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Abstract. This paper describes three optimization techniques for a
process algebra interpreter called eb

3
pai. This interpreter supports the

eb
3 method, which was developed for the purpose of automating the

development of information systems using efficient symbolic execution
of abstract specifications. The proposed optimizations allow an inter-
preter to execute actions on a quantified choice in constant time and
on a quantified parallel composition in logarithmic time with respect to
the number of entities in a quantified entity type. This time complexity
is comparable to that of programmer-derived implementation of process
expressions and significantly better than the time complexity of common
process algebra simulators, which execute quantifications by computing
their expansion into binary expressions.

1 Introduction

Process algebras have now been recognized has excellent modelling notations
for specifying system behavior. They are used in various areas such as tele-
com systems, control systems, business processes and web services. In the apis

project [1,2], they are used to specify information systems (IS). The apis plat-
form supports the eb

3 method [3], which was designed for the specification of
IS. This platform includes a symbolic interpreter, called eb

3
pai, to efficiently

execute process expressions of IS specifications. Its goal is to reach a level of
efficiency comparable to hand-made implementations, thereby avoiding the im-
plementation of these process expressions, which represents a significant increase
in software development productivity.

In developing an efficient interpreter for IS process expressions, one has to deal
with quantified (also called indexed or replicated) process expressions, mainly
for choice quantification and parallel composition quantification. For example,
the process expression

�x ∈ 1..m : P ( x )

denotes the expanded process expression

P ( 1 ) � . . . � P (m ).

Existing process algebras simulators like PROBE [4] and CIA [5] for CSP, the
simulator in the μCRL tool set [6], and CADP’s OCIS [7] for Lotos, are execut-
ing quantifications (or an equivalent feature) by expanding them. Code genera-
tors like JCircus [8,9] translates a Circus [10] specification into a Java program
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using JCSP [11]. A quantification is also expanded and each interleaved process
is implemented by a separate thread.

Expansion of quantifications is not acceptable for the execution of IS process
specifications, because the size of the quantification set is typically huge (e.g.,
m ≥ 1010). Constant m denotes the maximum value of a key of an entity in an
IS (e.g., a book id in a library system).

In this paper we propose techniques, called κ-optimization, to efficiently ex-
ecute quantifications in a process expression. These techniques apply to several
recurrent patterns of IS specifications which are found in eb

3 specifications and
defined in [3]. Let n denote the number of entities in an entity type (e.g., the
number of books in a library system). When the sufficient conditions are met,
our algorithms can execute choice quantifications in constant time and quan-
tified parallel composition in O(log(n)) or in constant time, depending on the
implementation used for a map (B-tree or hash table). A programmer derived
(i.e., hand-made) implementation of these process expressions has a comparable
time complexity, although it is more efficient since there is less overhead than
for symbolic execution. Our algorithms are more efficient than existing process
algebra simulators, since they expand quantifications, which means that their
time complexity is linear (O(m)) for both quantified choice and quantified par-
allel composition. Note that usually m is quite greater than n, since m denotes
the upper bound for the value of an entity key, hence it denotes the maximum
number of entities, whereas n denotes the number of entities currently existing
in the system. Our algorithms are also more efficient than code generation in
JCircus, since it requires m threads to implement a quantification.

The proposed algorithms are defined for the eb
3 process algebra, but they

could probably be adapted for other process algebras like CSP, μCRL, FSP and
Circus, which include quantified operators. Lotos does not include quantifica-
tion; it must be simulated using recursion.

Our algorithms are suitable for process algebra simulators, but not for model
checkers. A simulator executes actions as requested by the environment. It ex-
plores only the execution path that the environment commands during execu-
tion. Simulators are typically used for specification animation and validation
with users. The objective of eb

3
pai is to increase the efficiency of simulators to

use them as an implementation of a specification.
Model checkers are addressing another issue for which our algorithms are

not relevant. They are used to verify that a process expression satisfy a given
property. The property is checked by exploring the entire transition system of
the process expression; hence expansion of quantification is necessary since each
individual process may have to be checked. Typical examples of model checkers
include FDR2 [12] for CSP, the Concurrency Workbench [13] for CCS, ProB [14]
for a combination of CSP and B, the model checking tools in the μCRL tool
set [6], LTSA [15] for FSP, and CADP’s EVALUATOR [7] for Lotos.

This paper is structured as follows. Section 2 provides a brief overview of
the eb

3 process algebra method and describes the general idea of symbolic ex-
ecution with eb

3
pai. Section 3 is the main part of this paper. It describes the
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optimization of large quantified expressions. Finally, Section 4 analyzes the space
and time complexity of the symbolic execution algorithm and provides some ex-
perimental results showing the actual performance of its implementation, eb3

pai.
Section 5 concludes with some remarks and future work on improvements to
eb

3
pai.

