:

• ⊥, a constant which denotes an undefined value for the attribute,

• c, a constant from type Ti, which denotes the value of the attribute,

• v, a variable from var(−→pj ) ∪ var(
−→
k ),

• g(
−→
t ), where each ti ∈

−→
t is a functional term and g is either an attribute

of the ER diagram or an operator on one or more of the different types of
the attributes.

The last expression, g(
−→
t ), allows us to define recursive calls to bi and/or calls

to other attribute definitions. A reference to a key eKey or to an attribute
b in an input clause is always of the form eKey(front(s)) or b(front(s), ...).
Moreover, operators must be of relevant types such that the computation of
each expression uj is of type Ti.

2.3 Syntactical Conventions

In practice, attribute definitions are syntactically simplified by omitting expres-
sion match last(s) with and parameter s, that represents a valid trace of the
system.
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Moreover, the first input clause (i.e., ⊥) may be also omitted. In that case, a
default value is returned for the function: ⊥ for a non-key attribute and ∅ for a
key attribute. The last input clause (i.e., ‘ ’) is never mentioned in the attribute
definition. Since ‘ ’ is a wildcard, the last clause denotes that the value is always
eKey(front(s)) for a key or b(front(s),

−→
k ) for a non-key attribute. When an

else is omitted in an if statement, its default values are also eKey(front(s)) and
b(front(s),

−→
k ), respectively. More generally, any references to eKey() and b(

−→
k )

in the input clauses stand for eKey(front(s)) and b(front(s),
−→
k ), respectively.

Since key definitions only differ from non-key attribute definitions by some
syntactic restrictions to functional terms and by no input parameter outside
valid trace s, we use the following general form for all kinds of attribute defini-
tions in the remainder of the report:

b (
−→
k ) : T

∆=
⊥ : u0,
a1(−→p1) : u1,
. . .
an(−→pn) : un;

(2.3)

where
−→
k is either ∅ if b is the definition of a key, or the list of key attributes if

b is a non-key attribute, and T is the type of the output values.

2.4 Computation of Attribute Values

When the function associated to attribute b is executed with valid trace s as
input parameter, then all the input clauses of the attribute definition are anal-
ysed. Let b(s, v1, . . . , vn) be the attribute to evaluate and ρ be the substitution−→
k := v1, . . . , vn. Each input clause ai(−→pi ) : ui generates a pattern condition of
the form

∃ (var(−→pi ) −
−→
k ) • last(s) = ai(−→pi ) ρ (2.4)

where the right-hand side of the equation denotes the application of substitution
ρ on input clause ai(−→pi ). Such a pattern condition holds if the parameters of the
last action of trace s match the values of variables

−→
k in −→pi . The first pattern

condition that holds in the attribute definition is the one executed. Hence, the
ordering of these input clauses is important.

An attribute b may be affected by an input event σ = a(σ1, . . . , σm) if there
exists an input clause a(−→p ) : u in the definition of b. There may be several
input clauses with the same label a:

b (
−→
k ) : T

∆=
. . .
a(−→p1) : u1,
. . .
a(−→pn) : un;
. . .

(2.5)

Since the first input clause that evaluates to true is the one to be executed,
analysis of input clauses is done in their declaration order.
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For each input clause of the form a(−→p ) : u, the goal is to identify the
free variables of −→p with the actual parameters σ1, . . . , σm of σ. The pattern
condition (2.4) can be rewritten into a conjunction of equalities. Let pj denote
the jth formal parameter of input clause a(−→p ), with j ≥ 1.

∃ (var(−→p ) −−→
k ) •

∧

j

pj = σj

There are three cases to consider to evaluate this condition:

1. when pj is the wildcard symbol ‘ ’, its corresponding equality trivially
holds;

2. when pj is a ground term, the equality pj = σj can be evaluated by simply
computing the value of pj and comparing it to σj ;

3. when pj is a variable, we can set the value of pj to σj to satisfy the
equality; however, if this variable v occurs in more than one place in −→p ,
then we must check that the corresponding values in σ are all the same.
In other words, let Jv be the list of indices where v occurs in −→p , then:

∧

j1,j2∈Jv

σj1 = σj2

When a pattern condition a(−→p ) : u evaluates to true, an assignment of a
value for each variable in var(−→p ) has been determined. We denote by θ these
value assignments; θ is in fact a substitution. Thus, the value of attribute b can
be computed with the corresponding expression u, in which the free variables
depending on −→p are assigned the corresponding values in σ, thanks to substi-
tution θ. Functional terms are directly used to compute the attribute value.
Predicates of conditional terms determine the last free variables of u from the
key values and/or the values of σ.

For example, the definition of attribute title is:

title(s : T (main), bId : bookKey Set) : Title Type
∆=

match last(s) with
⊥ : ⊥, (I1)
Acquire(bId, bT itle) : bT itle, (I2)
Discard(bId) : ⊥, (I3)
Modify(bId, nT itle) : nTitle, (I4)

: title(front(s), bId); (I5)

With the default input clauses (e.g., (I1) and (I5)), each attribute function is
total, i.e., it is defined for any input trace s and any key value. For instance,
we have the following values for title.

title([ ], b1)
(I1)= ⊥

title([Register(m1, 21)], b1)
(I5)= title([ ], b1)

(I1)= ⊥
title([Register(m1, 21),Acquire(b1, t1)], b1)

(I2)= t1

In the first case, the value is obtained from input clause (I1), since last([ ]) = ⊥.
In the second case, we first apply the wild card clause (I5), since no input
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e1 1 e2rr2

* *

Figure 2.1: Roles in a M : N association

e1 1 e2rr2

*1

Figure 2.2: Roles in a 1 : N association

clause matches Register, and then (I1). In the third casee, the value is obtained
immediately from (I2) with the following substitution:

θ = {bId := b1}

2.5 Properties

Auxiliary Functions

eb3 process expressions can use auxiliary recursive functions on the trace to
determine some (set of) values. An auxiliary function f is similar to an attribute
definition, but it can return either scalars, sets of values or lists. It is defined
by a recursive function of type

f : T (main) × T1 × · · · × Tm → T

where T1, . . . , Tm denote the types of some key attributes and the codomain T
is the type of the output values of f . Like attribute definitions, an auxiliary
function is total and is defined with a CAML-like pattern matching. Their use
is not allowed in attribute definitions. They are used in eb3 process expressions.
Hence, we do not deal with auxiliary functions in this technical report. However,
since their syntax is similar to the syntax of attribute definitions, it is described
in Chapter 3.

Role in Associations

An entity type that participates in an association plays a particular role in the
relationship. eb3 attribute definitions can use the role of an entity type in an
association to determine some values in the if predicates. A role is not defined
in eb3 in the same way according to the association it takes part.

In associations of cardinality M : N , several entities of the same type can
participate in the association. Since the association is defined by a recursive
function that outputs the key attributes of the existing entities of the asso-
ciation, the key of a M : N association is composed of the key attributes of
the entity types that participate in the association. Let ass denote a binary
association between entity types e1 and e2 defined by:

ass : T (main) → F(Tk1
1
× · · · × Tk1

m1
× Tk2

1
× · · · × Tk2

m2
)
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Figure 2.1 shows the representation of roles r1 and r2 in association ass. The
role r1 of e2 in ass is defined in eb3 as follows.

r1(k1
1, ..., k

1
m1

) = {(k2
1, ..., k

2
m2

) | (k1
1, ..., k

1
m1

, k2
1, ..., k

2
m2

) ∈ ass}

The role r2 of e1 in ass is defined in eb3 as follows.

r2(k2
1, ..., k

2
m2

) = {(k1
1, ..., k

1
m1

) | (k1
1, ..., k

1
m1

, k2
1, ..., k

2
m2

) ∈ ass}

Such definitions can be retrieved from the ER diagram. For instance, membRes
is defined by:

membRes(bId) = {mId | (bId,mId) ∈ reservation}

In associations of cardinality 1 : N , the entity in the 1 side of the association
is unique for each entity in the N side that participates in the association. The
key of such associations can be composed by only the key attributes of the
entity type in the N side of the association. Consequently, for associations of
cardinality 1 : N (see Fig. 2.2), the role r2 of entity type e1 in the 1 side of the
association is defined in eb3 by a recursive function of the following form:

r2 : T (main) × Tk2
1
× · · · × Tk2

m2
→ Tk1

1
× · · · × Tk1

m1

where Tk2
1
, ..., Tk2

m2
denote the types of the key attributes of e2 and Tk1

1
, ..., Tk1

m1
denote the types of the key attributes of e1. Like for attribute definitions,
function r2 is total and is defined with a CAML-like pattern matching. For
instance, role borrower in association loan is defined by:

borrower(bId) : memberKey Set
∆=

Lend(bId,mId, ) : mId,
Return(bId) : ⊥,
Transfer(bId,mId, ) : mId,
Take(bId,mId, ) : mId;

Role r1 is defined as the roles in M : N associations.

Termination

Since expressions ui of input clauses may contain a recursive call to the function,
attribute definitions are recursive functions on the valid traces of the system.
Since the size of a valid trace is finite and decreases at each recursive call and
since the input clause for an empty trace is defined by default, then computation
of attribute values terminates.

Consistency Condition

We suppose that correct eb3 specifications of attribute definitions satisfy the
following consistency condition: when a non-key attribute b returns a value
other than ⊥ for a key value, then the key function should contain that key.

∀ s,
−→
k • b(s,

−→
k ) 
= ⊥ ⇒ (

−→
k ) ∈ κ(s)

where κ is the corresponding key function. This means that the entities that
are concerned by the computation of the new value of the attribute exist.
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No Loop of Function Calls

Whenever expressions ui involve other attribute definitions, but for the same
valid trace s as for ui, then we suppose that correct eb3 specifications of at-
tribute definitions do not contain loops of function calls between the attribute
definitions.

2.6 An Example of eb3 Attribute Definitions

Here are the attribute definitions for the library system example presented in
Sect. 1.2.

Entity Type Book

bookKey() : F(bookKey Set) ∆=
Acquire(bId, ) : bookKey() ∪ {bId},
Discard(bId) : bookKey() − {bId};

title(bId) : Title Type
∆=

Acquire(bId, bT itle) : bT itle,
Discard(bId) : ⊥,
Modify(bId, newTitle) : newTitle;

Entity Type Member

memberKey() : F(memberKey Set) ∆=
Register(mId, ) : memberKey() ∪ {mId},
Unregister(mId) : memberKey() − {mId};

nbLoans(mId) : N
∆=

Register(mId, ) : 0,
Lend( ,mId, ) : 1 + nbLoans(mId),
Return(bId) : if mId = borrower(bId)

then nbLoans(mId) − 1 end,
Transfer(bId,mId′, ) : if mId = mId′

then nbLoans(mId) + 1
else if mId = borrower(bId)

then nbLoans(mId) − 1 end
end,

Take( ,mId, ) : 1 + nbLoans(mId),
Unregister(mId) : ⊥;

loanDuration(mId) : N
∆=

Register(mId, lD) : lD,
Unregister(mId) : ⊥;

Association loan

loan() : F(bookKey Set) ∆=
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Lend(bId, , ) : loan() ∪ {bId},
Return(bId) : loan() − {bId},
Take(bId, , ) : loan() ∪ {bId};

dueDate(bId) : DATE
∆=

Lend(bId, , Permanent) : CurrentDate + 365,
Lend(bId,mId,Classic) : CurrentDate + loanDuration(mId),
Return(bId) : ⊥,
Transfer(bId,mId, type) : if type = Permanent

then CurrentDate + 365
else CurrentDate + loanDuration(mId)
end,

Take(bId, , Permanent) : CurrentDate + 365,
Take(bId,mId,Classic) : CurrentDate + loanDuration(mId);

Association reservation

reservation() : F(bookKey Set × memberKey Set) ∆=
Reserve(bId,mId) : reservation() ∪ {(bId,mId)},
Cancel(bId,mId) : reservation() − {(bId,mId)},
Take(bId,mId, ) : reservation() − {(bId,mId)};

position(bId,mId) : N
∆=

Reserve(bId,mId) : card(membRes(bId)) + 1,
Cancel(bId,mId′) : if mId = mId′

then ⊥
else if mId ∈ membRes(bId)∧

position(bId,mId′) < position(bId,mId)
then position(bId,mId) − 1
end

end,
Take(bId,mId′, ) : if mId = mId′

then ⊥
else if mId ∈ membRes(bId)

then position(bId,mId) − 1
end

end;

Let us recall that the above-mentioned attribute definitions are correct only
for the valid traces of the system. For instance, attribute position in associa-
tion reservation is computed for members that have reserved a book. This
definition is correct because of the following requirement: the member that can
take a book when it is returned is the first member in the reservation list. Such
a requirement does not appear in the attribute definition, but rather as a guard
in the eb3 process expression of association reservation.

