
Generating Relational Database Transactions
From Recursive Functions Defined on EB3 Traces

Frédéric Gervais
CEDRIC, CNAM-IIE, France

GRIL, Département d’Informatique
Université de Sherbrooke, Canada
frederic.gervais@usherbrooke.ca

Marc Frappier
GRIL, Département d’Informatique
Université de Sherbrooke, Canada

marc.frappier@usherbrooke.ca

Régine Laleau
LACL, Université Paris 12
Département Informatique
IUT Fontainebleau, France

laleau@univ-paris12.fr

Abstract

EB3 is a trace-based formal language created for the
specification of information systems (IS). Attributes, linked
to entities and associations of an IS, are computed in EB3

by recursive functions on the valid traces of the system. We
aim at synthesizing relational database transactions that
correspond to EB3 attribute definitions. Each EB3 action
is translated into a transaction. EB3 attribute definitions
are analysed to determine the key values affected by each
action. Some key values are retrieved from SELECT state-
ments that correspond to first-order predicates in EB3 at-
tribute definitions. To avoid problems with the sequencing
of SQL statements in the transactions, temporary variables
and/or tables are introduced for these key values. Gener-
ation of DELETE statements is straightforward, but dis-
tinguishing updates from insertions of tuples requires more
analysis.

1. Introduction

We are mainly interested in the formal specification of
information systems (IS) [12]. In our viewpoint, an IS is a
software system that helps an organization to collect and
to manipulate all its relevant data. An IS also includes
software applications and tools to query and modify the
database, to friendly communicate query results to users
and to allow administrators to control and modify the whole
system. The use of formal methods to design IS [10, 20, 22]
is justified by the relevant value of informations and data

from corporations like banks, insurance companies, high-
tech industries or government organizations.

Currently, the most widely used paradigm for specifying
IS is the state transition paradigm. In state-based specifica-
tions, a system is generally described by defining state in-
variant properties that must be preserved by the execution of
operations. For instance, Z [3] and B [1] are two examples
of state-based formal languages. Existing approaches us-
ing state transition for specifying IS include RoZ [4], OMT-
B [21] and UML-B [18]. One difficulty with the state tran-
sition paradigm is the validation of dynamic properties. Let
a, b, c be three events. An event ordering property, like “a,
followed by an arbitrary number of b, followed by c”, is eas-
ier to specify and verify in an event-based model than in a
state-based one.

The EB3 language [10] has been defined for the purpose
of specifying IS. EB3 is an event-based formal language that
includes some state-oriented constructs. The EB3 method
provides a different way of specifying IS, which is orthogo-
nal in specification style with respect to state-based formal
languages [9]. Moreover, dynamic properties can be easily
specified in EB3 [7], and we plan to implement in the future
tools that support the verification of such properties, like in
other event-based languages such as CSP [15].

With state-based specifications, refinement techniques
are generally used to generate relational implementations,
like in [5] for Z and [20] for B specifications. In EB3, IS are
synthesized by interpreting EB3 process expressions. There
already exists an interpreter, called EB3PAI [8], for EB3

process expressions. However, the computation of attribute
values is not taken into account yet. In this paper, we focus

on the synthesis of relational database transactions that cor-
respond to EB3 attribute definitions. Thus, we will be able
to efficiently interpret EB3 specifications for the purpose of
software prototyping and requirements validation. The syn-
thesized programs are of a similar algorithmic complexity
as those manually generated by a programmer. Hence, they
could also be used in concrete implementations of EB3 spec-
ifications.

Section 2 provides an overview of EB3. Contrary to other
event-based languages like CSP [15], EB3 extensively uses
the concept of state to take the IS data model into account.
Attributes are defined by means of recursive functions on
the valid traces of the system. EB3 attribute definitions are
presented in Sect. 3. To generate SQL statements from EB3

attribute definitions, one must not only determine the effects
of each action on the attributes, but also the key values to be
inserted, updated and/or removed. In Sect. 4, we show how
to generate SQL statements that correspond to EB3 attribute
definitions. Finally, Sect. 5 concludes the paper with some
comments and perspectives.

2. An Overview of EB3

The core of EB3 includes a method and a formal notation
to describe a complete and precise specification of the input-
output behaviour of an IS. An EB3 specification consists of
the following elements:

1. a user requirements class diagram which includes en-
tity types, associations, and their respective actions
and attributes. These diagrams are based on entity-
relationship model concepts [6]. In EB3, the terms en-
tity type and entity are used instead of class and object.

2. a process expression, denoted by main, which defines
the valid input traces;

3. recursive functions, defined on the traces of main, that
assign values to entity and association attributes;

4. input-output rules, which assign an output to each valid
input trace.