2 The eb
3 Process Algebra and Symbolic Execution

The eb
3 process algebra is inspired from regular expressions, CSP [16], CCS [17],

ACP [18] and Lotos [19]. Its syntax has been simplified in order to streamline
IS specification. The reader may consult [3,20,21] for additional details and a
thorough comparison with these process algebras.

2.1 Syntax

A process expression is defined over a set of symbols Σ, called the action set,
whose elements are denoted by a(t1, . . . , tn), where a is an action label and ti
denotes a constant or a variable. Set Σe is the set of ground actions from Σ, i.e.,
those with no variable; it is called the input event set. Set Σl denotes the set of
labels of actions in Σ.

The process expressions over Σ are defined recursively as follows. Elements of
Σ ∪ {λ} represent elementary process expressions over Σ. The symbol �, called
“box”, is an elementary process expression denoting successful completion. Let
E, E1, and E2 be process expressions over Σ, n ∈ N, Δ ⊆ Σl and Φ be a
formula. The expressions E∗, E+, En, E1 � E2, E1 | E2, E1|[Δ]| E2, E1 ‖ E2,
E1 � E2, Φ =⇒ E, and ([x := t1, . . . , x := tn])E are process expressions over Σ.
Operations ∗, +, n, and � denote the usual Kleene closure, positive closure, and
concatenation of regular expressions. Operation | is a choice between E1 and
E2; it is drawn from regular expressions and CSP [16]. Operation |[Δ]| is the
parameterized parallel composition of E1 and E2 with synchronization on actions
whose labels belong to Δ; it is drawn from Lotos. Intuitively, the composition
E1|[Δ]| E2 is a process that can execute actions of either E1 or E2 without
constraint, but actions in Δ must be executed by both E1 and E2. Actions in Δ
are said to be synchronized. Operations � and ‖ are the interleave and parallel
composition of CSP [16], respectively; they are special variants of |[ ]|: E1 �E2 is
equivalent to E1|[∅]| E2 and E1 ‖ E2 is a synchronized composition of E1 and E2
on shared actions of E1 and E2, i.e., E1|[α(E1) ∩ α(E2)]| E2, where the operator
α denotes the alphabet (set of labels) of a process expression. The operator α is
defined recursively on the structure and returns the set of all the action labels
occurring in a process expression but λ. The process expression Φ =⇒ E is
the guard of E by Φ: it means that E can execute an action if and only if Φ is
true. The process expression ([x1 := t1, . . . , xn := tn])E is called an environment
and it denotes the simultaneous substitution of x1, . . . , xn by t1, . . . , tn in E.
The special symbol λ denotes an internal action that a process may execute
without requiring input from the system’s environment. It plays a role similar
that of the empty word ε in regular expressions or the unobservable action τ in
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CCS and i in Lotos. The eb
3 process algebra also allows quantification (also

called indexing or replication in CSP) over operators |, |[Δ]| , �. For instance,
the process expression | x ∈ 1..n : P (x ) denotes P ( 1 ) | P ( 2 ) | · · · | P (n ).
Quantifications are restricted to finite sets.

For the sake of readability, we sometimes write a instead of a( ). We use the
following precedence of operators from highest to lowest, enclosing between “(”
and “)” operators with the same precedence: (∗, +), �, |, (|[ ]|, �, ‖ as binary
operators), (|[ ]|, �, | as quantified operators).

2.2 An Example

To illustrate our optimizations, consider the specification provided by Figure 1.
It shows the process main and auxiliary process definitions for a simple library
system. The rest of the eb

3 specification is omitted, since it is not relevant to
illustrate our optimization techniques. Figure 2 provides the entity-relationship
diagram of this specification.

There are two entity types (book and member) and one association (loan),
each modelled by a process expression. A book must be acquired in order to
be used in the library, and a member must join it. Books and members are
identified by a number (bId and mId). A member can borrow a book, renew it
as many times as he wants and, finally, return it to the library. While a member
is borrowing a book, no other member can borrow it. Other usual properties of
loans are represented by this specification. The behavior of each single entity or

main ( )=
(� bId ∈ bookid : book ( bId )∗)

‖
(� mId ∈ memberid : member ( mId )∗)

book ( bId : bookid ) =
Acquire( bId )�
(| mId ∈ memberid : loan ( mId, bId ))∗�
Sell( bId ) ;

loan (mId : memberid, bId : bookid ) =
Lend(mId, bId )�
Renew( bId )∗�
Return( bId ) ;

member (mId : memberid ) =
Join( mId )�
(� bId ∈ bookid : loan (mId, bId ))∗�
Leave( mId ) ;