Let us note that eb3 attribute definitions can use the role of entity types
in associations in the if predicates. There are mainly two kinds of definitions
for roles in eb3. For M : N associations, roles are defined as a subset of the
association entities. For instance, membRes is the set of members that have
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reserved a book:

membRes(bId) = {mId | (bId,mId) ∈ reservation}

The role in the 1 side of a 1 : N association requires the definition of a recursive
function to determine the relevant entities. For instance, role borrower is defined
by:

borrower(bId) : memberKey Set
∆=

Lend(bId,mId, ) : mId,
Return(bId) : ⊥,
Transfer(bId,mId, ) : mId,
Take(bId,mId, ) : mId;



Chapter 3

Syntax of eb3 Attribute
Definitions

3.1 Conventions

We use the BNF formalism to describe the syntax of the eb3 language for
attribute definitions. The conventions about BNF are the following ones.

• Keywords, symbols and operators of the language are quoted. For in-
stance, “ if ”, “ ( ” and “ + ”.

• Non-terminal elements of the grammar are described in italics.

• Expression e ::= elements denotes a definition of the grammar, where e
is a non-terminal element and elements is one or more elements of the
grammar.

• e|e′ denotes element e or element e′.

• [e] means that element e is optional.

• (e) is equivalent to e.

• e� denotes an arbitrary number n ≥ 0 of elements e.

• e�e’ denotes n elements e, n ≥ 0, with element e′ as separator. For in-
stance, a�“,” stands for a, a, ..., a.

• e+ and e+e’ are similar to the definitions with �, but with n ≥ 1.

3.2 Terminal Elements

3.2.1 Characters and Strings

CHARACTER ::= “A” | ... | “Z” | “a” | ... | “z” | “0” | ... | “9”
STRING ::= CHARACTER [STRING]

19
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3.2.2 Naturals and Integers

Number ::= “0” | ... | “9”
NATURAL ::= Number [NATURAL]
Sign ::= “+” | “−”
INTEGER ::= [Sign] NATURAL

3.2.3 Enumerated Sets

ENUMERATED-SET ::= “{” STRING�“,” “}”

3.2.4 Identifiers

An identifier is simply a string without any number:

CHIdent ::= “A” | ... | “Z” | “a” | ... | “z”
STIdent ::= CHIdent [STIdent]
IDENT ::= STIdent

In the grammar of the language, we distinguish several kinds of identifier
in order to describe for each expression which data are used and what are the
links between identifiers. The following identifiers are all defined as IDENT:
IdentTrace, IdentNameKey, IdentNameAttribute, IdentNameFunction, Ident-
ParamKey, IdentNameAction, IdentParamAction, IdentVariableAction, Ident-
VariableIf. IdentConstant is defined as ENUMERATED-SET, NATURAL, IN-
TEGER or STRING. In the next section, we will define for each expression
what are the syntactical constraints on the idenfiers.

3.2.5 Keywords, Symbols and Operators

The list of keywords is: match, with, if, then, else, end. The list of special
symbols is: ⊥, , ∅, ∆=. The list of operators is: +, −, ×, /, %, card, front,
last, ∪.

3.3 Syntax of Attribute Definitions

3.3.1 General Expression

List AttributeDefinition ::= AttributeDefinition�“;”

AttributeDefinition ::= KeyDefinition
| NonKeyAttributeDefinition
| AuxiliaryFunction
| RoleAssociation
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3.3.1.1 Key Definition

KeyDefinition ::=
IdentNameKey “(” IdentTrace “) ∆=”
[“ match last(” IdentTrace “) with”]
[Input Clause Key Init “,” ]
Input Clause Key Update�“,”

[Input Clause Key RecursiveCall]

Restriction

KeyDefinition is the general form of a key definition in eb3. IdentNameKey
denotes the declaration of the name of the key. This must be the only declara-
tion of the key in List AttributeDefinition. IdentTrace in expression last()
is the trace declared as an actual parameter of the key definition. Ident-
NameKey and IdentTrace, defined as IDENT, can be used in the non-terminal
expressions of KeyDefinition. IdentNameKey can also be used in all the
other non-terminal expressions of List AttributeDefinition. The input clause
Input Clause Key Init is optional only for the case indicated in Sect. 3.3.2.1.

3.3.1.2 Non-Key Attribute Definition

NonKeyAttributeDefinition ::=
IdentNameAttribute “(” IdentTrace “,” IdentParamKey+“,” “) ∆=”
[“ match last(” IdentTrace “) with” ]
[Input Clause Attribute Init “,” ]
Input Clause Attribute Update�“,”

[Input Clause Attribute RecursiveCall]

Restriction

NonKeyAttributeDefinition is the declaration of a non-key attribute defini-
tion in eb3. IdentNameAttribute denotes the unique declaration of the at-
tribute name in List AttributeDefinition. IdentTrace and the list of Ident-
ParamKey are the formal parameters of the attribute. They can be used
in the non-terminal expressions of NonKeyAttributeDefinition. IdentTrace
in expression last() is the same trace as declared in the attribute definition.
IdentNameAttribute can be used in all the other non-terminal expressions of
List AttributeDefinition. All the identifiers are defined as IDENT. The input
clause Input Clause Attribute Init is optional only for the case indicated in
Sect. 3.3.2.1.

3.3.1.3 Auxiliary Functions

AuxiliaryFunction ::=
IdentNameFunction “(” IdentTrace “,” IdentParamKey�“,” “) ∆=”
[“ match last(” IdentTrace “) with” ]
[Input Clause Function Init “,” ]
Input Clause Function Update�“,”
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[Input Clause Function RecursiveCall]

Restriction

AuxiliaryFunction is the declaration of an auxiliary function in eb3. Ident-
NameFunction denotes the unique declaration of the function name in the spec-
ification. IdentTrace and the list of IdentParamKey are the formal param-
eters of the function. They can be used in the non-terminal expressions of
AuxiliaryFunction. IdentTrace in expression last() is the same trace as de-
clared in the auxiliary function. IdentNameFunction can be used in all the
other non-terminal expressions of List AttributeDefinition. All the identi-
fiers are defined as IDENT. The input clause Input Clause Function Init is
optional only for the case indicated in Sect. 3.3.2.1.

3.3.1.4 Roles in Associations

RoleAssociation ::=
IdentNameRole “(” IdentParamKey+“,” “) ∆=”
“ { ” IdentParamKey+“,” “ | (” IdentParamKey+“,” “) ∈” IdentNameKey “}”

Restriction

RoleAssociation is the declaration of a role in a association in eb3. IdentName-
Role denotes the unique declaration of the role name in the specification. The
list of key parameters IdentParamKey inside the parenthesis “( ) ” contains all
the parameters used as input parameters and in the set just after “ { ”. Ident-
NameKey corresponds to the name of an association. IdentNameRole can be
used in all the other non-terminal expressions of List AttributeDefinition. All
the identifiers are defined as IDENT.

3.3.2 Input Clauses for Initialization and Recursive Call

3.3.2.1 Initialization

Input Clause Key Init ::=
“⊥ : ” Computation Initialization Key

Input Clause Attribute Init ::=
“⊥ : ” Computation Initialization Attribute

Input Clause Function Init ::=
“⊥ : ” Computation Initialization Attribute
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Restriction

The input clause for initialization is optional only when:

• Computation Initialization Key is ∅, for a key.

• Computation Initialization Attribute is ⊥, for an attribute or for an
auxiliary function.

Indeed, ∅ and ⊥ are the values by default.

3.3.2.2 Recursive Call

Input Clause Key RecursiveCall ::=
“ : ” Recursive Call Same Key

Input Clause Attribute RecursiveCall ::=
“ : ” Recursive Call Same Attribute

Input Clause Function RecursiveCall ::=
“ : ” Recursive Call Same Function

3.3.3 Input Clauses for Updates

Input Clause Key Update ::=
Input Head Key “ : ” Functional Term Key

Input Clause Attribute Update ::=
Input Head Attribute “ : ” Computation Update Attribute

Input Clause Function Update ::=
Input Head Function “ : ” Computation Update Function

3.3.4 Input Heads

Input Head Key ::=
IdentNameAction “(” ( IdentVariableAction |

IdentParamAction |
“ ”)�“,” “)”

Input Head Attribute ::=
IdentNameAction “(” ( IdentParamKey |

IdentVariableAction |
IdentParamAction |
“ ”)�“,” “)”
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Input Head Function ::=
IdentNameAction “(” ( IdentParamKey |

IdentVariableAction |
IdentParamAction |
“ ”)�“,” “)”

Restriction

IdentNameAction corresponds to one of the eb3 action labels that are declared
in the process expression part of the eb3 specification by:

Declaration Action ::=
IdentNameAction “(” IdentParamAction+“,” “)”

In the above declaration, IdentNameAction and IdentParamAction are defined
as IDENT and must be used in the attribute definitions.

The list of identifiers and symbols after IdentNameAction in expressions
Input Head Key, Input Head Attribute and Input Head Function must be
compatible with the above-mentioned declaration of the action. In particular,
the number n of elements must be the same and, for each i, i ≤ n, the i-th
identifier IdentParamAction in the declaration of the action can be replaced
either:

• by the same identifier IdentParamAction,

• by special symbol ,

• or by a variable IdentVariableAction

in the i-th position of the list in Input Head Key.
Moreover, for Input Head Attribute (resp. Input Head Function) ex-

pressions, IdentParamAction can also be replaced by one of the identifiers Ident-
ParamKey declared in the attribute declaration NonKeyAttributeDefinition
(resp. the function declaration AuxiliaryFunction), where the input head is
defined.

IdentVariableAction is defined as IDENT and can only be used in the expres-
sion Computation Update Key or Computation Update Attribute that corre-
sponds to the input head.

3.3.5 Expressions for Initialization

Computation Initialization Key ::= “ ∅ ”
| ENUMERATED-SET

Computation Initialization Attribute ::= “ ⊥ ”
| Conditional Term Initialization Key
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3.3.6 Expressions for Recursive Calls

Recursive Call Key ::=
IdentNameKey “( front(” IdentTrace “) )”

Recursive Call Same Key ::=
IdentNameKey “( front(” IdentTrace “) )”

Recursive Call Attribute ::=
IdentNameAttribute “( front(” IdentTrace “) ,”

( IdentParamKey |
IdentConstant |
IdentVariableAction |
Computation Expression )�“,” “)”

|
IdentNameRole “(” IdentParamKey+“,” “)”

Recursive Call Same Attribute ::=
IdentNameAttribute “( front(” IdentTrace “) ,”

( IdentParamKey |
IdentConstant |
IdentVariableAction |
Computation Expression )�“,” “)”

Recursive Call Function ::=
IdentNameAttribute “( front(” IdentTrace “) ,”

( IdentParamKey |
IdentConstant |
IdentVariableAction |
Computation Expression )�“,” “)”

|
IdentNameFunction “( front(” IdentTrace “) ,”

( IdentParamKey |
IdentConstant |
IdentVariableAction |
Computation Expression )�“,” “)”

|
IdentNameRole “(” IdentParamKey+“,” “)”

Recursive Call Same Function ::=
IdentNameFunction “( front(” IdentTrace “) ,”

( IdentParamKey |
IdentConstant |
IdentVariableAction |
Computation Expression )�“,” “)”



26 F. Gervais, M. Frappier, R. Laleau, and P. Batanado

Restriction

IdentNameKey, IdentNameAttribute and IdentNameFunction must be one of
the keys, attributes or auxiliary functions defined in List AttributeDefinition.
In the expressions with Same, the identifier (IdentNameKey, IdentNameAt-
tribute and IdentNameFunction) must be the same as in the definition (of the
key, attribute or auxiliary function) where the expression is used. In other
words, the function defining the key, the attribute or the auxiliary function is
recursively called in its own definition. IdentNameRole must be one of the roles
defined in the specification.