The denotational semantics of an EB3 specification is
given by a relation R defined on T (main) × O, where
T (main) denotes the traces accepted by main and O is the
set of output events. Let trace denote the system trace,
which is a list of valid input events accepted so far in the
execution of the system. Let t::σ denote the right append
of an input event σ to trace t, and let [] denote the empty
trace. The operational behaviour of main is then defined as
follows.

trace := [];
forever do

receive input event σ;
if main can accept trace::σ then

trace := trace::σ;
send output event o such that
(trace, o) ∈ R;

else
send error message;

Example. To illustrate the main aspects of this paper, an
example of a library management system is introduced. The
system has to manage book loans to members. A book is ac-
quired by the library; it can be discarded, but only if it is not
lent. A member must join the library in order to borrow a
book and he can relinquish library membership only when
all his loans are returned or transferred. A member can also
transfer a loan to another member. A book can be lent by
only one member at once. Figure 1 shows the user require-
ments class diagram of the example. The signature of EB3

actions is the following.

Acquire(bId:bk_Set,bTitle:TˆN):void
Discard(bId:bk_Set):void
Modify(bId:bk_Set,nTitle:TˆN):void
DisplayTitle(bId:bk_Set):TˆN
Register(mId:mk_Set):void
Unregister(mId:mk_Set):void
Lend(bId:bk_Set,mId:mk_Set):void
Return(bId:bk_Set):void
Transfer(bId:bk_Set,mId:mk_Set):void

The special type void is used to denote an action with no
input-output rule; the output of such an action is always
ok. Some input parameters can be instantiated by a default
value, NULL, that denotes undefinedness. The input type is
then decorated with “ˆN”.

Process Expressions. An input event σ is an instantiation
of (the input parameters of) an action a. An instantiated
action a(t1, ..., tn) constitutes an elementary process ex-
pression. The special symbol “ ” may be used as an ac-
tual parameter of an action, to denote an arbitrary value
of the corresponding type. Complex EB3 process expres-
sions can be constructed from elementary process expres-
sions (instantiated actions) using the following operators:
sequence (.), choice (|), Kleene closure (ˆ*), interleav-
ing (|||), parallel composition (||, i.e., CSP’s synchro-
nisation on shared actions), guard (==>), process call, and
quantification of choice (|x:T:...) and of interleaving
(|||x:T:...). The EB3 notation for process expressions
is similar to Hoare’s CSP [15]. The complete syntax and
semantics of EB3 can be found in [10].

For instance, the EB3 process expression for entity type
book is of the following form:

Register

Unregister

member

loan

Lend

Return

Transfer

* 0 .. 1

borrower

Acquire

Discard

book

Modify

nbLoans :

bookKey : bk_Set memberKey : mk_Set

DisplayTitle

title : T^N

Figure 1. EB3 specification: User requirements class diagram of the library.

book(bId : bk_Set) =
Acquire(bId,_).
(

(| mId : mk_Set :
loan(mId,bId))ˆ*

|||
Modify(bId,_)ˆ*

|||
DisplayTitle(bId)ˆ*

).
Discard(bId)

where loan is the process expression for association loan.
Firstly, book entity bId is produced by action Acquire.
Then, it can be lent by only one member entity mId at once
(quantified choice “ | mId : mk Set : ...”). In-
deed, process expression book then calls in turn process
expression loan, that involves actions Lend, Return and
Transfer. The Kleene closure on loan means that an ar-
bitrary number of loans can be made on book entity bId.
At any moment, actions Modify and DisplayTitle
can be interleaved with the actions of loan. Action
Modify is used to change the title of the book, while ac-
tion DisplayTitle outputs the title of the book. Fi-
nally, book entity bId is consumed by action Discard.
The complete process expressions for the example are given
in [14].

Input-Output Rules. The system trace is usually ac-
cessed through recursive functions that extract relevant in-
formation from it. Relation R is defined using input-output
rules and recursive functions on the system trace. Input-
output rules are of the following form:

RULE Name
Input ActionLabel
Output RecursiveFunction
END;

For instance, the following input-output rule is defined for
action DisplayTitle:

RULE R
Input DisplayTitle(bId)
Output title(trace,bId)
END;

When action DisplayTitle is a valid input event, then
the recursive function title is called to compute the value
of attribute title. Recursive functions defining attributes are
presented in Sect. 3.

3. EB3 Attribute Definitions

The definition of an attribute in EB3 is a recursive func-
tion on the valid traces, that is, the traces accepted by pro-
cess expression main. This function computes the attribute
values. There are two kinds of attributes in a requirements
class diagram: key attributes and non-key attributes.

3.1. Defining Key and Non-Key Attributes in EB3

In the following definitions, we distinguish functional
terms from conditional terms. A functional term is a term
composed of constants, variables and functions of other
functional terms. We consider functions using set and arith-
metic operators. The data types in which constants and vari-
ables are defined are useful basic types like N, Z, . . ., Carte-
sian product of data types and finite powerset of data types.
A conditional term is of the form if pred then w1 else w2

end, where pred is a predicate and wi is either a conditional
term or a functional term.