Process expression main and process definitions

Fig. 1. eb
3 specification example
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book memberloan 0..1*

Fig. 2. Entity-relationship diagram of the library system

association (a book, a member, or a loan) is defined by the corresponding process
definition. The system is defined using quantifications that, on the one hand,
allow for multiple entities (quantified interleave), and on the other hand, model
the cardinality of the association (quantified choice for 0..1 and a quantified
interleave for *). In the following, an entity is an instance of a process that
models an IS entity like book or member. An association is an instance of a
process that models an IS association like loan. An entity type is represented in
eb

3 by a quantification over all possible entities. For example,

� mId ∈ memberid : member (mId )∗

represents the entity type member. Process member ( 1 ) represents the member
entity with mId = 1. Additional explanations and a more complex example of
a library can be found in [22].

It is important to note that quantification is a crucial operator in IS specifi-
cation. This constitutes a major difference from other problem domains where
process algebras are typically used (protocol specification for example). Since
the main aim of eb

3 is to provide an executable specification, the specification
style used to achieve this goal is also different.

2.3 Symbolic Execution of eb
3 Process Expressions

eb
3
pai is a symbolic interpreter. It executes the inference rules of an opera-

tional semantics defined in the CCS style [17]. The original semantics of the eb
3

process algebra has been defined in [3]. A new operational semantics, optimized
for symbolic execution, has been defined in [20,21]. eb

3
pai is based on this se-

mantics. We provide below an outlook of the symbolic execution strategy. For
more details, the reader may consult [20,21].

Given a process expression P and an action σ, one can compute the possible
transitions and resulting process expressions (PEs) using the inference rules. This
involves a proof search that determines which inference rules are applicable, by

matching the structure of P with E1 in an inference rule of the form E2
σ−→E′

2

E1
σ−→E′

1

.

When a match is found, the rule’s premiss, which are themselves transitions (e.g.,
E2

σ−→ E′
2), induce a recursive search. Ultimately, the search reaches a rule which

doesn’t have a transition in its premiss. Then, the resulting process expression
Q is constructed by backtracking over the inference rules through termination
of recursive search calls.

In summary, eb
3
pai executes a specification by simply evaluating the infer-

ence rules. We do not generate code per se; eb3
pai can be considered as a virtual
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machine and each specification becomes a high-level program. The implementa-
tion is the combination of eb

3
pai and the specification.

3 Optimizations for Symbolic Execution

3.1 Optimizing Quantification Execution Time: Direct
κ-Optimization

The Problem of Large Quantification. The eb
3 language allows the use of

quantification operators. For example,

| x ∈ 1..1010 : � y ∈ 1..1010 : a(x, y ) � b( y, x ) (1)

A basic approach to executing quantification operators is to iterate over the
values of the quantification set to determine whether a transition is feasible.
It is clear that such a linear search through a large set is too ineffective to be
acceptable. Moreover, the execution of a quantified interleave generates large
interleave expressions. For instance, if the process defined by (1) has executed
a( 2, 1 ), . . . , a( 2, 109 ), the resulting PE is

([y := 1, x := 2])b( y, x )
�

. . .
�

([y := 109, x := 2])b( y, x )
� (

� y ∈ 1..1010 − 1..109 : a(x, y ) � b( y, x )
)
.

When action b(109, 2) must be executed, another linear search must be done
over the interleave composition, which is also too inefficient.

To optimize these executions, we determine by static analysis of each quan-
tified expression which value of the quantified set must be selected based on
the parameters of the action to execute. We call these values κ-values, the po-
sitions of the values in the action parameters κ-positions, and this method
direct κ-optimization.

For instance, in process expression (1), we can determine that when

|x ∈ 1..1010 : . . .

must execute a( t1, t2 ), the only execution feasible is with x = t1; similarly, the
only execution feasible for

� y ∈ 1..1010 : . . .

is with y = t2. Hence, whenever possible, we determine a map Π : Σ → T
for each quantified expression Φx ∈ T : E such that ([x := Π(σ)])E is the
only candidate to execute a transition with σ. Specifically, we determine the
position of the quantification variable within the parameters of each action.
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These positions, called κ-positions, are determined by static analysis before the
execution of a specification. Let κ(χ, E) be the κ-position of χ-labelled actions
in E, where E is a quantified interleave operator or a quantified choice operator.
Then, if we need to optimize the quantification E for any event σ,

Π(σ) Δ= πκ(α(σ),E)(param(σ))

where πi((x1, . . . , xi, . . . , xn)) = xi, α(σ) is the label of σ and param(σ) is the
tuple of the parameters of σ.