IdentTrace in expression front() is the same as in the key, the attribute
or the auxiliary function definition. For Recursive Call Same Attribute and
Recursive Call Same Function, the list of identifiers after front(IdentTrace)
is exactly the same as in NonKeyAttributeDefinition and AuxiliaryFunction,
respectively (that is, a list of IdentParamKey). For Recursive Call Function,
the list of identifiers must be compatible with the attribute definition (for the
first case) or with the auxiliary function (for the second case). In particular, the
number n of elements must be the same and, for each i, i ≤ n, the i-th identifier
after expression front() in the recursive call must be either:

• the same identifier IdentParamKey as in NonKeyAttributeDefinition
(resp. AuxiliaryFunction),

• a constant IdentConstant from ENUMERATED-SET, INTEGER, NAT-
URAL or STRING,

• one of the IdentVariableAction defined in the last input head analysed,

• or a computation expression using the IdentParamKey declared in at-
tribute definition NonKeyAttributeDefinition (resp. auxiliary function
AuxiliaryFunction) and/or the IdentVariableAction defined in the last
input head analysed.

3.3.7 Expressions for Updates

Computation Update Attribute ::= Functional Term Attribute
| Conditional Term Attribute

3.3.7.1 Functional Terms

Functional Term Key ::= ENUMERATED-SET
| Recursive Call Same Key “∪” ENUMERATED-SET
| Recursive Call Same Key “−” ENUMERATED-SET
| Recursive Call Same Key “∪” ENUMERATED-SET

“−” ENUMERATED-SET

Functional Term Attribute ::= Ground Term Attribute
| Computation From Attribute
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Restriction

The ground terms and the corresponding computations are defined in Sect. 3.3.9.

3.3.7.2 Conditional Terms

Conditional Term Initialization Key ::=
“ if” Predicates Key “ then ”

Functional Term Key
[ “ else ”

Conditional Term Initialization Key ]
“ end ”

Conditional Term Attribute ::=
“ if” Predicates Attribute “ then ”

Functional Term Attribute
[ “ else ”

Conditional Term Attribute ]
“ end ”

3.3.7.3 Updates for Auxiliary Functions

Computation Update Function ::= Functional Term Function
| Conditional Term Function

The functional and conditional terms for auxiliary functions are defined as
for non-key attributes, but each occurrence of Recursive Call Attribute in
Computation From Attribute is replaced by Recursive Call Function.

3.3.8 Predicates for Conditional Terms

Predicates Key ::= IdentParamKey “=” IdentConstant

Predicates Attribute ::= Computation Predicate
| Predicate Logic
| Existential Predicate

3.3.8.1 Predicates Using Operators and Other Attributes

Computation Predicate ::= IdentParamKey “=” Key From Action
| IdentParamKey “∈” Set Of Keys From Action
| V alue From Key “=” V alue From Action
| V alue From Key “∈” Set Of V alues From Action
| IdentParamAction “=” Key From Action
| IdentParamAction “=” V alue From Action
| IdentParamAction “∈” Set Of V alues From Action
| IdentVariableIf “=” V alue From Action
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| IdentVariableIf “∈” Set Of V alues From Action

Restriction

IdentParamKey is an identifier defined in the attribute definition or in the aux-
iliary function that is analysed. IdentParamAction comes from the identifiers
defined in the last input head analysed. IdentVariableIf is a variable declared in
an existential predicate. The ground terms and the corresponding computations
are defined in Sect. 3.3.9.

3.3.8.2 Predicate Logic

Predicate Logic ::=
“ ( ” Predicates Attribute “ ) ”

| “¬ ( ” Predicates Attribute “ ) ”
| Predicates Attribute “∧” Predicates Attribute

Existential Predicate ::=
“ ∃ ” IdentVariableIf “ • ” Predicates Attribute

Restriction

IdentVariableIf is a fresh variable that is used in the predicate expression after
symbol •.

3.3.9 Computation Expressions

3.3.9.1 Computation Expressions in Functional Terms

Computation From Attribute ::= Ground Term Attribute
| Recursive Computation
| Arithmetic Computation
| Set Computation
| List Computation

Ground Term Attribute ::= IdentConstant
| IdentVariableAction
| IdentVariableIf
| IdentParamKey

Restriction

These expressions refer to Sect. 3.3.6 and 3.3.7. IdentConstant is a constant
from ENUMERATED-SET, INTEGER, NATURAL or STRING. IdentVari-
ableAction comes from the last input head analysed. IdentVariableIf is a fresh
variable declared in one of the predicates that determine the functional term
(see Sect. 3.3.8). IdentParamKey is declared in NonKeyAttributeDefinition.
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3.3.9.2 Computation Expressions in Conditional Terms

Key From Action ::= Ground Term Action

Set Of Keys From Action ::= Ground Term Action
| Recursive Call Key
| Set Computation

V alue From Action ::= Ground Term Action
| Recursive Computation
| Arithmetic Computation

Set Of V alues From Action ::= Ground Term Action
| Recursive Computation
| Set Computation

V alue From Key ::= Ground Term Key
| Recursive Computation
| Arithmetic Computation
| Set Computation

Ground Term Action ::= IdentConstant
| IdentParamAction
| IdentVariableAction
| IdentVariableIf
| IdentParamKey

Ground Term Key ::= IdentConstant
| IdentVariableIf
| IdentParamKey

Restriction

These expressions refer to Sect. 3.3.8.1. IdentConstant is a constant from
ENUMERATED-SET, INTEGER, NATURAL or STRING. IdentParamAction
is declared as an input parameter of the action of the input head (see Sect. 3.3.4).
IdentVariableAction comes from the last input head analysed. IdentVariableIf
is a fresh variable declared in one of the predicates that determine the func-
tional term (see Sect. 3.3.8). IdentParamKey is declared in the definition of the
attribute.

3.3.9.3 Common Expressions

The following are the expressions that are used in the above-mentioned compu-
tations. For the sake of concision, each occurrence of Computation Expression
in these expressions must be replaced by the accurate expression among:
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• Computation From Attribute,

• V alue From Action,

• Set Of V alues From Action,

• Key From Action,

• Set Of Keys From Action,

• V alue From Key.

For instance, Computation Expression in Set Computation must be replaced
by Computation From Attribute for the expressions in Sect. 3.3.9.1.

Recursive Computation ::= Recursive Call Attribute
| Recursive Call Key

Arithmetic Computation ::=
Computation Expression “+” Computation Expression

| Computation Expression “−” Computation Expression
| Computation Expression “×” Computation Expression
| Computation Expression “/” Computation Expression
| Computation Expression “%”

Set Computation ::= “card (” Computation Expression “ ) ”
| Computation Expression “∪” Computation Expression
| Computation Expression “−” Computation Expression

List Computation ::= “front (” Computation Expression “ ) ”
| “last (” Computation Expression “ ) ”



Chapter 4

Synthesizing Imperative
Programs

In an eb3 specification, there is only one state variable, the current trace of
the system. Figure 4.1 shows how the IS data model is represented by the eb3

attribute definitions from the system trace. For example, let us consider the
following trace:

s = [Acquire(b1, t1),Register(m1),Acquire(b2, t2),
Acquire(b3, t3),Register(m2), Lend(b1,m2)]

The key definitions characterize the set of existing key values for each entity
type and association. For instance, function bookKey associates s to {b1, b2, b3},
which denotes the set of existing books. Likewise, the set of existing members is
{m1,m2} in function memberKey and the set of loans includes only (b1,m2) in
function loan, since only one event of Lend occurs in trace s. The attribute values
are determined by means of the non-key attribute definitions. For instance, the
title of book b2 is computed by title(s, b2).

This representation follows from the trace semantics adopted in eb3. How-
ever, it is not appropriate to use the system trace in an implementation of the
IS specification, because the system trace grows infinitely. Consequently, our
approach is to store each attribute in a conventional relational DB which rep-
resents the ER diagram. The value of an attribute is computed when a new
event is accepted by process expression main. In order to efficiently make these
update, we must identify the subset of attributes that are affected by an action.

In this section, we show how to implement the ER diagram and the eb3

attribute definitions. We generate, for each action a, a relational DB transaction
that corresponds to the effects of a, as defined in the set of attribute definitions.
In that aim, we analyse all the input clauses of eb3 attribute definitions to
determine which attributes are affected by the execution of action a and what
are the effects of a on these attributes. In particular, we have to determine
the key values to delete from the tables and the key values to update and/or
to insert. The results of the input clauses analysis are the following: i) the
attributes B(a) affected by action a, ii) the tables T (a) affected by a, iii) the
key values KDelete(t, a) to delete from table t in the transaction of a, and iv)
the key values KChange(t, a) to insert and/or to update in t. We also determine
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bookKey(s) memberKey(s)
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Figure 4.1: Data modelled by eb3 attribute definitions

some temporary variables and tables for the transaction definitions in order to
avoid inconsistencies because of the ordering of the different statements within
each transaction. To define the transaction of a, we must generate for each
table in T (a) the SQL statements that correspond to the effects of a. With the
sole analysis of the input clauses, one cannot distinguish the key values to insert
from those to update; an analysis of eb3 process expressions would be required
for that. This issue is solved by generating a test within the transaction in order
to distinguish INSERT from UPDATE statements.

create the tables of the DB
initialize the DB
for each action a of the eb3 specification

determine B(a)
determine the temporary variables and tables (A1)
determine T (a)
for each table t in T (a)

determine KDelete(t, a) and KChange(t, a)
define a transaction for a

generate the definition of all the temporary variables and tables
for each table t in T (a)

determine and generate the SQL statements (A2)
generate a commit

4.1 Creation of the Tables

We use standard algorithms from [Elm04] to create relational tables from the
ER diagram. The signature of eb3 actions provides the list of attributes that
can be set to NULL. Indeed, if an input type is decorated with ^N in the action
signature, then the value of this parameter can be NULL. If this type appears in
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the ER diagram, then the corresponding attribute can be undefined in the table.
This step is detailed in [Bat05]. For instance, the table definition generated for
association loan is:

CREATE TABLE loan (
bookKey BookKey Set PRIMARY KEY REFERENCES book,
borrower MemberKey Set REFERENCES member,
dueDate INT NOT NULL

);

4.2 Initialization of the DB

Initialization is simply a special case of the analysis of the input clauses. Indeed,
for each attribute definition b, there exists an input clause of the form ⊥ : u.
It denotes the initial value of the attribute and therefore corresponds to the
initialization of the tables. The most common value for u is ∅ for a key. This
means that there is no entry in the DB table. The most common value for u
for a non-key attribute is ⊥. This means either that there is no tuple at the
initialization or that the entries are initialized to NULL for non-key attribute
b. Otherwise, u is a functional term or a conditional term and the INSERT
statement is generated as for the transactions in Sect. 4.4.3.

4.3 Analysis of the Input Clauses

The results of the analysis of the input clauses are the following:

1. the attributes affected by action a, denoted B(a),

2. the tables affected by a, denoted T (a),

3. for each table t of T (a),

• the key values of the records to delete from t, denoted KDelete(t, a),

• the key values of the records to insert and/or to update in t, denoted
KChange(t, a).

Because of the pattern matching analysis described in Sect. 2.4, an attribute
b is affected by action a if there exists at least one input clause of the form
a(−→p ) : u in the definition of b. This gives us set B(a).