Key Definitions. A key is used in IS to identify entities of
entity types or associations: each key value corresponds to a
distinct entity of the entity type. Let e be an entity type with
a key composed of attributes k1, . . . , km. In EB3, the key

of e, that is defined by a single attribute definition for the
set {k1, . . . , km}, is a total function eKey of the following
form:

eKey (s : T (main)) : F(T1 × · · · × Tm) Δ=
match last(s) with

⊥ : u0,
a1(−→p1) : u1,
. . .
an(−→pn) : un,

: eKey(front(s));

where T1, . . . , Tm denote the types of k1, . . . , km and ex-
pression F(S) denotes the set of finite subsets of set S. The
recursive function is always given in this CAML-like style
(CAML is a functional language [2]). Standard list opera-
tors are used, such as last and front which respectively re-
turn the last element and all but the last element of a list;
they return the special value ⊥ when the list is empty.

Expressions ⊥ : u0, a1(−→p1) : u1, ..., an(−→pn) : un, and
: eKey(front(s)) are called input clauses. In an input

clause, expression ai(−→pi) denotes a pattern matching ex-
pression, where ai denotes an action label and −→pi denotes
a list whose elements are either variables, or the special
symbol ‘ ’, which stands for a wildcard, or ground func-
tional terms. Special symbol ‘⊥’ in input clause ⊥ : u0

pattern matches with the empty trace, while symbol ‘ ’ in
: eKey(front(s)) is used to pattern match with any list

element. Expressions u0, . . . , un denote functional terms.
Let var(e) denote the free variables of e. For each input
clause, we should have var(ui) ⊆ var(−→pi). The syntax of
key definitions is provided by [14].

For example, the key of entity type book is defined by:

bookKey(s : T (main)) : F(bk Set) Δ=
match last(s) with

⊥ : ∅,
Acquire(bId) : bookKey(front(s)) ∪ {bId},
Discard(mId) : bookKey(front(s)) − {bId},

: bookKey(front(s));

Non-Key Attributes. A non-key attribute depends on the
key of the entity type or of the association. In EB3, each
non-key attribute bi is defined by a function of the following
form:

bi (s : T (main),
−→
k : T1 × · · · × Tm) : Ti

Δ=
match last(s) with

⊥ : u0,
a1(−→p1) : u1,
. . .
an(−→pn) : un,

: bi(front(s),
−→
k);

Parameter
−→
k = (k1, . . . , km) denotes the list of key at-

tributes that define the entity type of bi, and T1, . . . , Tm are
the types of k1, . . . , km. The codomain Ti is the type of
non-key attribute bi. It always include ⊥ to represent unde-
finedness; hence, EB3 recursive functions are always total.
Moreover, all the functions and operators are strict, i.e., ⊥
is mapped to ⊥.

In non-key attribute definitions, expressions u0, . . . , un

denote either functional or conditional terms and, for each
input clause, we should have var(uj) ⊆ var(−→pj) ∪
var(

−→
k). Any reference to a key eKey or to an attribute

bj (j can be equal to i) in an input clause is always of the
form eKey(front(s)) or bj(front(s), ...). The syntax of
non-key attribute definitions can be found in [14].

The next two definitions are two examples of non-key
attributes for the library system: title and nbLoans.

title(s : T (main), bId : bk Set) : T⊥ Δ=
match last(s) with

⊥ : ⊥, (IC1)
Acquire(bId, bT itle) : bT itle, (IC2)
Discard(bId) : ⊥, (IC3)
Modify(bId, nT itle) : nT itle, (IC4)

: title(front(s), bId); (IC5)

where T⊥ is the mathematical notation for ASCII expres-
sion TˆN.

nbLoans(s : T (main), mId : mk Set) : N
Δ=

match last(s) with
⊥ : ⊥,
Register(mId) : 0,
Lend(, mId) : 1 + nbLoans(front(s), mId),
Return(bId) : if mId = borrower(front(s), bId)

then nbLoans(front(s), mId) − 1
end,

Transfer(bId, mId′) : if mId = mId′

then nbLoans(front(s), mId) + 1
else if mId = borrower(front(s), bId)

then nbLoans(front(s), mId) − 1 end
end,

Unregister(mId) : ⊥,
: nbLoans(front(s), mId);

3.2. Computation of Attribute Values

When the function associated to attribute b is executed
with valid trace s as input parameter, then all the in-
put clauses of the attribute definition are analysed. Let
b(s, v1, ..., vn) be the attribute to evaluate and ρ be the sub-

stitution
−→
k := v1, ..., vn. Each input clause ai(−→pi) : ui gen-

erates a pattern condition of the form

∃ (var(−→pi) − elem(
−→
k)) • last(s) = ai(−→pi) ρ (1)

where the right-hand side of the equation denotes the appli-
cation of substitution ρ on input clause ai(−→pi). Expression

elem(
−→
k) denotes the set of elements of

−→
k . Such a pat-

tern condition holds if the parameters of the last action of
trace s match the values of variables

−→
k in −→pi . The first

pattern condition that holds in the attribute definition is the
one executed. Hence, the ordering of these input clauses is
important.