This approach is sufficient to optimize a choice quantification, since the quan-
tification disappears after the transition. In the case of a quantified interleave,
the quantification remains in the result process expression, since it can spawn
one interleave process for each value in the quantification set. For example, the
execution of a( 1 ) from the process expression

| x ∈ [1..3] : a(x ) � b(x )

returns ([x := 1])b( x ). The execution of the same event on

� x ∈ [1..3] : a(x ) � b( x )

returns (
([x := 1])b( x )

)
�

(
� x ∈ [2..3] : a(x ) � b(x )

)
.

The interleave of the instantiated process expressions (i.e.,, P (t1) � . . . � P (tn))
is represented by a function K : T → PE such that K(Π(σ)) is the only process
expression that can execute σ.

Figure 3 describes the function findκ(E, x, ep), which determines a κ-pos-
ition for a variable x in a process E. The parameter ep is used to keep track
of the process definitions that have been parsed so far over recursive calls; it is
set to ∅ on the initial call. The function findκ returns a relation between action
labels and N ∪ {⊥}. The symbol � is used as a marker to detect overlapping
quantifications on the same variable; the algorithm returns ⊥ for actions within
the scope of these overlapping quantifications. When an action does not contain
x in its parameters, ⊥ is also returned. A quantification is κ-optimizable if the
result of findκ is a deterministic relation and does not include ⊥ in its codomain
(i.e., x occurs in the same position for each occurrence of an action in E). A
choice quantification is also partially κ-optimizable when the image set of the
action to execute is a singleton; for other actions which include either ⊥ or
several κ-positions, κ-optimization is not applicable.

This algorithm, which is part of a static analysis of the specification prior to
its execution, is applied on every quantified process expression. Its algorithmic
complexity is O(NE), where NE is the number of nodes in the syntax tree
of E. This number is usually small (NE < 100). It does not depend on the
number of entities involved in E. At runtime, the algorithmic complexity of
retrieving the instantiated interleave process depends on the implementation
chosen for map K; databases usually offer either hash tables or B-trees, which
means constant or logarithmic access time. As for space complexity, a process
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findκ(E, x, ep) Δ= match E with

([z1 := y1 . . . zn := yn])E0 -> if ∃i (yi = x) then t := zi else t := x endif;

return findκ(E0, t, ep),

λ -> return ∅,

a(y1, . . . , yn) -> if ∃i (yi = x) then j = i else j = ⊥ endif;

return { (a, j) },

E1ΦE2 -> return findκ(E1, x, ep) ∪ findκ(E2, x, ep),

ϕ =⇒ E0 -> return findκ(E0, x, ep),

Φ(E0) -> if Φ is a quantification on x

then t := � else t := x endif;

return findκ(E0, t, ep),

Q(y1, . . . , yn) -> if Q ∈ ep then return ∅ else

let E0 be the definition of Q(x1, . . . , xn) ;

return findκ(([x1 := y1 . . . xn := yn])E0, x, ep ∪ {Q})
endif.

Fig. 3. An algorithm that computes κ-positions

expression �x ∈ T : E requires a map and only one instance of E for all map
entries, because the environment ([x := Π(σ)]) is represented by a map entry.
Each process expression E′ reachable from E by transition execution is also
instantiated only once, which is very efficient.

Example. Consider the library specification in Figure 1. The algorithm of Fig-
ure 3 has to be applied on four quantified process expressions:

1. findκ(book ( bId )∗, bId, ∅) in the main process definition;
2. findκ(loan (mId, bId )∗, mId, ∅) in the book process definition;
3. findκ(loan (mId, bId )∗, bId, ∅) in the member process definition;
4. and findκ(member (mId )∗, mId, ∅) in the main process definition.

Once the computation is done, we obtain the following results:

1. { (Acquire, 1), (Lend, 2), (Renew, 1),
(Return, 1), (Sell, 1) }

2. { (Lend, 1), (Renew, ⊥), (Return, ⊥) }

3. { (Lend, 2), (Renew, 1), (Return, 1) }

4. { (Join, 1), (Lend, 1), (Renew, ⊥),
(Return, ⊥), (Leave, 1) }

The first and third quantifications are κ-optimizable. Therefore, to execute the
action Lend( 1, 2 ) from � bId ∈ bookid : loan (mId, bId ), we can directly try
to execute Lend( 1, 2 ) from the process expression ([bId := 2])loan (mId, bId ),
instead of trying every value of bookid for bId until bId = 2 is found. The fourth

Utilisateur
Note
Devrait peut-être traiter toutes les position i ou y_i = x
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quantification is not κ-optimizable since it is an interleave and the codomain of
the result contains two occurrences of ⊥ (for Renew and Return), because mId
is not a parameter of these actions. The second quantification is a choice. It
is partially κ-optimizable: κ-optimization can be used for a Lend, but not for
a Renew or a Return. Hence, the κ-optimization is not totally satisfactory. The
next section addresses this issue.