For each attribute b of B(a), there may be several input clauses a(−→pj ) : uj

with the same label a. Since the first input clause that evaluates to true is the
one to be executed, analysis of these input clauses is done in their declaration
order. Let table(b) denote the function that returns the table where b is stored.
Set T (a) is then defined by:

T (a) = {table(b) | b ∈ B(a)}

Let t be an element of T (a). To obtain KDelete(t, a) and KChange(t, a), we
determine for each attribute b of B(a) the corresponding sets KD(b) and KIU (b)
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such that:

KDelete(t, a) =
⋃

{b∈B(a)∧table(b)=t}
KD(b)

KChange(t, a) =
⋃

{b∈B(a)∧table(b)=t}
KIU (b)

KD(b) and KIU (b) are determined by analysing the input clauses. The subal-
gorithm (A1) in the general algorithm is the following:

for each attribute b of B(a)
if b is defined by a conditional term

generate a decision tree for b
determine SELECT statements for the relevant records
determine the temporary variables and the temporary tables

determine KIU (b), KD(b)

4.3.1 Determination of KIU(b) and KD(b)

When a pattern condition evaluates to true, an assignment of a value for each
variable in var(−→pj ) has been determined. We denote by θuj

this assignment.
For instance, the input clause for action Transfer in attribute nbLoans is of the
form:

Transfer(bId,mId′) : ...

The assignment is then θ = {bId� = bId,mId� = mId′}, where bId� and mId�

are the formal parameters of action Transfer.
Sets KD(b) are computed only for key definitions. If b is a key definition,

then expression uj is a functional term and a value v has been determined from
the pattern matching. If uj contains the symbol “−”, then v is added to set
KD(b); otherwise v is added to set KIU (b). For instance, the input clause of
Discard in key definition bookKey is associated to expression bookKey() − {bId}.
Consequently, we deduce that: KD(bookKey) = {bId}.

For computing the sets KIU (b), we consider both key definitions and non-
key attribute definitions. If expression uj in the input clause is a functional
term, then a key value v has been entirely determined. Nevertheless, if uj

is a conditional term, then we must analyse the different conditions in the if
predicates. The crux of this analysis is to determine, when event a is received,
what are the key values {−→v } such that b(trace :: a,−→v ) 
= b(trace,−→v ). The
variables in

−→
k ∩ var(−→pj ) are determined by the pattern mapping θuj

. The
variables in

−→
k − var(−→pj ) are determined by the conditions in the conditional

term uj . We use a binary tree called decision tree to analyse the if predicates.
The leaves of the decision tree are the functional terms in the inner then parts
of expression uj , and the edges are the if predicates. Thus, by analysing the
decision tree, each functional term ftj,i is associated to a set of key values KVj,i.
Then, each KVj,i is merged with KIU (b).

For the sake of concision, we do not deal with decision trees in this re-
port; their construction and analysis are detailed in [GFL04]. We just illustrate
this point by considering attribute definition nbLoans. For instance, action
Transfer is associated to a conditional term in this definition: the if predicates
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determine two key values for mId: mId′ and borrower(bId). In that case,
KIU (nbLoans) = {mId′, borrower(bId)}.

4.3.2 Hypotheses on the Input Parameters

Let us identify the actual parameters of input clause a(p1, . . . , pm) : u with the
formal parameters of action a(q1, . . . , qm):

∃ var(p1, . . . , pm) •
∧

j

pj = qj

This statement allows us to determine for which formal parameters qj action a
may be executed. There are mainly three cases to consider:

1. when pj is the wildcard symbol ‘ ’, then u is valid for every value of
parameter qj .

2. when pj is a variable v, then u is valid for the values of v; the pattern
mapping θu allows us to bind variable v to parameter qj . However, if v
occurs in more than one place in p1, . . . , pm, then we must also check that
the corresponding parameters in q1, . . . , qm are all the same.

3. when pj is a ground term c, then u is valid only for qj = c.

Consequently, some hypotheses must be defined on the input parameters for
cases 2 and 3. Moreover, other hypotheses can appear in the predicates of
conditional terms.

For instance, parameter typeOfLoan of action Lend(bId,mId, typeOfLoan)
implies two distinct input clauses in attribute definition dueDate. The first in-
put clause provides a functional term for typeOfLoan = Permanent, while the
other one is for typeOfLoan = Classic. Such hypotheses on the values of the
input parameters imply the definition of IF THEN ELSE END statements
in the transactions. The determination of the hypotheses and the definition of
the corresponding statements are detailed in [GFL04].

4.3.3 Definition of Temporary Variables and Tables

The definition of temporary variables and tables is coupled with the analysis of
the decision trees. When the records are determined from predicates involving
arithmetic computations, set computations and/or recursive calls of attributes,
then a temporary variable or a temporary table must be defined in the host
language, in order to manipulate it in the transaction of the action. Moreover,
such definitions allow us to define transactions independently of the statements
ordering. In particular, DELETE statements can be grouped at the beginning
of the transaction without any consequences on the other statements, since
the relevant key values have been recorded in the temporary variables and/or
tables. A temporary variable is defined when there is a unique record, while a
temporary table is used to store several records.

For instance, a temporary variable TEMP1 is introduced as follows1 for
borrower(bId) in the transaction of action Transfer:

1The SQL 92 norm is used for SQL queries, while a procedural pseudo-language is used
for transactions.
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VAR TEMP1 : memberKey Set /* Define a new variable TEMP1 */
SELECT borrower INTO TEMP1 /* Assign the value to TEMP1 */
FROM book
WHERE bookKey = #bId;

A program variable used in an SQL statement is prefixed by the symbol “#”,
in order to distinguish it from attribute names. A temporary variable TEMP
can then be simply used in the transaction definitions by predicates of the form
param = TEMP , where param is a parameter in the WHERE clauses of SQL
statements. A temporary table is used to characterize several key values. For
instance, if we need the collection of books borrowed by member mId, then the
following table is defined:

CREATE TABLE TAB1 (bookKey bookKey Set PRIMARY KEY);
INSERT INTO TAB1

SELECT bookKey
FROM book
WHERE borrower = #mId;

A temporary table TAB can be used in the transaction definitions by predicates
of the form: param IN (SELECT param FROM TAB).

4.3.4 Patterns for the SELECT Statements

The generation of SELECT statements that correspond to the key values sat-
isfying the if predicates depends on the form of the predicate. We have identi-
fied the most typical patterns of predicates and their corresponding SELECT
statements. In the following definitions, each attribute is prefixed by its table
to avoid confusion. Let table(b) denote the table where attribute b is stored and
T.key(j) the j-th key attribute of table T . For the sake of concision, we sup-
pose that each recursive call b(front(s), ...) is denoted by b(...) in the following
patterns. Let position(p, f) denote the position of parameter p in function f .
For instance, position(k3, f) = 4 for f(k1, k2, p1, k3).

4.3.4.1 Roles in Associations

A SELECT statement is generated for each role defined in an association.
When the role is defined as a subset of the association entities, then the SE-
LECT statement is directly derived from the eb3 definition. Let ass be an
association between entity types e1 and e2. Let k1

1, ..., k
1
m1

denote the key at-
tributes that define attribute e1, and k2

1, ..., k
2
m2

denote the key attributes that
define attribute e2. Let r1 be the role of e2 in ass defined by:

r1(v1
1 , ..., v1

m1
) = {(v2

1 , ..., v2
m2

) | (v1
1 , ..., v1

m1
, v2

1 , ..., v2
m2

) ∈ ass}

The SELECT statement generated for r1 is the following:

SELECT T.k2
1, ..., T.k2

m2

FROM T
WHERE T.k1

1 = #v1
1

AND ...
AND T.k1

m1
= #v1

m1
;
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where T is the table of association ass. Likewise, if role r2 of e1 in ass is defined
by:

r2(v2
1 , ..., v2

m2
) = {(v1

1 , ..., v1
m1

) | (v1
1 , ..., v1

m1
, v2

1 , ..., v2
m2

) ∈ ass}
then the SELECT statement is:

SELECT T.k1
1, ..., T.k1

m1

FROM T
WHERE T.k2

1 = #v2
1

AND ...
AND T.k2

m2
= #v2

m2
;

For instance, membRes is defined by:

membRes(bId) = {mId | (bId,mId) ∈ reservation}

The generated SELECT statement is:

SELECT reservation.memberKey
FROM reservation
WHERE reservation.bookKey = #bId;

If the role is defined by a recursive function, because the entity particpates in
a 1 : N association, then it does not need a SELECT statement, since it can be
directly evaluated thanks to the recursive function. For instance, role borrower
is implemented as an attribute of table book and it is taken into account in the
input clauses analysis described in Sect. 4.3.

4.3.4.2 Predicates on Scalars

In this section, we consider predicates of the form f(
−→
k ,−→p ) op g(

−→
k ,−→p ), where

f and g return scalars and op is a binary operator on scalars like =, > or <.−→
k is a subset of the key attributes to determine and −→p is a subset of the input
clause parameters.

For instance, for a predicate of the form k = g(−→p ), where k is a key attribute,
g is an attribute recursive call and −→p is a subset of the input clause parameters,
the corresponding SELECT statement is:

SELECT table(g).g /* extract g */
FROM table(g)
WHERE table(g).key(1) = #p1 /* evaluation of g for p1 */

AND ...
AND table(g).key(m) = #pm; /* evaluation of g for pm */

where m is the number of paramaters in −→p . This pattern can be applied when
the table of g has exactly m key attributes. In that case, the SELECT state-
ment returns the value of attribute g for key (p1, ..., pm).

4.3.4.2.1 Pattern f(�k, �p1) = g(�k, �p2) A more general case is a predicate
expression of the form f(

−→
k ,

−→
p1) = g(

−→
k ,

−→
p2), where f and g are attribute recur-

sive calls,
−→
k = (k1, ..., kn) is a subset of the key attributes to determine, and

−→
p1

and
−→
p2 are subsets of the input clause parameters. The input parameters of f
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and g are not exactly (
−→
k ,

−→
p1) and (

−→
k ,

−→
p2), respectively. They are of the form

f(v1, ..., vmf
) and g(w1, ..., wmg

), where vi (resp. wi) is either a key attribute

kj , or a value computed from
−→
p1 (resp.

−→
p2) with a function or an attribute

definition. mf and mg denote the number of key attributes of table(f) and
table(g), respectively. The SELECT statement is then the following.

/* extract k1, ..., kn */
SELECT table(f).key(position(k1, f)), ..., table(f).key(position(kn, f))
FROM table(f), table(g)
WHERE table(g).key(position(k1, g)) = table(f).key(position(k1, f))

AND ... /* evaluation of g for each kj , 1 ≤ j ≤ n */
AND table(g).key(position(kn, g)) = table(f).key(position(kn, f))
/* evaluation of g for wi, 1 ≤ i ≤ mg, if wi is not a kj */
AND ...
AND table(g).key(position(wi, g)) = #wi

AND ...
/* evaluation of f for vi, 1 ≤ i ≤ mf , if vi is not a kj */
AND ...
AND table(f).key(position(vi, f)) = #vi

AND ...
AND table(f).f = table(g).g; /* predicate */

Restriction. This pattern can be applied when mf ≥ n and mg ≥ n. More-
over, the number of clauses of the form table(g).key(position(wi, g)) = #wi

(table(f).key(position(vi, f)) = #vi, respectively) should be equal to mg − n
(resp. mf − n). Let us note that this pattern supposes that the values of
attributes f and g are scalars of the same type T . The equality = can be
replaced in the predicate by other binary operators op of type T × T , like >
or <. In that case, the last predicate in the WHERE clause is replaced by
table(f).f op table(g).g. If f = g, then we use aliases for the table. The
FROM clause becomes:

FROM table(f) T1, table(g) T2

Each occurrence of table(f) (resp. table(g)) is replaced by T1 (resp. T2) in the
SELECT and WHERE clauses of the pattern above.