When a pattern condition a(−→p) : u evaluates to true, an
assignment of a value for each variable in var(−→p) has been
determined. Functional terms are directly used to compute
the attribute value. Predicates of conditional terms deter-
mine the last free variables of u in function of the key val-
ues and/or the values of last(s). For instance, we have the
following values for attribute title:

title([], b1)
(IC1)= ⊥

title([Register(m1)], b1)
(IC5)= title([], b1)

(IC1)= ⊥
title([Register(m1), Acquire(b1, t1)], b1)

(IC2)= t1
title([Register(m1), Acquire(b1, t1),

Modify(b1, t2)], b1)
(IC3)= t2

In the first example, the value is obtained from input clause
(IC1), since last([]) = ⊥. In the second example, we first
applied the wild card clause (IC5), since no input clause
matches Register, and then (IC1). In the third example,
the value is obtained immediately from (IC2). In the last
example, the value is obtained from (IC3). Since the size of
a valid trace is finite and decreases at each recursive call and
since the input clause for an empty trace is always defined,
then the computation of attribute values terminates.

4. Generating Relational Database Transac-
tions

In the EB3 semantics, when a new event of action a is ac-
cepted by process expression main, then all the attributes
affected by a must be updated. A relational database trans-
action is generated for each EB3 action a. Several analyses
are required.

We must firstly analyse the input clauses of EB3 attribute
definitions to determine which attributes are affected by the
execution of action a and what the effects of a on these
attributes are. In particular, we have to determine the key
values to delete from the tables and the key values to up-
date and/or to insert. With the sole input clauses analysis,
one cannot distinguish the key values to insert from those
to update; an analysis of EB3 process expressions would be
required for that (see Sect. 4.5).

To define the transaction corresponding to a, we must
then generate for each table affected by a the SQL state-
ments that correspond to the effects of a, that is the
DELETE, UPDATE and INSERT statements, that we call

DUI statements. Moreover, we need sometimes to define
temporary variables and tables to avoid inconsistencies be-
cause of the ordering of the different DUI statements.

The general algorithm is:

(1) create the tables of the database
(2) initialize the database
(3) for each action a of the EB3 specification
(4) analyse the input clauses for a
(5) define a transaction for a
(6) generate the SQL definition of all the
(7) temporary variables and tables
(8) for each table t affected by a
(9) generate the DUI statements
(10) generate a commit

Steps (1) and (2) are detailed in Sect. 4.1 and 4.2, respec-
tively. The analysis of the input clauses (line (4)) is pre-
sented in Sect. 4.3. The definition of the temporary vari-
ables and tables (line (6)) is derived from the analysis of the
input clauses (see Sect. 4.3). The definition of transactions
(lines (5)-(10)) is discussed in Sect. 4.4.

4.1. Creation of Tables

We use standard algorithms from [6] to create relational
tables from the user requirements class diagram. The sig-
nature of actions provides the attributes that can be set to
NULL. If the type of an input parameter of an EB3 ac-
tion is decorated with ˆN and if it appears in the class dia-
gram, then the corresponding attribute accepts default value
NULL. For instance, the table definitions for entity types
book and member are:

CREATE TABLE book (
bookKey bk Set PRIMARY KEY,
title T,
borrower mk Set REFERENCES member

);
CREATE TABLE member (

memberKey mk Set PRIMARY KEY,
nbLoans INT NOT NULL

);

4.2. Initialization

The database initialization is simply a special case of the
analysis of the input clauses. Indeed, for each attribute def-
inition b, there exists an input clause of the form ⊥ : u. It
denotes the initial value of the attribute and therefore corre-
sponds to the initialization of the tables. The most common
value for u is ∅ for a key. This means that there is no entry
in the database table. The most common value for u for a
non-key attribute is ⊥. This means either that there is no

tuple at the initialization or that the entries are initialized to
NULL for non-key attribute b.

4.3. Analysis of the Input Clauses

The results of the analysis of the input clauses (line (4)
of the general algorithm) are the following:

1. the attributes Att(a) affected by action a,

2. the tables T (a) affected by a,

3. for each table t of T (a),

• the key values KDelete(t, a) to delete from t,

• the key values KChange(t, a) to insert and/or to
update in t.

Algorithm. To obtain T (a), we determine for each at-
tribute b of Att(a) the table of b, denoted by table(b),
thanks to the table definitions generated in Sect. 4.1. Then,
T (a) is defined by:

T (a) = ∪b∈Att(a)table(b)

To obtain KDelete(t, a) and KChange(t, a), we deter-
mine for each attribute b of Att(a) the corresponding sets
KD(b) and KIU (b) such that:

KDelete(t, a) = ∪{b∈Att(a)∧table(b)=t}KD(b)
KChange(t, a) = ∪{b∈Att(a)∧table(b)=t}KIU (b)

KD(b) and KIU (b) are determined by analysing the input
clauses.