3.2 Extending Quantification Optimization: Indirect κ-Optimization

We have found conditions under which a quantification can be optimized when
the algorithm in Figure 3 fails to find a single κ-position for each action. These
conditions cover a large number of IS specification patterns described in [3].
Hence, our interpreter can optimize the execution of quantified interleaves in
most common IS specifications. Let us start by providing the intuition behind
this second optimization.

Example. Consider the example in Figure 1 and the action Renew, which cannot
be optimized by the algorithm in Figure 3. Intuitively, one can see that when a
loan is initiated, the action (Lend(mId, bId )) binds book bId to member mId.
Since a book can only be borrowed by one member at a time, and since a renew
can only occur after a book is borrowed, bId is sufficient to deduce mId; hence,
actions Renew and Return do not need to include mId as a parameter, because
of this binding between a borrowed book and its borrower. In entity-relationship
data modeling, we say that loan is a one-to-many relationship between members
and books: a member can borrow several books concurrently, but a book is
borrowed by at most one member at any given time. Hence, there is a functional
dependency from entity type book to entity type member.

The first question that must be raised is how exactly one can deduce, solely
by static analysis of the process expression, that there exists a functional de-
pendency between book and member. Next, we have to determine under what
conditions such a dependency can be found.

In our example, one can deduce the functional dependency between a book
and a member from the position of the choice quantification in the process book:

book ( bId : bookid ) =
Acquire( bId ) �
(| mId ∈ memberid : loan (mId, bId ))∗ �
Sell( bId )

Indeed, the choice quantifier implies that one book (with the number bId) can
be borrowed by only one member at a time. To be lent to another member, the
execution of process loan has to be completed. If we closely examine the loan
process expression,

loan ( mId : memberid, bId : bookid ) =
Lend(mId, bId )� Renew( bId )∗� Return( bId )
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we see that it is made of three parts : a producer (Lend), a modifier (Renew)
and a consumer (Return). This is a classical IS pattern described in [3]. The
producer is the action that binds mId and bId. The consumer is the action that
tells us that the bond is no longer active. Since the interleave quantification to
optimize for action Renew and Return is synchronized over actions of loan with
this quantified choice expression, we know which mId can execute Renew and
Return from the process expression loan (mId, bId ).

Using this example, we can summarize the general idea of indirect κ-optimiza-
tion, as follows.

During static analysis:

1. Find the quantified choice operators to deduce the possible functional
dependencies (below we refer to choice quantified variables occurring in
the scope of other quantifications (interleave or choice) as the dependent
variables and the enclosing quantified variables as the keys).

2. For all actions not optimized with the algorithm in Figure 3, identify
the producer that binds the keys (bId in the example) to the dependent
variable (mId in the example) under the condition that the choice and
interleave quantifications to optimize are synchronized on these actions.

At runtime:

1. When a producer is executed, store the value of the functional depen-
dency between the set of keys and the dependent variable.

2. Store the value of the new process expression for the operand of the
quantified interleave in a mapping K, as for direct κ-optimization.

3. When a consumer is executed, delete the stored value of the functional
dependency between the keys and the dependent variable.

4. Accept or reject an action using the value of the functional dependency
and mapping K. If the value of the functional dependency is not initial-
ized, then reject the modifier or the consumer; if it is initialized, then
check if the corresponding process expression in mapping K can execute
the action.

Functional Dependencies. The first part of the optimization process is a
search for the functional dependencies. In a recursive search on the structure of
the process expression of each entity type, the algorithm stores the candidate
functional dependencies: a function from P(Var) to Var, where Var is the set
of all variables used in the entity types and P(Var) is the set of all subsets of
Var. We say candidates, because a functional dependency will be selected only
when it is required to optimize an interleave.