4.3.4.2.2 Composition of Recursive Calls Let us now consider the sim-
ple case f(k1, ..., kn) = g(p1, ...pm). If f is a composition of attributes recursive
calls, then a join between the different tables whose attributes are concerned
is necessary. For instance, if f = f1; f2 (i.e., f2(f1(k1, ..., kn) op g(p1, ..., pm)),
then a new condition is added in the SELECT statement:

SELECT table(f1).key(1), ..., table(f1).key(n)
FROM table(f1), table(f2), table(g)
WHERE table(f2).key(1) = table(f1).f1 /* join f1; f2 */

AND table(g).key(1) = #p1

AND ...
AND table(g).key(m) = #pm

AND table(f2).f2 op table(g).g;
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If the composition is on the right-hand side, then the join is on g. For instance,
if g = g1; g2, then the SELECT statement becomes:

SELECT table(f).key(1), ..., table(f).key(n)
FROM table(f), table(g1), table(g2)
WHERE table(g2).key(1) = table(g1).g1 /* join g1; g2 */

AND table(g1).key(1) = #p1

AND ...
AND table(g1).key(m) = #pm

AND table(f).f = table(g2).g2;

Composition with Keys Defined by a Single Key Attribute. Let us
now suppose that each recursive function has only one key attribute. For a pred-
icate of the form fp(fp−1(...f1(k))) op Sg, where Sg is a value determined from
recursive functions, the corresponding SELECT statement is of the following
form:

SELECT table(f1).key(1) /* extract k */
FROM table(f1), table(f2), ..., table(fp), tables for Sg

WHERE table(fp).key(1) = table(fp−1).fp−1 /* join fp−1; fp */
AND table(fp−1).key(1) = table(fp−2); fp−2 /* join fp−2; fp−1 */
AND ...
AND table(f2).key(1) = table(f1).f1 /* join f1; f2 */
AND Conditions on Sg

AND table(fp).fp op Sg; /* predicate */

Analogously, for a predicate of the form CK op gr(gr−1(...g(p))), where CK is
a computation on k, the corresponding SELECT statement is of the following
form:

SELECT k in the relevant table of CK
FROM tables for CK, table(g1), table(g2), ..., table(gr)
WHERE Conditions on CK

AND table(gr).key(1) = table(gr−1).gr−1 /* join gr−1; gr */
AND table(gr−1).key(1) = table(gr−2); gr−2 /* join gr−2; gr−1 */
AND ...
AND table(g2).key(1) = table(g1).g1 /* join g1; g2 */
AND table(g1).key(1) = p
AND CK op table(gr).gr; /* predicate */

Composition with Keys Defined by Several Key Attributes. When a
non-key attribute h has several key attributes k1, ..., km, then input parameter
kj of recursive function h can be instantiated by another recursive function d if
the type of attribute d is the same as the type of kj . For a composition of the
form h(..., vj−1, d(...), vj+1, ...), the corresponding predicates in the WHERE
clause are then:

SELECT the relevant key attributes
FROM the relevant tables, including table(h) and table(d)
WHERE ...

/* value for the (j − 1)-th key attribute of h */
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AND table(h).key(j − 1) = vj−1

/* value for the (j)-th key attribute of h */
AND table(h).key(j) = table(d).d
/* value for the (j + 1)-th key attribute of h */
AND table(h).key(j + 1) = vj+1

AND ...
AND Conditions on d
AND General predicate

4.3.4.2.3 Composition with Other Functions Recursive functions can
be composed with a function using arithmetic and/or set operators. Let h and
d be two attribute definitions. We suppose that h has m key attributes. Let c
be a function that uses set and/or arithmetic operators. Let us now consider
composition: h(..., vj−1, c(..., pl−1, d(...), pl+1, ...), vj+1, ...). We suppose that it
is well-defined, i.e., each output type of a function given as an input parameter
of another function is the type required that input parameter. Then, the pattern
is the following.

SELECT the relevant key attributes
FROM the relevant tables, including table(h) and table(d)
WHERE ...

/* value for the (j − 1)-th key attribute of h */
AND table(h).key(j − 1) = vj−1

/* value for the j-th key attribute of h */
AND table(h).key(j) = c(..., pl−1, table(d).d, pl+1, ...)
/* value for the (j + 1)-th key attribute of h */
AND table(h).key(j + 1) = vj+1

AND ...
AND Conditions on d
AND General predicate

If c is the last function to be composed, e.g., c(..., pl−1, d(...), pl+1, ...), then
it appears in the WHERE clause of the predicate. For a predicate of the form
c(..., pl−1, d(...), pl+1, ...) op Sg, the SELECT statement is:

SELECT the relevant key attributes in d
FROM the relevant tables, including table(d)
WHERE Conditions on d

AND Conditions on Sg

AND c(..., pl−1, table(d).d, pl+1, ...) op Sg; /* predicate */

For a predicate of the form CK op c(..., pl−1, d(...), pl+1, ...), the SELECT
statement is of the following form:

SELECT the relevant key attributes of CK
FROM the relevant tables, including table(d)
WHERE Conditions on CK

AND Conditions on d
AND CK op c(..., pl−1, table(d).d, pl+1, ...); /* predicate */
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4.3.4.3 Patterns on Sets

In this section, we consider predicates of the form f(
−→
k ,−→p ) ops g(

−→
k ,−→p ), where

f and g return sets and ops is a binary operator on sets like = or ⊆.
−→
k is a

subset of the key attributes to determine and −→p is a subset of the input clause
parameters. Since recursive functions defining attributes output only scalars,
then there are only two cases where f or g can output sets. Either the set of input
parameters is a subset of the key of the attribute, or one the input parameter
is a set of possible values. In the former case, f or g then corresponds to a role
and such patterns are defined in Sect. 4.3.4.1. In the latter case, expressions
f(
−→
k ,−→p ) and g(

−→
k ,−→p ) then correspond to the range of f and g.

4.3.4.3.1 Predicate of the Form k ∈ g(�p) Let us consider a predicate of
the form k ∈ g(�p), where k is a key attribute, g is an attribute recursive call
and −→p is a subset of the input clause parameters, the corresponding SELECT
statement is:

SELECT table(g).g /* extract g */
FROM table(g)
WHERE table(g).key(1) = #p1 /* evaluation of g for p1 */

AND ...
AND table(g).key(m) = #pm; /* evaluation of g for pm */

where m is the number of paramaters in −→p . This pattern can be applied when
the table of g has more than m key attributes. In that case, the SELECT
statement returns the values of attribute g for the subset of key (p1, ..., pm). This
case corresponds to the pattern for a role; g is indeed a role for the association
defined in table(g).

4.3.4.3.2 Range of Attribute Definitions Let us now consider the sim-
ple case k ∈ g(p1, ..., Si, ...pm), where Si is a set of possible values for input
parameter pi. By our algorithm, set Si is itself determined by a SELECT pat-
tern defined as a temporary table TAB in the host language. Then recursive
function g outputs one attribute value for each element in TAB. To avoid con-
fusion, parentheses are now replaced by brackets in expression g(p1, ..., Si, ...pm)
to point out that the range of g is considered instead of a single output value:
g[ p1, ..., Si, ...pm]. The SELECT statement is then of the following form.

SELECT table(g).g
FROM table(g)
WHERE table(g).key(1) = #p1

AND ...
AND table(g).key(i) IN ( SELECT TAB.pi FROM TAB )
AND ...
AND table(g).key(m) = #pm;

4.3.4.3.3 Composition of Ranges Let us now suppose that the predicate
of the form is of the form k ∈ f [...pi−1, g[...], pi+1...], where f is an attribute def-
initions, p1, ..., pi−1, pi+1, ..., pm denote input parameters and g[...] is the range
of attribute definition g. Then a SELECT statement can be generated for ex-
pression g[...], as described in Sect. 4.3.4.3.2. Let TAB denote the temporary
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table defined from the SELECT statement. The SELECT statement for the
composition is then of the following form:

SELECT table(f).f
FROM table(f)
WHERE table(f).key(1) = #p1

AND ...
AND table(f).key(i − 1) = #pi−1

AND table(f).key(i) IN ( SELECT TAB.pi FROM TAB )
AND table(f).key(i + 1) = #pi+1

AND ...
AND table(f).key(m) = #pm;

4.3.4.3.4 Predicate of the Form f [�k, �p1] ⊆ g[�k, �p2] In that case, at least
one the input parameters in �p1 and one of the input parameters in �p2 are sets
of values; for example, input parameters p1

j1
and p2

j2
are sets S1

j1
and S2

j2
, re-

spectively. Let TAB1 and TAB2 denote the temporary tables determined for
S1

j1
and S2

j2
. The SELECT statement for the predicate is then of the following

form.

/* extract k1, ..., kn */
SELECT table(f).key(position(k1, f)), ..., table(f).key(position(kn, f))
FROM table(f) F1, table(g) G1

WHERE G1.key(position(k1, g)) = F1.key(position(k1, f))
AND ... /* evaluation of g for each kj , 1 ≤ j ≤ n */
AND G1.key(position(kn, g)) = F1.key(position(kn, f))
/* evaluation of g for each p1

i , if p1
i is neither a kj nor a set */

AND ...
AND G1.key(position(p1

i , g)) = #p1
i

AND ...
/* evaluation of g for S1

j1
*/

AND G1.key(j2) IN ( SELECT TAB2.pj2 FROM TAB2 )
/* evaluation of f for each p2

i , if p2
i is neither a kj nor a set */

AND ...
AND F1.key(position(p2

i , f)) = #p2
i

AND ...
/* evaluation of f for S1

j1
*/

AND F1.key(j1) IN ( SELECT TAB1.pj1 FROM TAB1 )
/* inclusion of sets */
AND NOT EXISTS

( SELECT F2.f
FROM table(f) F2

WHERE F2.key(1) = F1.key(1)
AND...
AND F2.key(mf ) = F1.key(mf )
AND NOT EXISTS

( SELECT G2.g
FROM table(g) G2

WHERE G2.key(1) = G1.key(1)
AND...
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AND G2.key(mg) = G1.key(mg)
AND G2.g = F2.f));

where mf and mg are the number of key attributes of table(f) and table(g),
respectively.

4.3.4.4 Composition of Patterns

During the analysis of the input clauses of an attribute definition, a temporary
table is generated for each leaf of the decision tree to record the key values that
are affected by the action. The table is defined from a SELECT statement
that is the resulting composition of several SELECT patterns. Indeed, each
leaf of the decision tree is associated to the conjunction of conditions labelling
the path’s edges leading to the leaf. For each condition, we can use some of the
SELECT patterns described in the previous sections. The patterns are then
composed between them according to their logical connection. The algorithm
is the following.

for each decision tree
determine the key K of the attribute
determine the set of paths that lead to a leaf, except the last one
for each path

for each condition ci labelling the path’s edges
if ci is a positive predicate

for each conjunct ci,j in ci

if ci,j is a positive condition
apply the relevant SELECT patterns for ci,j (S1)

else
apply the relevant SELECT patterns for ¬ ci,j (S1)
define a temporary table for ¬ ci,j

define a SELECT statement for K (S2)
else

find the SELECT statement already defined for ¬ ci (S3)
define a temporary table for ¬ ci (S4)

determine the SELECT statement for the path (S5)
define the temporary table for the path

Steps (S1)-(S5) are detailed in the next paragraphs.

4.3.4.4.1 Application of Patterns Step (S1) corresponds to the applica-
tion of the patterns described in Sect. 4.3.4.2 and 4.3.4.3. If predicate ci,j in-
volves a comparison between scalars, then Sect. 4.3.4.2 provides the elementary
patterns and explains how to build the SELECT statement if some attributes
are composed in the predicate. If predicate ci,j involves roles or ranges of at-
tributes, then Sect. 4.3.4.3 provides the elementary patterns and explains how
to build the SELECT statement when ranges of attributes are composed.