The algorithm for analysing the input clauses is the fol-
lowing:

determine Att(a)
for each attribute b of Att(a)

if b is defined by a conditional term
generate a decision tree for b
determine SELECT statements for the
relevant key values
determine the temporary variables and the
temporary tables

determine table(b), KIU (b), KD(b)
compute T (a)
for each t in T (a)

compute KDelete(t, a),KChange(t, a)

The different steps are explained in the next paragraphs.
Since any reference to a key eKey or to an attribute b in
an input clause is always of the form eKey(front(s)) or
b(front(s), k1, ..., km), expression front(s) is now omit-
ted in the next references to recursive functions in the paper,
e.g., eKey() and b(k1, ..., km).

Determination of Att(a). Because of the pattern match-
ing analysis described in Sect. 3.2, an attribute b is af-
fected by action a if there exists at least one input clause
of the form a(−→p) : u in the definition of b. This
gives us set Att(a). For instance, action Transfer appears
in attribute definitions borrower and nbLoans; hence,
Att(Transfer) = {borrower, nbLoans}.

Determination of KD(b) and KIU (b). For each attribute
b of Att(a), there may be several input clauses a(−→pj) : uj

with the same label a. KD(b) and KIU (b) are initialized
to ∅. Then, all the input clauses with the same label a in
the attribute definition of b are analysed in their declaration
order.

When a pattern condition evaluates to true, an assign-
ment of a value for each variable in var(−→pj) has been de-
termined. We denote by θuj this mapping. For instance, the
input clause for action Transfer in attribute nbLoans is of
the form:

Transfer(bId, mId′) : ...

The assignment is then θ = {bId = bId�, mId′ = mId�},
where bId� and mId� are the formal parameters of action
Transfer.

If expression uj in the input clause is a functional term,
then a key value v has been entirely determined. If uj is
⊥ or ∅, then v is added to set KD(b); otherwise v is added
to set KIU (b). For instance, the functional term for input
clause Discard in attribute definition title is ⊥. The corre-
sponding key value is bId. Since title has only one input
clause for Discard, we obtain directly KD(title) = {bId}.

Nevertheless, if uj is a conditional term, then we must
analyse the different conditions in the if predicates. The
crux of this analysis is to determine, when event a is re-
ceived, what are the key values {−→v } such that:

b(trace :: a,−→v) 	= b(trace,−→v)

The variables in
−→
k ∩ var(−→pj) are determined by the pat-

tern mapping θuj . The variables in
−→
k − var(−→pj) are deter-

mined by the conditions in the conditional term uj . For in-
stance, the pattern matching of action Transfer in attribute
nbLoans does not determine any value for mId. We must
then analyse the if predicates in the conditional term to de-
termine mId.

We use a binary tree called decision tree to analyse the if
predicates. The leaves of the decision tree are the functional
terms in the inner then parts of expression uj , and the edges
are the if predicates. Thus, by analysing the decision tree,
each functional term ft j,i is associated to a set of key values
KVj,i. If ft j,i is ⊥, then KVj,i is merged with KD(b); oth-
erwise, KVj,i is merged with KIU (b). For the sake of con-
cision, we do not deal with decision trees in this paper; their
construction and analysis are detailed in [13]. For instance,

nbLoans

nbLoans(mId) + 1nbLoans(mId) + 1

nbLoans(mId)nbLoans(mId) − 1

mId = mId’

mId = borrower(bId)mId = borrower(bId)

mId = mId’

Figure 2. Decision tree of input clause Transfer in attribute definition nbLoans.

the if predicates in the conditional term of input clause
Transfer in nbLoans determine two key values for mId:
mId′ and borrower(bId). Figure 2 shows the decision tree
obtained for this input clause. The first leaf corresponds to
condition mId = mId′, and the second leaf to condition
mId 	= mId′ ∧ mId = borrower(bId). The other leaves
are recursive calls of nbLoans. The associated functional
terms are distinct from ⊥. In that case, KIU (nbLoans) =
{mId′, borrower(bId)} and KD(nbLoans) = ∅.

Definition of Temporary Variables and Temporary Ta-
bles. The definition of temporary variables and/or tables
is coupled with the analysis of the decision trees. Indeed,
when key values are determined from predicates involving
arithmetic computations, set computations and/or recursive
calls of attributes, then a temporary variable or a temporary
table must be defined in the host language, in order to ma-
nipulate it in the transaction of the action. Moreover, the
temporary variables and tables being defined at the begin-
ning of the transactions, we are free from the DUI state-
ments ordering.

A temporary variable is defined with a SELECT state-
ment when a unique key value is determined. For instance,
a temporary variable TEMP is introduced as follows1 for
predicate mId = borrower(bId) in the transaction of ac-
tion Transfer:

/* Define a new variable TEMP */
VAR TEMP : mk Set

/* Assign the value to TEMP */
SELECT book.borrower INTO TEMP
FROM book
WHERE book.bookKey = #bId;

A temporary variable like TEMP can then be simply used
in the transaction body by predicates of the form param =
TEMP, where param is a parameter in the WHERE clauses
of SQL statements.