Algorithm in Figure 4 computes the functional dependencies for a process
expression E. The function FD(E, ks, wait?, ep) is called initially with ks = ∅,
ep = ∅ and wait? = false, since the parameter ks represents the set of keys
that will be mapped to the dependent variable and ep represents the process
definitions already parsed. The variable wait? is used to avoid the creation of
the next dependency.
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FD(E, ks, wait?, ep) Δ= match E with
ΓE0 -> return FD(E0, ks, wait?, ep),

λ -> return ∅,
a() -> return ∅,

a(y1, . . . , yn) -> return ∅,
E1 � E2 -> return FD(E1, ks, wait?, ep) ∪ FD(E2, ks, wait?, ep),
E1 | E2 -> return FD(E1, ks, wait?, ep) ∪ FD(E2, ks, wait?, ep),
E1 ‖ E2 -> return FD(E1, ks, wait?, ep) ∪ FD(E2, ks, wait?, ep),
E1 � E2 -> return FD(E1, ks, true, ep) ∪ FD(E2, ks, true, ep),

E1|[Δ]| E2 -> return FD(E1, ks, true, ep) ∪ FD(E2, ks, true, ep),
ϕ =⇒ E0 -> return FD(E0, ks, wait?, ep),

E0
∗ -> return FD(E0, ks, wait?, ep),

| x ∈ s : E0 -> if wait? then add := ∅ else add := {(ks, x)} endif;
return add ∪ FD(E0, ks ∪ {x}, false, ep)

Φ x ∈ s : E0 -> where Φ either a quantification � or |[]| on x
then ks

′ := ks ∪ {x} else ks
′ := ks endif;

return FD(E0,ks’, false, ep),
Q(y1, . . . , yn) -> if Q ∈ ep then return ∅ else

let E0 be the definition of Q(z1, . . . , zn) ;
return FD(E0, ks, wait?, ep ∪ {Q})

endif.

Fig. 4. An algorithm that computes functional dependencies

For example, if we analyze the process expression

� x ∈ x :
(
( | y ∈ y : E′ ) � ( | y ∈ y : E′ )

)

‖
� y ∈ y : �x ∈ x : E′

(2)

we don’t know whether it associates one x to one or two y, because of the
combination of two choice quantifications of | y with �. Since these cases can
associate more than one value of y to a value of x, the existence of a functional
dependency is not guaranteed. Even after excluding these cases, we can still
successfully identify the functional dependencies for the process expressions that
fit the patterns in [3]. The function call FD(E, ks, wait?, ep) returns a map
that is associated to E.

(· · · E · · · ) ‖ (· · · E′ · · · ) where E = �x · · · � −→y · · ·A (−→y , x ) · · ·

and E′ = �−→y · · · | x · · ·A (−→y , x ) · · · .

Fig. 5. Example of structure for the κ-optimization
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The Complete κ-optimization of an Action. Consider the example of a
general process expression structure illustrated in Figure 5. The process def-
inition A can be a simple pattern (Figure 6), or there could also be several
producers and consumers with an arbitrary combination of bi(−→y ), which we
denote by Ξibi( −→y ) (Figure 7).

A ( −→y :
−→
T , x : T ′ ) = (a(−→y , x ) � b( −→y )∗ � c( −→y ))∗

Fig. 6. First pattern for the κ-optimization

The execution of an action b(−→y ) for a quantifier � x in the entity E can be
optimized under the following conditions:

1. Entity E is synchronized with an entity E′ over a binding process expression
A such that there is a functional dependency from −→y to x in E′. A binding
expression is a process expression under the quantified choice scope that
defined the functional dependency.

2. The binding process expression A enforces the following ordering constraints:
(a) An event b(−→y ) can only occur between a producer a(−→y , x ) and a con-

sumer c(−→y )
(b) A consumer c(−→y ) must be preceded by one producer a(−→y , ) (i.e., the

producer occurs before the consumer).
(c) A consumer c(−→y ) must occur between each pair of producers a( −→y , ).
(d) A producer a(−→y , ) must occur between each pair of consumers c(−→y ).
Hence, a trace of A (−→y , x ) is of the form

a(−→y , x ) � · · · � b(−→y ) � · · · �
c(−→y ) � a( −→y , x′ ) � · · · �
b(−→y ) � · · · � c(−→y ) � · · ·

A consumer c can also be optimized under these conditions. Condition 1 is
satisfied by the general structure of the expression in Figure 5. The patterns for
A in Figures 6 and 7 satisfy condition 2 above.

A (−→y :
−→
T , x : T ′ ) =

(
(a1(−→y , x ) | · · · | an(−→y , x )) �
(Ξibi( −→y ))∗ �
(c1( −→y ) | · · · | cm( −→y ))

)∗

Fig. 7. Second pattern for the κ-optimization
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When a producer a(−→y , x ) is executed, the pair −→y �→ x is stored in a map f
which represents the functional dependency −→y → x. When action b(−→y ) must
be executed, the only value of x in �x of E (i.e., quantification to optimize) that
can execute b( −→y ) is f(−→y ). This can be proved by contradiction. Suppose there
are two values of x, v1 and v2 that can execute b(−→w ). By condition 2a, each
execution of b(−→y ) is preceded by a producer in A, which means that �x of E
has spawned two interleaved processes, one for v1 and one for v2; each one has
executed a producer, a(−→w , v1 ) and a(−→w , v2 ), respectively, and no consumer yet,
by condition 2a. But since E and E′ are synchronized over A by condition 1,
the �−→y of E′ has spawned a single process for −→w , and this process has executed
two producers, a(−→w , v1 ) and a(−→w , v2 ), without a consumer in between, which
contradicts condition 2c above.