4.3.4.4.2 Definition of the Statement for ci Step (S2) allows the SE-
LECT statement generated from patterns to be intersected with the other
statements. Predicate ci,j can involve only a subset of the key K that must
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be determined. To consider the intersection of the different SELECT state-
ments coming from the different conditions of ci, we use the Cartesian product
to take the missing key attributes into account. Thus, a SELECT statement
of the following form

SELECT T.k1, ..., T.kn

FROM T
WHERE /* predicates */

is transformed into a statement of the following form:

SELECT t1.k1, ..., t1.kn, t2.l1, ..., t2.lm
FROM T t1, T t2
WHERE /* predicates where each occurrence of T is replaced by t1 */

where l1, ..., lm are the key attributes of K that do not appear in predicate ci,j .
Once a statement has been computed for each ci,j in ci, then a global state-

ment is defined for ci. Let us recall that a SELECT statement is generated for
the positive condition of each ci,j ; hence, if ci,j is a negative condition, then the
statement has been generated for ¬ ci,j . The algorithm is the following.

determine the list l of conditions ci,j in ci

determine the list lp of positive conditions in ci

let lw = [] be a list of conditions
let ls = [] be a list of statements
for each condition ci,j in l

if ci,j is in lp
for each ci,j′ in lw

add condition K NOT IN (SELECT � FROM TAB),
where TAB is the temporary table associated to ci,j′ ,
in the WHERE clause of the SELECT statement
associated to ci,j

remove ci,j′ from lw
add the SELECT statement into ls

else
add ci,j into lw

if lw is not empty
define a SELECT statement of the following form: (S6)

SELECT K
FROM t;
where t is the table in the FROM clause of
the temporary table defined for the first condition in lw

for each ci,j′ in lw
add condition K NOT IN (SELECT � FROM TAB),

where TAB is the temporary table associated to ci,j′ ,
in the WHERE clause of the SELECT statement
defined at step (S6)

remove ci,j′ from lw
add the SELECT statement into ls

define the temporary table for ci as the intersection of the
SELECT statements in ls
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Consequently, the resulting table has the following form.

/* creation of table with the relevant key attributes */
CREATE TABLE TAB (...);
INSERT INTO TAB
/* First statement in ls */

SELECT ...
FROM ...
WHERE ...;
INTERSECT
...
INTERSECT

/* Last statement in ls */
SELECT ...
FROM ...
WHERE ...;

4.3.4.4.3 Reuse of Statements A decision tree is a binary tree in DNF
(see Sect. 4.3.1 and [GFL04]); hence, each condition labelling a right edge is the
negation of the condition labelling the left edge. If condition ci is a negative
predicate (e.g., of the form ¬(...)), then it corresponds to the condition labelling
the right edge. Since the decision tree is analysed by a depth-first traversal in
prefix order, the SELECT statement that corresponds to the left edge has
already been generated for ¬ci. In step (S3), this statement is retrieved and a
temporary table is defined from it in step (S4), as described in Sect. 4.3.3.

4.3.4.4.4 Definition of the Statement for the Path Once all the con-
ditions labelling the path’s edges have been analysed, a global statement is
generated for the path. The conditions labelling the path’s edges are divided
into two groups: the positive and the negative ones. For each positive predi-
cate, a SELECT statement has been generated (step (S2)). For each negative
predicate, a temporary table has been defined (step (S4)). The algorithm to
generate the global statement is the following.

determine the list L of predicates labelling the path’s edges
determine the list LP of positive predicates
let LW = [] be a list of predicates
let LS = [] be a list of statements
for each predicate ci in L

if ci is in LP
for each cj in LW

add condition K NOT IN (SELECT � FROM TAB),
where TAB is the temporary table associated to cj ,
in the WHERE clause of the SELECT statement
associated to ci

remove cj from LW
add the SELECT statement into LS

else
add ci into LW
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define the temporary table as the intersection of the
SELECT statements in LS

Consequently, the resulting table has the following form.

/* creation of table with the relevant key attributes */
CREATE TABLE TAB (...);
INSERT INTO TAB
/* First statement in LS */

SELECT ...
FROM ...
WHERE ...;
INTERSECT
...
INTERSECT

/* Last statement in LS */
SELECT ...
FROM ...
WHERE ...;

4.4 Definition of Transactions

For defining transactions, all the SQL statements are grouped by table. Thanks
to the analysis of the input clauses, we have already distinguished the DELETE
statements from the other statements. The key values to remove are in set
KDelete(t, a). The DELETE statements are grouped at the beginning of each
table’s list of instructions. A test is defined to determine whether the key values
in KChange(t, a) already exist in the tables, in order to distinguish updates from
insertions. In that aim, we define L as the list of potential UPDATE statements
for table t in the transaction corresponding to action a. We first try the first
update of L. Then, we test whether the key value has not been found in the
DB. If so, then the INSERT statement is executed instead; otherwise, the other
updates of L are executed. The subalgorithm (A2) of the general algorithm is
the following:

for each k in KDelete(t, a)
determine and generate the DELETE statement with k

for each k in KChange(t, a)
L := []
for each attribute b of t in B(a)

if k is in KIU (b)
compute the value of b(k)
determine the UPDATE statement for b(k)
insert the UPDATE statement into L

define SI as the INSERT statement for k and the b(k)s
define SU as the sequence of the updates of front(L)
generate the first update of L
generate the following statement:

IF SQL%NotFound
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THEN SI

ELSE SU

END;

4.4.1 DELETE statements

If KDelete(t, a) is simply a singleton of the form {−→k }, where
−→
k = (k1, ..., km)

and k1, ..., km are value constants, then the corresponding DELETE statement
is of the following form:

DELETE FROM t
WHERE key(1) = #k1

AND ...
AND key(m) = #km;

More generally, KDelete(t, a) is a set of key values. Some of them are directly
determined, while others are characterized by temporary variables and/or ta-
bles. By definition,

KDelete(t, a) =
⋃

{b∈B(a)∧t=table(b)}
KD(b)

So, KDelete(t, a) can be considered as a set of the form {SKD1, ..., SKDn},
where the SKDis are the sets KD(b) such that t = table(b). Each SKDi,
1 ≤ i ≤ n, is a set of key values (possibly a singleton) characterized either by
temporary variables or tables, or by key values. A DELETE statement of the
following form is generated for each SKDi:

DELETE FROM t
WHERE (WHD);

If SKDi is determined from a temporary variable TEMP , then (WHD) is
of the form: (key(1), ..., key(m)) = TEMP . If SKDi is determined from a
temporary table TAB, then (WHD) is: (key(1), ..., key(m)) IN (SELECT
key(1), ..., key(m) FROM TAB). If SKDi is a singleton {kv}, then (WHD)
is: (key(1), ..., key(m)) = #kv.

4.4.2 UPDATE statements

Let us recall that:

KChange(t, a) =
⋃

{b∈B(a)∧table(b)=t}
KIU (b)

KChange(t, a) can be considered as the set of the form {SKC1, ..., SKCn}, where
the SKCis are the sets KIU (b) such that t = table(b). Each SKCi, 1 ≤ i ≤ n, is
either a singleton or a set of key values. The key values of each SKCi are then
grouped by their effect on b; in other words, some of them are characterized
by the same temporary table, because their update is computed with the same
functional term in b.

SKCi can be considered as the set of the form {SKVi,1, ..., SKVi,l}, where
each SKVi,j , 1 ≤ j ≤ l, is the set of key values that are associated to the same
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functional term ui,j in the attribute definition of b. Consequently, for each b in
B(a) such that table(b) = t, and for each subset SKVi,j , a UPDATE statement
of the following form is generated:

UPDATE t
SET b = ui,j

WHERE (WHU);

If SKVi,j is determined from a temporary variable TEMP , then (WHU) is
of the form: (key(1), ..., key(m)) = TEMP . If SKVi,j is determined from
a temporary table TAB, then (WHU) is: (key(1), ..., key(m)) IN (SELECT
key(1), ..., key(m) FROM TAB). If SKVi,j is a singleton {kv}, then (WHU)
is: (key(1), ..., key(m)) = #kv.

4.4.3 INSERT statements

Like in Sect. 4.4.2, the key values of each SKCi are grouped by their effect on
b. For each subset SKVi,j of key values that have the same functional term ui,j

in attribute definition b, we compute the corresponding values with ui,j . So, for
each key value kv in KChange(t, a), we are able to determine a new value for
each b in B(a) such that table(b) = t. For each kv, a INSERT statement of
the following form is generated:

INSERT INTO t(k, b1, ..., br)
VALUES (kv, b1(kv), ..., br(kv));

where k is the key of t, and b1, ..., br are the attributes of t in B(a).
When the key values kv are stored in a temporary table TAB, a cursor C is

required for generating a INSERT statement for each key value in TAB.

DECLARE C CURSOR
FOR

SELECT k
FROM TAB;

OPEN C;
VAR TEMP : Tk /* type of k */
WHILE /* end of cursor */ DO

FETCH C INTO TEMP;
... /* definition of temporary variables */
INSERT INTO t(k, b1, ..., br)
VALUES (TEMP, b1(TEMP), ..., br(TEMP));

END;
CLOSE C;

where k is the key of t, and b1, ..., br are the attributes of t in B(a). Let us note
that the computation of b1(TEMP), ..., br(TEMP) may require the definition of
temporary variables.

4.4.4 IF statements

To distinguish updates from insertions in KChange(t, a), a test is defined for each
key value of KChange(t, a). Let us note that several updates can be generated,
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while only one insertion is required for the same key value. Indeed, for each key
value kv in KChange(t, a), one can compute a new attribute value b(k) for each b
in B(a) such that table(b) = t and determine, for each b, a UPDATE statement
as described in Sect. 4.4.2. Let L = [UPD1, ..., UPDn] be the list of updates
generated for kv. For the same key value kv, one can determine a INSERT
statement, denoted by INS, as described in Sect. 4.4.3. Then, for each kv, the
following statement is generated to distinguish updates from insertions:

UPD1;
IF SQL%NotFound
THEN INS
ELSE

UPD2;
...
UPDn

END;

Predicate SQL%NotFound is true if key value kv indicated in the WHERE
clause of UPD1 has not been found in the DB.

4.5 Example

The programs generated for the library management system by the algorithms
presented in this chapter are the following ones:

CREATE TABLE book (
bookKey bookKey Set PRIMARY KEY,
title CHAR(30)

);

CREATE TABLE member (
memberKey memberKey Set PRIMARY KEY,
nbLoans INT NOT NULL,
loanDuration INT NOT NULL

);

CREATE TABLE loan (
bookKey bookKey Set PRIMARY KEY REFERENCES book,
dueDate INT NOT NULL,
borrower memberKey Set REFERENCES member

);

CREATE TABLE reservation (
bookKey bookKey Set REFERENCES book,
memberKey memberKey Set REFERENCES member,
position INT NOT NULL,
PRIMARY KEY (bookKey,memberKey)

);

TRANSACTION Acquire(bId : bookKey Set, bTitle : CHAR(30))
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UPDATE book SET title = #bTitle
WHERE bookKey = #bId;
IF SQL%NotFound
THEN

INSERT INTO book(bookKey,title)
VALUES (#bId,#bTitle);

END;
COMMIT;

TRANSACTION Discard(bId : bookKey Set)
DELETE FROM book
WHERE bookKey = #bId;
COMMIT;

TRANSACTION Modify(bId : bookKey Set, nTitle : CHAR(30))
UPDATE book SET title = #nTitle
WHERE bookKey = #bId;
IF SQL%NotFound
THEN

INSERT INTO book(bookKey,title)
VALUES (#bId,#nTitle);

END;
COMMIT;

TRANSACTION Register(mId : memberKey Set, lD : INT)
UPDATE member SET nbLoans = 0
WHERE memberKey = #mId;
IF SQL%NotFound
THEN

INSERT INTO member(memberKey,nbLoans,loanDuration)
VALUES (#mId,0,#lD);

ELSE
UPDATE member SET loanDuration = #lD
WHERE memberKey = #mId;

END;
COMMIT;

TRANSACTION Unregister(mId : memberKey Set)
DELETE FROM member
WHERE memberKey = #mId;
COMMIT;

TRANSACTION Lend(bId : bookKey Set, mId : memberKey Set,
typeOfLoan : Loan Type)

VAR TEMP1 : INT
SELECT nbLoans + 1 INTO TEMP1
FROM member
WHERE memberKey = #mId;

VAR TEMP2 : INT
SELECT CurrentDate + loanDuration INTO TEMP2
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FROM member
WHERE memberKey = #mId;

UPDATE member SET nbLoans = nbLoans + 1
WHERE memberKey = #mId;
IF SQL%NotFound
THEN