1The SQL 92 norm is used for SQL queries, while a procedural pseudo-
language is used for transactions.

A temporary table is used to store several key values. For
instance, if we need the collection of books lent by member
mId, then the following table is defined:

CREATE TEMPORARY TABLE
TAB (bookKey bk Set PRIMARY KEY);

INSERT INTO TAB
SELECT book.bookKey
FROM book
WHERE book.borrower = #mId;

A temporary table like TAB can be used in the transac-
tion body by predicates of the form: param IN (SELECT
TAB.bookKey FROM TAB).

SELECT Patterns. The generation of SELECT state-
ments that correspond to the key values satisfying the if
predicates depends on the form of the predicates. We have
identified the most typical patterns of predicates and their
corresponding SELECT statements [14]. In the following
definitions, each attribute is prefixed by its table to avoid
confusion. Let table(b) denote the table where attribute b is
stored and T.key(j) the j-th key attribute of table T .

For a predicate of the form k = g(−→p), where k is a key
attribute, g is an attribute recursive call and −→p is a subset
of the input clause parameters, the corresponding SELECT
statement is:

/* extract g */
SELECT table(g).g
FROM table(g)
/* evaluation of g for p1 */
WHERE table(g).key(1) = #p1

AND ...
/* evaluation of g for pm */
AND table(g).key(m) = #pm;

where m is the number of paramaters in −→p . For instance,
the SELECT statement in temporary variable TEMP above,
is an instantiation of this pattern, with predicate mId =
borrower(bId).

A more interesting case is a predicate expression of the
form f(

−→
k) = g(−→p), where f and g are attribute recursive

calls,
−→
k is a subset of the key attributes and −→p is defined

as above. The SELECT statement for predicate f(
−→
k) =

g(−→p) is then of the form:

/* extract k1, ..., kn */
SELECT Tf .key(1), ..., Tf .key(n)
FROM table(f) Tf , table(g) Tg

/* evaluation of g for p1 */
WHERE Tg.key(1) = #p1

AND ...
/* evaluation of g for pm */
AND Tg.key(m) = #pm

/* predicate */
AND Tf .f = Tg.g;

where n is the number of key attributes in
−→
k . Aliases Tf

and Tg are mandatory when f and g are the same attribute.
If g is a composition of attribute recursive calls, then a

join between the different tables whose attributes are con-
cerned is necessary. For instance, if g = g1; g2 (i.e.,
f(
−→
k) = g2(g1(−→p))), then a new condition is added in the

SELECT statement:

SELECT Tf .key(1), ..., Tf .key(n)
FROM table(f) Tf , table(g1) Tg1 , table(g2) Tg2

/* new join g1; g2 */
WHERE Tg2 .key(1) = Tg1 .g1

AND Tg1 .key(1) = #p1

AND ...
AND Tg1 .key(m) = #pm

AND Tf .f = Tg2 .g2;

For instance, let us now suppose that we want to deter-
mine the key values mId such that nbLoans(mId) =
nbLoans(borrower(bId)). Let us apply the pattern above,
with f = g2 = nbLoans and g1 = borrower:

SELECT M1.memberKey
FROM member M1, book B, member M2

WHERE M2.memberKey = B.borrower
AND B.bookKey = #bId
AND M1.nbLoans = M2.nbLoans;

4.4. Definition of Transactions

For defining transactions, all the DUI statements are
grouped by table. Thanks to the analysis of the input
clauses, we have already distinguished the DELETE state-
ments from the other statements. The key values to remove
from a table t are in set KDelete(t, a). The DELETE state-
ments are grouped at the beginning of each table’s list of
instructions. For each k in KChange(t, a), we determine
the list L of UPDATE statements for each attribute b of t
affected by a, such that k ∈ KIU (b). We also determine
an INSERT statement for k and the same set of attributes.

Then, we generate the first update in L. A test is defined to
determine whether this first UPDATE statement has been
successful. If so, the other updates are generated. Other-
wise, the insertion is executed instead. The subalgorithm
for line (9) of the general algorithm is the following:

for each k in KDelete(t, a)
determine and generate the DELETE statements
with k

for each k in KChange(t, a)
for each attribute b of t in Att(a)

if k is in KIU (b)
compute the value of b(k)

determine the list L of UPDATE statements
UPDl, 1 ≤ l ≤ p, for k and the b(k)s
determine the INSERT statement INS for k and
the b(k)s
generate UPD1

generate the following statement :
IF SQL%NotFound
THEN INS
ELSE UPD2; ... UPDp;
END;

For instance, the transaction generated for Discard is:

TRANSACTION Discard(bId : bk Set)
/* delete statement */
DELETE FROM book
WHERE bookKey = #bId;
COMMIT;

This definition is simple, because action Discard only re-
moves key value bId. Nevertheless, when the action in-
volves updates and/or insertions, then the transaction be-
comes more complex. For instance,

TRANSACTION Acquire(bId : bk Set,bTitle : T)
/* update statement */
UPDATE book SET title = #bTitle
WHERE bookKey = #bId;
/* test to determine whether the
update has been successful */
IF SQL%NotFound
THEN

/* insert statement */
INSERT INTO book(bookKey,title)
VALUES (#bId,#bTitle);

END;
COMMIT;

Let us note that the ELSE part is not mentionned, because
there is only one update in the list generated for Acquire.
In practice, action Acquire is a book producer, so the UP-
DATE statement cannot be executed, because entity mId
does not exist in the database. In that case, the IF predicate
is evaluated to true and the INSERT statement is executed.