The only candidate to execute a consumer c(−→w ) is also the spawned process
for x = f(−→w ) in �x of E. This can be proved as follows. Suppose there are
two values of x, v1 and v2 that can execute c(−→w ). By condition 2b, �x : T of
E has spawned two interleaved processes, one for v1 and one for v2; each one
has executed a producer, a(−→w , v1 ) and a( −→w , v2 ), respectively. Consider the last
occurrences of these two actions. Since E and E′ are synchronized over A by
condition 1, the �−→y of E′ has spawned a single process for −→w , and this process
has now executed two producers, a(−→w , v1 ) and a(−→w , v2 ). By condition 2c, ex-
actly one consumer c( −→w ) must have been executed in between. Hence, only the
last producer can execute c( −→w ).

3.3 Generality of κ-optimization

Complete κ-optimization is not effective for all specifications that can be writ-
ten. Actually, it is not effective for all IS specifications. However, our aim is to
optimize all specifications written with the patterns described in [3]. There are
seven patterns:

1. the producer-modifier-consumer pattern;
2. the one-to-many association pattern;
3. the multiple association pattern;
4. the n-ary association pattern;
5. the weak entity type pattern;
6. the recursive association pattern;
7. the inheritance association pattern.

For the sake of conciseness, the complete description of these patterns is omitted.
It is straightforward to check that the first four patterns satisfy the conditions for
κ-optimization. The first pattern describes the structure of an entity type. The
producers of the association in the second pattern are exactly the producers of
the functional dependency needed. These producers contain all the key variables,
and the dependent variables, since they build an instance of the association.
Each association also has consumer actions. The second pattern is same as the
one used to illustrate indirect κ-optimization (i.e., a one-to-many association).
The third and fourth patterns can use either direct or indirect κ-optimization,
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depending on the cardinality of the association. An important point is that when
an entity participates in several associations, these associations are combined
with a parallel operator (‖). Therefore the problem of the process expression 2
(page 337) does not occur. This point justifies the use of the wait? predicate in
the algorithm of Figure 4: if these patterns are used, there is no loss of generality.
The last three patterns also fit our conditions for κ-optimization. They are special
cases of the first four: a weak entity is just an instance of a simple association for
our purpose; a recursive association is just an association between the entities
of the same entity type; an inheritance association is decomposed into many
process definitions, but it still has a behavior similar to that of simple entity
types.

4 Implementation and Performance

eb
3
pai is implemented with Java 1.4 and an OODB ObjectStore PSE Pro for

Java 6.0. The parser was built with ANTLR 2.7.1. Indirect κ-optimization is
not implemented, but direct κ-optimization is. The performance for indirect
κ-optimization should be very close to that of direct κ-optimization, because it
uses the same data structures plus an additional hash table to store the functional
dependencies.

4.1 Complexity Analysis

Let Ei, 1 ≤ i ≤ mE , denote an entity type and Aj , 1 ≤ j ≤ mA, denote an
association. An association links two or more entity type Ei. The size |Ei| of
an entity types Ei is the maximal number of entities in the entity type. The
size |Aj | of an association Aj is a product of all |Ek|, where Ek is an entity
type involved in Aj . Let n denote the sum of all |X |, where X is either an en-
tity type or an association of an eb

3 specification. Let s denote the number of
nodes in the tree representing a process expression, excluding the nodes of a
κ-optimized quantification (they will be computed with n). Note that for most
ISs, s is usually smaller, whereas n can be quite larger. Therefore, the number of
nodes s can be considered negligible with respect to the number of entities and
associations n. The search for a proof using the inference rules requires inspec-
tion (in the worst case) of all the nodes (i.e., s nodes). The space complexity is
O(s + n), which corresponds to the size of a process expression, including in-
stances of quantified process expressions. But, since s is negligible with respect
to n, the space complexity is O(n). Without κ-optimization, the algorithmic
complexity is impractical since the number of nodes s is multiplied by the num-
ber n of entities and associations involved. So a transition computation has a
complexity of O(s n). With the κ-optimization, only one node is inspected for
quantified expressions. The execution of a κ-optimized quantification depends on
the implementation chosen for a map K. ObjectStore offers hash tables, which
yield constant time in an average case, or B-trees, which yield logarithmic time.
Hence, the algorithmic complexity of a transition computation is O(s + log(n))
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on average. The space complexity is still O(n). For indirect κ-optimization, we
also need to store the functional dependencies (cf. 3.2). The total size of the
tables needed for these optimizations is bounded by the number of quantifica-
tions involved multiplied by the number of actions involved. Theorically, this
number could be an overwhelming difficulty to tackle. However, practicably, it
is still negligible with respect to n. Therefore, the space complexity is the same
as that of direct κ-optimization. The algorithmic complexity is also the same
because the small tables needed can be implemented with hash tables which
yield constant time. Typically, the algorithmic complexity of a manual imple-
mentation of an IS specification is O(log(n)), since it will access several records
from the database, each access usually being backed by an index which yields
log(n) access time using B-trees; its space complexity is O(n) on average. All
of these complexities are summarized in Figure 8, under the hypothesis of IS
domain. Thus, for κ-optimizable specifications, eb