INSERT INTO member(memberKey,nbLoans)
VALUES (#mId,TEMP1);

END;
IF typeOfLoan = Permanent
THEN

UPDATE loan SET dueDate = CurrentDate + 365
WHERE bookKey = #bId;
IF SQL%NotFound
THEN

INSERT INTO loan(bookKey,dueDate,borrower)
VALUES (#bId,CurrentDate + 365,#mId);

ELSE
UPDATE loan SET borrower = #mId
WHERE bookKey = #bId;

END;
ELSE

UPDATE loan SET dueDate = TEMP2
WHERE bookKey = #bId;
IF SQL%NotFound
THEN

INSERT INTO loan(bookKey,dueDate,borrower)
VALUES (#bId,TEMP2,#mId);

ELSE
UPDATE loan SET borrower = #mId
WHERE bookKey = #bId;

END;
END;
COMMIT;

TRANSACTION Return(bId : bookKey Set)
VAR TEMP1 : memberKey Set

SELECT borrower INTO TEMP1
FROM loan
WHERE bookKey = #bId;

VAR TEMP2 : INT
SELECT nbLoans − 1 INTO TEMP2
FROM member
WHERE member = TEMP1;

DELETE FROM book
WHERE bookKey = #bId;
UPDATE member SET nbLoans = nbLoans − 1
WHERE memberKey = TEMP1;
IF SQL%NotFound
THEN



52 F. Gervais, M. Frappier, R. Laleau, and P. Batanado

INSERT INTO member(memberKey,nbLoans)
VALUES (TEMP1,TEMP2);

END;
COMMIT;

TRANSACTION Transfer(bId : bookKey Set, mId : memberKey Set,
typeOfLoan : Loan Type)

VAR TEMP1 : INT
SELECT nbLoans + 1 INTO TEMP1
FROM member
WHERE memberKey = #mId;

VAR TEMP2 : memberKey Set
SELECT borrower INTO TEMP2
FROM loan
WHERE bookKey = #bId;

VAR TEMP3 : INT
SELECT nbLoans − 1 INTO TEMP3
FROM member
WHERE member = TEMP2;

VAR TEMP4 : INT
SELECT CurrentDate + loanDuration INTO TEMP4
FROM member
WHERE memberKey = #mId;

UPDATE member SET nbLoans = nbLoans + 1
WHERE memberKey = #mId;
IF SQL%NotFound
THEN

INSERT INTO member(memberKey,nbLoans)
VALUES (#mId,TEMP1);

END;
UPDATE member SET nbLoans = nbLoans − 1
WHERE memberKey = TEMP2;
IF SQL%NotFound
THEN

INSERT INTO member(memberKey,nbLoans)
VALUES (TEMP2,TEMP3);

END;
IF typeOfLoan = Permanent
THEN

UPDATE loan SET dueDate = CurrentDate + 365
WHERE bookKey = #bId;
IF SQL%NotFound
THEN

INSERT INTO loan(bookKey,dueDate,borrower)
VALUES (#bId,CurrentDate + 365,#mId);

ELSE
UPDATE loan SET borrower = #mId
WHERE bookKey = #bId;

END;
ELSE
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UPDATE loan SET dueDate = TEMP4
WHERE bookKey = #bId;
IF SQL%NotFound
THEN

INSERT INTO loan(bookKey,dueDate,borrower)
VALUES (#bId,TEMP4,#mId);

ELSE
UPDATE loan SET borrower = #mId
WHERE bookKey = #bId;

END;
END;
COMMIT;

TRANSACTION Reserve(bId : bookKey Set, mId : memberKey Set)
VAR TEMP1 : INT

SELECT COUNT(memberKey) + 1 INTO TEMP1
FROM reservation
WHERE bookKey = #bId;

UPDATE reservation SET position = TEMP1
WHERE (bookKey,memberKey) = (#bId,#mId);
IF SQL%NotFound
THEN

INSERT INTO reservation(bookKey,memberKey,position)
VALUES (#bId,#mId,TEMP1);

END;
COMMIT;

TRANSACTION Take(bId : bookKey Set, mId : memberKey Set,
typeOfLoan : Loan Type)

VAR TEMP1 : INT
SELECT nbLoans + 1 INTO TEMP1
FROM member
WHERE member = #mId;

VAR TEMP2 : INT
SELECT CurrentDate + loanDuration INTO TEMP2
FROM member
WHERE memberKey = #mId;

CREATE TABLE TAB1 (memberKey memberKey Set PRIMARY KEY);
INSERT INTO TAB1

SELECT memberKey
FROM reservation
WHERE bookKey = #bId;

UPDATE member SET nbLoans = nbLoans + 1
WHERE memberKey = #mId;
IF SQL%NotFound
THEN

INSERT INTO member(memberKey,nbLoans)
VALUES (#mId,TEMP1);

END;
IF typeOfLoan = Permanent
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THEN
UPDATE loan SET dueDate = CurrentDate + 365
WHERE bookKey = #bId;
IF SQL%NotFound
THEN

INSERT INTO loan(bookKey,dueDate,borrower)
VALUES (#bId,CurrentDate + 365,#mId);

ELSE
UPDATE loan SET borrower = #mId
WHERE bookKey = #bId;

END;
ELSE

UPDATE loan SET dueDate = TEMP2
WHERE bookKey = #bId;
IF SQL%NotFound
THEN

INSERT INTO loan(bookKey,dueDate,borrower)
VALUES (#bId,TEMP2,#mId);

ELSE
UPDATE loan SET borrower = #mId
WHERE bookKey = #bId;

END;
END;
DELETE FROM reservation
WHERE bookKey = #bId AND memberKey = #mId;
DECLARE C1 CURSOR
FOR

SELECT memberKey
FROM TAB1;

OPEN C1;
VAR TEMP3 : memberKey Set;
WHILE /* end of cursor */ DO

FETCH C1 INTO TEMP3;
VAR TEMP4 : INT

SELECT position − 1 INTO TEMP4
FROM reservation
WHERE memberKey = TEMP3;

UPDATE reservation SET position = position − 1
WHERE bookKey = #bId AND memberKey = TEMP3;
IF SQL%NotFound
THEN

INSERT INTO reservation(bookKey,memberKey,position)
VALUES (#bId,TEMP3,TEMP4);

END;
END;
CLOSE C1;
COMMIT;

TRANSACTION Cancel(bId : bookKey Set, mId : memberKey Set)
VAR TEMP1 : INT
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SELECT position INTO TEMP1
FROM reservation
WHERE memberKey = #mId AND bookKey = #bId;

CREATE TABLE TAB1 (memberKey memberKey Set PRIMARY KEY);
INSERT INTO TAB1

SELECT memberKey
FROM reservation
WHERE bookKey = #bId;

CREATE TABLE TAB2 (memberKey memberKey Set PRIMARY KEY);
INSERT INTO TAB2

SELECT memberKey
FROM reservation
WHERE position > TEMP1 AND bookKey = #bId;

CREATE TABLE TAB3 (memberKey memberKey Set PRIMARY KEY);
INSERT INTO TAB3

(SELECT memberKey FROM TAB1)
INTERSECT
(SELECT memberKey FROM TAB2);

DELETE FROM reservation
WHERE bookKey = #bId AND memberKey = #mId;
DECLARE C1 CURSOR
FOR

SELECT memberKey
FROM TAB3;

OPEN C1;
VAR TEMP2 : memberKey Set;
WHILE /* end of cursor */ DO

FETCH C1 INTO TEMP2;
VAR TEMP3 : INT

SELECT position − 1 INTO TEMP3
FROM reservation
WHERE memberKey = TEMP2;

UPDATE reservation SET position = position − 1
WHERE bookKey = #bId AND memberKey = TEMP2;
IF SQL%NotFound
THEN

INSERT INTO reservation(bookKey,memberKey,position)
VALUES (#bId,TEMP2,TEMP3);

END;
END;
CLOSE C1;
COMMIT;

4.6 Optimization

Some transactions can be simplified by analysing the key definitions. Let k be a
key value of KChange(t, a). For each non-key attribute b of table t in B(a), if k
is in KIU (b), then we determine in the key definition kd of the key of t whether
there exists an input clause for a with symbol “∪”. If there is no such input
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clause, then the statement for k is an update, because an insertion requires a
symbol “∪” in the key definition. Otherwise, we cannot distinguish insertions
from updates without analysing eb3 process expressions. Indeed, an insertion
may be coupled with other updates, or the union specified in the key definition
can be redundant.

4.6.1 Examples

For instance, by applying the optimization for action Transfer, the results are
the following ones. The attributes affected by action Transfer are dueDate and
borrower in table loan and nbLoans in table member, with:

KChange(dueDate) = KChange(borrower) = {bId}

KChange(nbLoans) = {mId′, borrower(bId)}
Neither memberKey nor loan includes an input clause with a symbol “∪” for
action Transfer. Consequently, the SQL statements are updates:

TRANSACTION Transfer(bId : bookKey Set, mId : memberKey Set,
typeOfLoan : Loan Type)

VAR TEMP1 : memberKey Set
SELECT borrower INTO TEMP1
FROM loan
WHERE bookKey = #bId;

VAR TEMP2 : INT
SELECT CurrentDate + loanDuration INTO TEMP2
FROM member
WHERE memberKey = #mId;

UPDATE member SET nbLoans = nbLoans + 1
WHERE memberKey = #mId;
UPDATE member SET nbLoans = nbLoans − 1
WHERE memberKey = TEMP1;
UPDATE loan SET borrower = #mId
WHERE bookKey = #bId;
IF typeOfLoan = Permanent
THEN

UPDATE loan SET dueDate = CurrentDate + 365
WHERE bookKey = #bId;

ELSE
UPDATE loan SET dueDate = TEMP2
WHERE bookKey = #bId;

END;
COMMIT;

Thanks to this optimization, we avoid the definition of four IF statements and
four insertions in transaction Transfer. We can also optimize the transactions
corresponding to actions Modify, Lend, Take and Cancel in the same way.
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4.6.2 Limits

Nevertheless, the analysis of key definitions is not sufficient to avoid the other
IF statements in the transactions above. Moreover, a transaction like Acquire
(see Sect. 4.5) cannot be optimized, because the input clause of Acquire in
key definition bookKey contains symbol ∪. The synthesis of relational DB
transactions presented in this technical report is planned to be coupled later
with the interpretation of eb3 process expressions.

By interpreting process expressions, we will be able to optimize the transac-
tions obtained in this report. For instance, the producer-modifier-consumer
pattern [FSD03] is a usual pattern for entity type process expressions in eb3.
An action like Acquire is considered as a book producer, and consequently, the
corresponding transaction can only insert new values into table book. Likewise,
a modifier like Modify updates some attribute values, while a consumer like
Discard removes some tuples from the table of the entity type.
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Chapter 5

Tool eb3tg

The apis project [FFLR02] aims at synthesizing IS directly and automatically
from eb3 specifications. Figure 5.1 represents the main components of the apis
project. The IS implementation is obtained in apis by interpretation and syn-
thesis of/from the different parts of an eb3 specification. A first tool, called DCI-
Web, allows us to generate Web interfaces from GUI specifications [Ter05]. To
query and/or to update the system, an IS end-user generates an event through
the Web interface. This event is then analysed by eb3pai, an interpreter for
eb3 process expressions [FF02]. If it is considered as valid by the interpreter,
then the event is executed; otherwise, an error message is sent to the user.

The algorithms presented in this report have been implemented in a new
tool, called eb3tg, to actually “execute” each valid event. In eb3, the DB
is represented by the ER diagram and by the attribute definitions. In the
implementation, we do not keep track of the trace, because it would be inefficient
to store the system trace; we rather store the current values of each attribute for
the current trace. Thus, eb3tg automatically generates, for each eb3 action,
a Java program that executes a relational DB transaction. The synthesized
transactions implement the specification of IS attributes in eb3. They can be
used by eb3pai to query and/or to update the DB when the corresponding
events are considered as valid by interpretation of eb3 process expressions. The
tool eb3tg also generates Java programs that correspond to the creation and
the initialization of the DB. Last but not least, several DB management systems
(DBMS), like Oracle, PostgreSQL and MySQL, are supported by eb3tg.