4.5. Optimization

Some transactions can be simplified by analysing the key
definitions. Let k be a key value of KChange(t, a). For each
non-key attribute b of table t in Att(a), if k is in KIU (b),
then we determine in the key definition kd of the key of t
whether there exists an input clause for a with symbol ∪.
If there is no such input clause, then the statement for k
is an update, because an insertion requires an union in the
key definition. Otherwise, we cannot distinguish insertions
from updates without analysing EB3 process expressions.
Indeed, an insertion may be coupled with other updates, or
the union specified in the key definition can be redundant.

For instance, by applying the optimization for action
Transfer, the results are the following ones. The attributes
affected by action Transfer are borrower in table book and
nbLoans in table member, KChange(borrower) = {bId},
and KChange(nbLoans) = {mId′, borrower(bId)}. Nei-
ther memberKey nor bookKey includes an input clause
for Transfer. Consequently, the SQL statements are up-
dates:

TRANSACTION Transfer(bId:bk Set,mId:mk Set)
VAR TEMP : mk Set

SELECT borrower INTO TEMP
FROM book
WHERE bookKey = #bId;

UPDATE book SET borrower = #mId
WHERE bookKey = #bId;
UPDATE member SET nbLoans = nbLoans + 1
WHERE memberKey = #mId;
UPDATE member SET nbLoans = nbLoans − 1
WHERE memberKey = TEMP;
COMMIT;

Thanks to this optimization, we avoid the definition of two
IF statements and of three insertions in transaction Transfer.
Nevertheless, such an analysis is not sufficient to avoid the
IF statement in transaction Acquire (see Sect. 4.4).

5. Conclusion

5.1. Related Works

Several papers deal with the synthesis of relational im-
plementations. Most of the time, refinement techniques are
used to implement specifications using the state transition
paradigm [5, 20]. There is some work on the synthesis of
systems by interpretation and/or simulation [11, 19], but
these tools are generally inefficient for IS. EB3PAI [8] is
an interpreter for EB3 process expressions. It allows one
to generate IS from EB3 specifications. Nevertheless, the
computation of attribute values in EB3PAI was not taken

into account yet, and transactions were considered as black
boxes.

Concerning the synthesis of SELECT statements from
the predicates of conditional terms, our work is close to
Hohenstein’s SQL/EER language [17]. SQL/EER is a for-
mal query language that can be automatically translated into
SQL [16]. Nevertheless, contrary to SQL/EER, EB3 pro-
vides formal techniques and notations to specify both the
functional behaviour and the data model of IS.

5.2. Results and Limits

We have presented an overview of an algorithm that gen-
erates relational database transactions from EB3 attribute
definitions. Synthesized transactions can be used in con-
crete implementations of EB3 specifications; their algorith-
mic complexity is similar to those of manually written pro-
grams. Our programs introduce some overhead, because
they systematically store the current values of attributes be-
fore updating the database, in order to ensure correctness.
We plan to optimize these programs by analysing depen-
dencies between update statements and avoid, when possi-
ble, these intermediate steps.

Let us note that, although the semantics of EB3 is based
on traces, we do not need to keep track of the system trace
in the synthesized transactions. The current values of the
system trace and of the EB3 attributes are represented by the
current state of the database. Hence, synthesized programs
are efficient in terms of space complexity.

The verification of data integrity constraints in EB3 is
an open issue. In particular, static integrity constraints are
safety properties and it is difficult to verify safety proper-
ties on recursive functions [9]. For instance, a static data
integrity constraint for attribute nbLoans is the following:
the number of loans of each member is limited to five books.
A first option would be the definition of new input-output
rules to abort an input event that is valid for EB3 process ex-
pressions, but that violates data integrity constraints. Such
an analysis would be made on the fly, during the interpre-
tation. Another option is the definition of guards in EB3

process expressions. A state-based model would then be re-
quired to verify static data integrity constraints. In [13], we
use the B language [1] to represent EB3 attribute definitions
and to verify safety properties.