3
pai has an overhead of O(s)

Algorithmic Space
complexity complexity

eb
3
pai with no optimization O(s.n) O(n)

eb
3
pai with direct κ-optimization O(log(n) + s) O(n)

eb
3
pai with indirect κ-optimization O(log(n) + s) O(n)

manual implementation O(log(n)) O(n)

Fig. 8. Algorithmic and space complexity of eb
3
pai for IS specifications

compared with manual implementation of an IS. With no κ-optimization, the
difference is substantial and eb

3
pai becomes impractical as a tool, but it can

still be useful for specification animation for validation purposes.

4.2 Performance for Direct κ-optimization

Performance tests were conducted with a specification of a library management
system on an Intel Core Duo 1.66GHz with 1GB of DDR2 SDRAM, running
Mac OSX 10.4. Indirect κ-optimization has not been implemented yet; only
direct κ-optimization. Figure 9 provides some statistics on these experiments.
The column titled “Without DB” corresponds to the execution time without
the use of a database; the column titled “With DB” corresponds to the time of
executions with the use of an Object Store PSEPro as database. The experiment
consists of the execution of actions creating 9,000 books and 9,000 members,
followed by the execution of 30,000 actions which were randomly generated;
9,899 of these actions were valid and 20,101 were invalid. Figure 9 only shows
information for valid actions. Invalid actions (actions which must be rejected
by the interpreter) are less expensive in time than valid actions: they require
approximately half the time of a valid action. We also manually implemented the
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Without DB With DB

Time 1m 52 s 8m 27 s
Mean 4ms 81 ms

Median 1ms 10 ms

Fig. 9. EB3PAI execution times for the library system

library specification in Java using an Oracle database. The average transaction
processing time is 10 ms, which is 8 times faster than eb

3
pai with a database.

Nevertheless, 80 ms is still acceptable for many IS systems where the transaction
rate is low (e.g., a library management system). The results are good, but the
median is quite low in comparison to the mean time. This is because some
executions are rather slow (more than 2 s). These executions occur periodically.
We are currently investigating the reason for these anomalies in order to correct
this behavior. We also intend to implement indirect κ-optimization and validate
its real performance.

5 Conclusion

In this paper, we have presented two optimization techniques to efficiently exe-
cute quantified process expressions in the eb

3 process algebra. Their space and
algorithmic complexities are comparable to those of a manual implementation
for a large number of IS specifications which are determined by a set of classi-
cal specification patterns. Direct κ-optimization was implemented in the eb

3
pai

interpreter. It performs 8 times slower than a manual implementation of the
specification for the library system, but its average response time is acceptable
for a large class of IS with low transaction rates, which demonstrates that sym-
bolic execution is a viable way of implementing IS.

The performance of eb
3
pai is largely dependent on the OO database used to

the store the object representation of the specification. It seems quite feasible to
implement a dedicated persistence manager for eb

3
pai to reduce the number of

disk IOs.
We are currently looking at other optimizations for eb

3
pai. Tail-recursive

deterministic process expressions can be represented by an extended labelled-
transition system (ELTS) [23], which basically takes less space and avoids the
computation of a proof at each transition. Preliminary experimentation has
shown us that ELTS coupled with κ-optimization could cut computation time
by as much as 40%. We are working on a complete definition of ELTS and the
algorithms to translate an eb

3 process expression into an ELTS.
Future work also includes techniques for issuing meaningful error messages

when an action is not executed. For instance, if a Lend( bId, mId ) is rejected
by the interpreter, we must tell the user why; it could be that the book or the
member does not exist, the book is on loan to another member, or the member
has reached his loan limit. This problem is similar to the determination of error
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messages by a compiler. Finally, we wish to investigate how parallelism could be
used for symbolic execution.
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