5.1 Description of eb3tg

The tool has been implemented in Java. The code includes 50 classes, 625
methods and 20 KLOCs. The functional architecture and the various inputs
and outputs of eb3tg are described in Fig. 5.2.

An XML description of the eb3 diagram is checked by eb3tg with respect to
the document type definition (DTD) of the ER model. Error messages are re-
turned in case of problems. The tool then generates a relational DB schema from
the XML description. The SQL statements are synthesized following the DBMS
chosen by the user. The current version of eb3tg supports Oracle, PostgreSQL
and MySQL. For instance, the DB schema generated for the library manage-
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ment system is presented in Fig. 5.3. A table is created for each entity type
and association of the system. Referential constraints are also automatically
generated at the end to deal with mutual references between tables. For this
example, Oracle is the chosen DBMS.

eb3tg also checks that attribute definitions are consistent with respect to
the ER diagram. For instance, Fig. 5.4 shows two examples of syntax er-
rors. In the first example, keyword match is missing at column 9, line 40
of file bookStore.txt where the attribute definitions are described. The sec-
ond error message points out that the number of parameters of recursive call
loanDuration does not correspond to the number of parameters in its defini-
tion. This error is in the input clause associated to action Lend of attribute
definition loan.dueDate.

Finally, eb3tg synthesizes the Java programs that execute relational DB
transactions corresponding to eb3 attribute definitions. For instance, the effect
of action Transfer(bId,mId) is to transfer the loan of book bId to member mId.
The Java method generated by eb3tg for this action is represented in Fig. 5.5.
The JDBC (Java DB Connectivity) technology allows Java programs to access
the DBMS. Two classes of the JDBC programming interface may execute SQL
statements to update and/or to query DB: PrepareStatement and Statement.
The former is more efficient in time since SQL queries are compiled only once
at the beginning of the execution, but class Statement is implemented by ev-
ery DBMS. For the sake of portability, we have chosen to use the latter class.
Method createStatement() creates a new object of class Statement, while meth-
ods executeUpdate(query) and executeQuery(query) respectively execute update
and query SQL statements. The use of method executeUpdate is illustrated in
lines 29, 32, 36 and 42, in Fig. 5.5.

In order to keep track of the results of SELECT statements, we use the
class ResultSet, because the objects of this class are not altered by subsequent
updates. For instance, the analysis of attribute nbLoans requires the construc-
tion of a decision tree. In lines 8 and 14, rset0 and rset1 respectively store
the results of the SELECT statements associated to the first and the second
leaf of this decision tree. They are later used in lines 35 and 41 to update the
number of loans of the previous and the new borrower of book bId. In that
case, a while loop is generated since the result of a SELECT statement can
be a bag of values.

5.2 Strengths and Weaknesses

The synthesized programs introduce some overhead, because they systematically
store the current values of attributes before updating the DB, in order to ensure
correctness. We plan to optimize these programs by analysing dependencies
between update statements and avoid, when possible, these intermediate steps.
By focusing on the translation of attribute definitions, the resulting transactions
do not take the behaviour specified by the eb3 process expression into account,
which also introduces some overhead by requiring an update/insert combination,
instead of simply doing an insert. This work must now be coupled with the
analysis and/or the interpretation of eb3 process expressions.

The tool has the advantage of ensuring that concurrency is properly handled
in the IS by using the appropriate transaction isolation level. It currently uses
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CREATE TABLE book (
bookKey numeric(5,2),
title varchar(20),
CONSTRAINT PKbook PRIMARY KEY(bookKey)
);

CREATE TABLE member (
memberKey numeric(5),
nbLoans numeric(5) NOT NULL,
loanDuration numeric(3) NOT NULL,
CONSTRAINT PKmember PRIMARY KEY(memberKey)
);

CREATE TABLE loan (
borrower numeric(5),
bookKey numeric(5,2),
dueDate date,
CONSTRAINT PKloan PRIMARY KEY(bookKey)
);

CREATE TABLE reservation (
bookKey numeric(5,2),
memberKey numeric(5),
position numeric(5),
CONSTRAINT PKreservation PRIMARY KEY(bookKey,memberKey)
);

ALTER TABLE loan ADD CONSTRAINT FKloan member FOREIGN KEY (borrower)
REFERENCES member (memberKey) INITIALLY DEFERRED;

ALTER TABLE loan ADD CONSTRAINT FKloan book FOREIGN KEY (bookKey)
REFERENCES book (bookKey) INITIALLY DEFERRED;

ALTER TABLE reservation ADD CONSTRAINT FKreservation book FOREIGN KEY (bookKey)
REFERENCES book (bookKey) INITIALLY DEFERRED;

ALTER TABLE reservation ADD CONSTRAINT FKreservation member FOREIGN KEY (memberKey)
REFERENCES member (memberKey) INITIALLY DEFERRED;

Figure 5.3: DB schema generated for the library

bookStore.txt:40:9: expecting "with", found ’NULL’

>>Error in :
Attribute definition : loan.dueDate
Action : Lend( ,mId)
Cause : Invalid number of parameters in attribute call
Clues : The attribute call ’member.loanDuration’
must have exactly 2 parameters

Figure 5.4: Two examples of error messages
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1 public static void Transfer(int bId,int mId){ 
2   try {   
3     connection.createStatement().executeUpdate( 
4         "CREATE TABLE eb3Tempmember ( "memberKey  numeric(5))"); 
5     connection.createStatement().executeUpdate( 
6         "INSERT INTO  eb3Tempmember (memberKey) values("+mId+")"); 
7 
8     ResultSet rset0 =connection.createStatement(). 
9       executeQuery("SELECT C.memberKey,A.nbLoans+1 "+ 
10       "FROM eb3Tempmember C,member A "+ 
11       "WHERE C.memberKey = "+mId+" "+ 
12       "AND A.memberKey = C.mId "); 
13 
14     ResultSet rset1 = connection.createStatement(). 
15       executeQuery("SELECT G.borrower,E.nbLoans-1 "+ 
16       "FROM loan G,member E "+ 
17       "WHERE G.bookKey = "+bId+" "+ 
18       "AND G.borrower NOT IN ( "+ 
19  "SELECT C.memberKey "+ 
20       "FROM eb3Tempmember C "+ 
21       "WHERE C.memberKey = "+mId+" ) "+ 
22       "AND E.memberKey = G.borrower "); 
23 
24     ResultSet rset2 = connection.createStatement(). 
25       executeQuery("SELECT D.loanDuration "+ 
26       "FROM member D WHERE D.memberKey = "+mId+" "); 
27     String var0 = ((rset2.next())?rset2.getDouble(1)+"":"null"); 
28 
29     connection.createStatement().executeUpdate("UPDATE loan SET "+ 
30       "borrower = "+mId+" WHERE bookKey = "+ bId +" "); 
31     
32     connection.createStatement().executeUpdate("UPDATE loan SET "+ 
33       "dueDate = SYSDATE+"+var0+" WHERE bookKey = "+ bId +" "); 
34 
35     while(rset0.next()) {  
36       connection.createStatement().executeUpdate( 
37       "UPDATE member SET nbLoans = "+rset0.getDouble(2)+ " "+ 
38       "WHERE memberKey = "+ rset0.getDouble(1));       
39     } 
40 
41     while(rset1.next()) {  
42       connection.createStatement().executeUpdate( 
43       "UPDATE member SET nbLoans = "+rset1.getDouble(2)+ " "+ 
44       "WHERE memberKey = "+ rset1.getDouble(1)); 
45     } 
46 
47     connection.createStatement(). 
48  executeUpdate("DROP TABLE eb3Tempmember");     
49     connection.commit(); 
50   } catch ( Exception e ) { 
51     try{ 
52       connection.createStatement(). 
53  executeUpdate("DROP TABLE   eb3Tempmember");       
54       connection.rollback(); 
55     } catch (SQLException s){ System.err.println(s.getMessage());} 
56      System.err.println(e.getMessage());} 
57 } 

Figure 5.5: Java method for action Transfer
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transaction serializable, the safest mode, but also the most expensive in
computational time. However, it could be extended to implement more efficient
concurrency control techniques like the two-phase locking protocol, since we
can identify all the tuples that have to be updated in a transaction, and use a
global ordering on the tables to issue SELECT FOR UPDATE NOWAIT
(in Oracle syntax for instance) to lock the tuples.

This tool also simplifies software maintenance. For instance, imagine that
an attribute must be renamed or moved from an entity type to an association.
In eb3, only the specification is modified; the Java programs that update the
DB can then be regenerated automatically.



Chapter 6

Conclusion

eb3 is radically different from the paradigms widely used for specifying IS. An
IS is considered as a black box and the specification points out the valid sys-
tem inputs and outputs. Thus, the dynamic of the data model is described
by means of recursive functions on the IS valid input traces. The contributions
presented in this report address the automatic generation of relational DB trans-
actions that correspond to the eb3 attribute definitions. We have introduced
an algorithm that synthesizes relational DB transactions from eb3 attribute
definitions. Synthesized programs can be used in concrete implementations of
eb3 specifications; their algorithmic complexity is similar to those of manually
written programs. We have also described the tool eb3tg that implements the
synthesis of relational DB transactions.

Our programs introduce some overhead, because they systematically store
the current values of attributes before updating the DB, in order to ensure
correctness. We plan to optimize these programs by analysing dependencies
between update statements and avoid, when possible, these intermediate steps.
Let us note that, although the semantics of eb3 is based on traces, we do
not need to keep track of the system trace in the synthesized programs. The
current values of the system trace and of the eb3 attributes are represented by
the current state of the DB. Hence, synthesized programs are efficient in terms
of space complexity.

Several papers deal with the synthesis of relational implementations. Most
of the time, refinement techniques are used, like in [Edm95] for Z and [Mam02]
for B specifications, which are orthogonal in specification style to eb3 [FFLar].
There exist some tools for synthesizing systems by interpretation and/or simu-
lation [GS90, LN99], but they are generally inefficient for IS.

Concerning the synthesis of SELECT statements from the first-order pred-
icates of the conditional terms, our work is close to Hohenstein’s SQL/EER lan-
guage [HE92]. SQL/EER is a formal query language that can be automatically
translated into SQL [Hoh89]. Contrary to SQL/EER, that is independent of
other relational DB specification languages, the eb3 language for attribute def-
inition is part of the eb3 method, and consequently, the synthesis of imperative
programs is tightly coupled with the interpretation of eb3 process expressions.
In [LT94], a formal query language is defined for EER schemas. Queries use
predicates similar to our conditional terms, but the purpose is for deductive
DB.
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Object-relational mapping tools like Hibernate [JBo06] are remotely con-
nected to eb3tg, in the sense that they both use a relational DB representation.
However, these tools support the persistence of objects of an OO programming
language using a relational DB, while eb3tg supports the persistence of eb3

attribute definitions, which are more abstract. The query language supported
by these tools is closer to SQL than eb3 attribute definitions.

The verification of data integrity constraints in eb3 is an open issue. In
particular, static integrity constraints are safety properties and it is difficult to
verify safety properties on recursive functions [FFLar]. For instance, a static
data integrity constraint for attribute nbLoans is the following: the number
of loans of each member is limited to five books. A first option would be the
definition of new input-output rules to abort an input event that is valid for
eb3 process expressions, but that violates data integrity constraints. Such an
analysis would be made on the fly, during the interpretation. Another option is
the definition of guards in eb3 process expressions. A state-based model would
then be required to verify static data integrity constraints. In [GFL04], we use
the B language [Abr96] to represent eb3 attribute definitions and to verify safety
properties.

With the implementation of eb3tg, the main components of apis are now
ready to be related to each other. In particular, the interpreter needs to take
the computation of attribute values into account in order to evaluate action
guards of eb3 process expressions. Moreover, we plan to combine the generation
of transactions with the interpretation of eb3 process expressions in order to
optimize the resulting programs.
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[Bat05] P. Batanado. Synthèse de transactions de base de données relationnelle
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