5.3. Perspectives

As a future work, we plan to implement tools that sup-
port the generation of relational database transactions from
EB3 attribute definitions. We also plan to combine this
translation with the interpretation of EB3 process expres-
sions in order to optimize the resulting transactions and to
synthesize IS that take the computation of attribute values

E E
a

Ta
R R

ψψ

Figure 3. Correctness of transactions.

into account. By interpreting process expressions, we will
be able to optimize the transactions obtained in this pa-
per. For instance, the producer-modifier-consumer pat-
tern [10] is a usual pattern for entity type process expres-
sions in EB3. An action like Acquire is considered as a
book producer, and consequently, the corresponding trans-
action can only insert new values into table book. Likewise,
a modifier like Modify updates some attribute values, while
a consumer like Discard removes some tuples from the ta-
ble of the entity type.

We aim at validating our translation by proving its cor-
rectness. For each EB3 action a, we know how to generate
a transaction Ta. This corresponds to our translation rules.
We will model each action a as a transition from E to E,
where E is the state space of the IS in the EB3 model. Anal-
ogously, Ta can be considered as a transition from R to R,
where R is the state space of the IS in the relational database
model. To prove correctness, we want to define a morphism
Ψ from the EB3 model to the relational database model such
that the diagram in Fig. 3 is commutative.

References

[1] J.-R. Abrial. The B-Book: Assigning programs to meanings.
Cambridge University Press, 1996.

[2] G. Cousineau and M. Mauny. The functional approach
to programming. Cambridge University Press, Cambridge,
1998.

[3] J. Davies and J. Woodcock. Using Z: Specification, Refine-
ment, and Proof. Prentice-Hall, 1996.

[4] S. Dupuy, Y. Ledru, and M. Chabre-Peccoud. An overview
of RoZ: a tool for integrating UML and Z specifications.
In 12th Int. Conf. CAiSE’00, volume 1789 of LNCS, pages
417–430, Stockholm, Sweden, June 2000. Springer-Verlag.

[5] D. Edmond. Refining database systems. In Proc. ZUM’95,
volume 967 of LNCS, Limerick, Ireland, September 1995.
Springer-Verlag.

[6] R. Elmasri and S. Navathe. Fundamentals of Database Sys-
tems. Addison-Wesley, 2004.

[7] N. Evans, H. Treharne, R. Laleau, and M. Frappier. How
to verify dynamic properties of information systems. In
2nd IEEE International Conference SEFM, Beijing, China,
September 2004. IEEE Computer Society Press.

[8] B. Fraikin and M. Frappier. EB3PAI: an interpreter for the
EB3 specification language. In Proc. 15th International
Conference on Software and Systems Engineering and their
Applications, Paris, France, December 2002.

[9] B. Fraikin, M. Frappier, and R. Laleau. State-based versus
event-based specifications for information systems: a com-
parison of EB3 and B. Software and System Modeling, to
appear.

[10] M. Frappier and R. St-Denis. EB3: an entity-based black-
box specification method for information systems. Software
and Systems Modeling, 2(2):134–149, July 2003.

[11] H. Garavel and J. Sifakis. Compilation and verification of
LOTOS specifications. In Proc. 10th International Sym-
posium on Protocol Specification, Testing and Verification,
pages 379–394, Ottawa, Canada, June 1990.

[12] F. Gervais. EB4 : Vers une méthode combinée de spé-
cification formelle des systèmes d’information. Disserta-
tion for the general examination, GRIL, Université de Sher-
brooke, Québec, June 2004.

[13] F. Gervais, M. Frappier, and R. Laleau. Synthesizing B sub-
stitutions for EB3 attribute definitions. Technical Report
683, CEDRIC, Paris, France, November 2004.

[14] F. Gervais, M. Frappier, R. Laleau, and P. Batanado. EB3 at-
tribute definitions: Formal language and application. Tech-
nical Report 700, CEDRIC, Paris, France, February 2005.

[15] C. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[16] U. Hohenstein. Automatic transformation of an entity-
relationship query language into SQL. In Proc. 8th Inter-
national Conf. on Entity-Relationship Approach, Toronto,
Canada, 1989. Elsevier.

[17] U. Hohenstein and G. Engels. SQL/EER — Syntax and se-
mantics of an entity-relationship-based query language. In-
formation Systems, 17(3):209–242, May 1992.

[18] R. Laleau and A. Mammar. An overview of a method and
its support tool for generating B specifications from UML
notations. In ASE: 15th IEEE Conference on Automated
Software Engineering, Grenoble, France, September 2000.
IEEE Computer Society Press.

[19] M. Leucker and T. Noll. Rapid prototyping of specification
language implementations. In Proc. 10th IEEE International
Workshop on Rapid System Prototyping, pages 60–65. IEEE
Society Press, 1999.

[20] A. Mammar. Un environnement formel pour le développe-
ment d’applications base de données. PhD thesis, CNAM,
Paris, 2002.

[21] E. Meyer and J. Souquières. A systematic approach to
transform OMT diagrams to a B specification. In FM’99,
volume 1708 of LNCS, Toulouse, France, September 1999.
Springer-Verlag.

[22] H. Nguyen. Dérivation de spécifications formelles B à partir
de spécifications semi-formelles. PhD thesis, CNAM, 1998.

