
Programming
from
Speci�cations

Second edition

Carroll Morgan
October ����

First published ���� by
Prentice Hall International �UK� Ltd
�� Wood Lane End� Hemel Hempstead
Hertfordshire HP	
RG�
a division of
Simon � Schuster International Group�

Copyright c� ����� ���
 and ��� Carroll Morgan�

All rights reserved� Except as noted above� no part of this publication may be
reproduced� stored in a retrieval system� or transmitted� in any form� or by any
means� electronic� mechanical� photocopying� recording or otherwise� without prior
permission� in writing� from the author� For permission contact the author at
carroll�comlab�ox�ac�uk�

Contents

Preface xi

Di�erences from the �rst edition xiv

Acknowledgements xv

� Programs and re�nement �

��� The traditional view �
��	 A novel view �
��� Programs as contracts� re�nement �
��
 Abstract programs

��� Executable programs �
��� Mixed programs �
��� Infeasible programs ��
�� Some common idioms ��
��� Extreme programs �	
���� Exercises ��

� The predicate calculus ��

	�� Its relevance ��
	�	 Terms ��
	�� Simple formulae �
	�
 Propositional formulae ��
	�� Quanti�ers 	�
	�� �General� formulae 		
	�� Operator precedence 		
	� Predicate calculation 	�
	�� Exercises 	�

v

vi Contents

� Assignment and sequential composition ��

��� Introduction 	�
��	 Assignment 	�
��� Open assignment 	�
��
 The skip command 	�
��� Sequential composition ��
��� Assignment and composition together �	
��� Example� Swapping variables �	
�� Exercises �

	 Alternation ��

�� Operational description ��

�	 Re�nement law ��

�� Exercises ��

 Iteration 	�

��� Operational description
�
��	 Re�nement law� informally
	
��� Termination of iterations� variants

��
 The re�nement rule for iteration
�
��� The iteration �checklist�
�
��� Exercises
�

� Types and declarations
�

��� Types ��
��	 Declarations ��
��� Local blocks �

��
 Using types and invariants ��
��� A �nal note on feasibility �
��� Checking types and invariants �
��� Unde�ned expressions ��
�� Exercises ��

� Case study� Square root ��

��� Abstract program� the starting point ��
��	 Remove �exotic� operators ��
��� Look for an invariant �

��
 Exercises ��

 Initial variables �

�� Simple speci�cations �
�	 Initial variables precisely ��
�� Sequential composition revisited ��
�
 Leading assignment ��

c� Carroll Morgan ����� ����� ����

Contents vii

�� Exercises �	

� Constructed types �	

��� Powersets �

��	 Bags ��
��� Sequences ��
��
 Distributed operators �
��� Functions �
��� Relations
��� Exercises ��

�� Case study� Insertion Sort �	

���� What it means to be sorted �

���	 Similar pre� and postconditions ��
���� Decreasing the variant ��
���
 Iterating up� and down ��
���� A tricky invariant ��
���� Assignment to sequences ��
���� Removing the local invariant ���
��� Exercises ���

�� Procedures and parameters ���

���� Procedures without parameters ���
���	 Substitution by value ���
���� Procedures with parameters ���
���
 Setting out re�nements to procedure calls ���
���� Multiple substitutions ���
���� Substitution by value�result ��	
���� Syntactic issues ���
��� Substitution by reference ��

���� Exercises ���

�� Case study� Heap Sort ���

�	�� Time complexity of code ���
�	�	 Heaps ��
�	�� Shrinking a heap ���
�	�
 Establishing the heap �	�
�	�� Procedure Sift �	�
�	�� Exercises �		

�� Recursive procedures ��	

���� Partial correctness �	

���	 Variants for recursion �	�
���� A complete example �	�

c� Carroll Morgan ����� ����� ����

viii Contents

���
 Epilogue� recursion blocks �	
���� Exercises ���

�	 Case study� The Gray code ���

�
�� The Gray code ��	
�
�	 Input and output ���
�
�� Isolate the base cases ��

�
�
 Exercises ���

�
 Recursive types ���

���� Disjoint union ���
���	 Testing for tags ��
���� Pattern�matching in alternations ��
���
 Type declarations �
�
���� Recursive types �
	
���� Structural order �

���� Pattern matching in iterations �
�
��� Example� Summing a tree �
�
���� Exercises ���

�� Modules and encapsulation �
	

���� Module declarations ��

���	 Exported and local procedures ���
���� Re�nement of modules ���
���
 Imported procedures and variables ���
���� De�nition and implementation modules ���
���� Circular export�import ���
���� Initialisation in code ���
��� Exercises ���

�� State transformation and data re�nement ���

���� What we cannot yet show ���
���	 State transformation ��

���� Coercions ���
���
 Adding variables� augmentation ���
���� Removing auxiliary variables� diminution ��
���� An example of data re�nement ���
���� Abstraction functions ���
��� Exercises ���

� Case study� Majority voting �	

��� Re�nement of code �

��	 Winning an election ��
��� A straightforward attempt yields quadratic code ��

c� Carroll Morgan ����� ����� ����

Contents ix

��
 A second attempt is faster �
��� Transformation of code ���
��� Simpli�ed code ���
��� Exercises ���

�� Origins and conclusions ���

�� Case study� A paragraph problem ���

	��� Even paragraphs 	��
	��	 The minimum waste 	�	
	��� Producing the even paragraph 	��
	��
 Exercises 	��

�� Case study� The largest rectangle under a histogram ���

	��� Laying the groundwork 	��
	��	 Divide and conquer 	��
	��� Strengthening invariants to restore feasibility 	�	
	��
 Introducing recursion 	�

	��� Wrapping up 	��
	��� Exercises 	��

�� Case study� A mail system ���

		�� A �rst speci�cation 	�
		�	 Reuse of identi�ers 		�
		�� A second speci�cation� reuse 		�
		�
 A third speci�cation� delay 		�
		�� A �rst development� asynchronous delivery 	�

		�� A second development� acknowledgements 	��
		�� The �nal development� packets 	
	
		� Exercises 	

�� Semantics �	�

	��� Introduction 	
�
	��	 Predicate transformers 	��
	��� Semantic de�nitions 	��

A Some laws for predicate calculation �

A�� Some propositional laws 	�
A�	 Some predicate laws 	�	

B Answers to some exercises ���

C Summary of laws ��

c� Carroll Morgan ����� ����� ����

x Contents

References ��

Index ��

c� Carroll Morgan ����� ����� ����

Preface

In mathematics� one speaks of x � � �� an equation� as having solutions x � � and
x � ��� But x � � and x � �� are equations too� since they both have the form
of two expressions separated by ���� If they are all three equations� then what
gives the latter two the additional quality of being solutions�

There are two characteristics of solutions� The �rst is that they solve something�
and in the example above we have the diagram

x � � �

� � x � �
� x � �� �

showing that we say that �x � �� solves �x � � �� because of the implication �if
x � � then x � � ��� �Note that the reverse implication does not hold�� The same
applies for �x � ����

The second characteristic of solutions is that the value they determine can be
recovered by inspection� without further calculation� It hardly needs saying that
��� is a value for x that makes x � � true� it can be seen almost without thought�
One can also regard computer programming� or program development as it is

known these days� in terms of �solving� and �solutions�� Instead of equations� how�
ever� we will have programs� some programs will be regarded as solving others �we
will say �re�ning��� and some programs will be so simple we will regard them as
solutions �we will say �code���

Using a special notation for statements like �set x so that x � � ��� we can
write speci�cations in a way that looks like programming� And by equipping them
with a carefully de�ned meaning� we can say that they indeed are programs� The
above speci�cation� for example� we would write �x � �x � � ��� � and the is re�ned
by relation �v� between programs would then allow us an analogue of the above �is
solved by� diagram�

x �
h
x � � �

i � v x � � �
v x � ��� �

xi

xii Preface

All three components of the above are programs� The �rst characteristic of so�
lutions is repeated in the implication �if we require an x such that x � � �� then
x � � � will deliver one�� The second is repeated in that the value delivered by the
programs on the right � they are both code � can be discovered by running them
on a computer� And that requires no thought at all�

This book teaches elementary programming in the style of the above analogy�
that speci�cations and code are all programs� that there is a re�nement order
between programs� and that there is a specially restricted sub�language called �code�
that allows programs written in it to be executed with �no thought at all�� The
thinking is necessary elsewhere� to �nd the code that re�nes a given speci�cation�

The approach rests on the work of Dijkstra� Hoare� and Floyd �Dij��� Hoa���
Flo���� and the programming language is Dijkstra�s guarded commands� extended
with speci�cation constructs like �x � �x � � ��� above� The language itself is pre�
sented in the early chapters� and each of its constructs is characterised by the
re�nement laws that it satis�es� The e�ect on a computer is described informally�
as an aid to the intuition�

Later chapters are split between case studies and more advanced programming
techniques� Each case study treats a programming example from beginning to end�
using the methods available at that point� and is well known rather than especially
intricate� The more advanced programming techniques are procedures� recursion�
recursive data structures� modules and �nally state transformation �including data
re�nement��

The other chapters deal with the necessary infrastructure� most notably the
predicate calculus and basic types� The former has its own laws� and a large
collection of those appears as Appendix A� That avoids relying on any particular
method of logical proof from �rst principles �properly the subject of a di�erent
book�� Indeed� the introductory Chapter � uses the predicate calculus before its
proper exposition in Chapter 	� the re�nement calculus� not the predicate calculus�
is our main subject� Nevertheless Chapter 	 is independent� and may be read �rst
if desired� The basic types are the ordinary sets of numbers from arithmetic�
augmented with constructions for powersets� bags� and sequences�

A concluding chapter summarises the main features of our programming style�
and discusses its e�ect on the practices of documentation� modi�cation� testing�
and debugging�

Beyond the conclusion are several chapters more advanced than the main text�
The �rst two treat fairly complex case studies� the �rst is iterative �an example
of dynamic programming�� the second is seriously recursive� The third advanced
chapter is a case study in speci�cation itself� thus concentrating on modules� design
�of a system�� design changes� and both ordinary and data re�nement as a tool in
careful design�

The �nal chapter gives the semantics for all the preceding material�
Appendices include a collection of propositional and predicate calculus laws�

answers to some exercises� and a summary of the re�nement laws introduced in the

c� Carroll Morgan ����� ����� ����

Preface xiii

text� The last is sometimes convenient to have at hand when deriving programs� or
studying others� derivations� and for that reason it may be copied and distributed
for educational use� Those adopting the book for teaching may obtain from the
publisher a separate booklet containing both the summary of re�nement laws and
answers to all the exercises�

The book is intended to be useful both to those learning to program and to those
who � programmers already � would like to make the link between their existing
skill and the speci�cations from which their programs �should� spring� Experience
based on nearly �� years� exposure to second�year computing undergraduates sug�
gests� however� that the best approach is at �rst to exercise a fairly light touch on
the re�nement laws� For beginning programmers they should assist� not prescribe�
at that stage� the list of re�nement laws is for reference� not for certi�cation� And
learning to use invariants for iterations is work enough on its own�

Light touch or no� the underlying theme of speci�cation� re�nement and code
is one that students respond to� and it informs their approach to other courses
and to computing generally� More experienced programmers may recognise some
of those features in speci�cation and development methods such as Z and VDM

�Jon�� Hay��� Kin���� for parts of which the re�nement calculus forms an adjunct
or even an alternative�

c� Carroll Morgan ����� ����� ����

Di�erences from the �rst edition

This second edition represents a rearrangement� modi�cation and augmenting of
the �rst�

The early chapters� on the programming language� have been rearranged so
that the programming language features are introduced consecutively� without the
intervention of chapters on more technical matters� That technical material has
now been delayed� leaving in the original position only just enough to get on with
the programming language itself�

The approach to procedures and parameters� including recursive procedures� has
been modi�ed considerably� to make it simpler� At the cost of a little generality� the
original separate treatment of parameters has been replaced by a more conventional
treatment of �recursive� procedures and parameters together�

There is a substantial amount of new material� including� a section on functions
and relations �in the �Z style��� a complete chapter on recursive types �for example�
trees�� and simple control structures for their use� a section on functional re�ne�
ment� a special and very common case of state transformation whose rules are much
simpler than the fully general ones� and two more �advanced� case studies� adding
recursion and data re�nement to the techniques illustrated more substantially�

The �rst extra case study� �the largest rectangle under a histogram�� is well
known not to be especially easy whatever technique is used� we develop a proper�
�not simply tail�� recursive solution�

The second extra case study� �a mail system�� illustrates at some length the
sometimes treacherous interaction of speci�cation� design� re�speci�cation and re�
design that leads towards implementation of a system rather than just a program�
Data re�nement �gures prominently�

xiv

Acknowledgements

My largest debt remains to my family� Sue� Tristan� Elliot and Ethan�
Many friends and colleagues have contributed to improvements over the �rst

edition� and I am grateful to them all�
The camera�ready copy was made with LATEX� using mainly BBEdit and OzTEX

on an Apple Macintosh�

Carroll Morgan
Easter ���

Men kan niet weten hoe een koe een haas vangt�

xv

Chapter �

Programs and re�nement

��� The traditional view

Traditionally� programs are collections of detailed instructions to a computer� They
are written in a programming language� whose form �syntax� and meaning �seman�
tics� are precisely de�ned� Programs are easy to execute �computers do that�� but
hard to understand�

The study of methods for making programs is programming methodology� We are
concerned with methods that take a speci�cation of what the computer is to do� and
aim to produce a program which will cause the computer to do it� Speci�cations
might be written in English� or in some more mathematical style� They are hard
to execute �computers cannot do that in general�� but easy to understand � or
they should be�

There would be little need for this book if all programs were understandable� or
all speci�cations executable� But alas neither is true � and matters are likely to
stay that way�

Speci�cations must be understood� because each is a contract between a pro�
grammer and his client� The client relies on the speci�cation for his use of the
program� the programmer relies on the speci�cation for his construction of the
program� A complex speci�cation will spawn subspeci�cations� each de�ning a
component whose construction the programmer may then delegate to his subordi�
nates� That turns the programmer into a client� and his subordinates become pro�
grammers� the subspeci�cations are contracts between him and them� Ultimately�
programs are contracts between the lowest�level programmers and the computer�

��� A novel view

Our departure from tradition is a small one� we simply banish the distinction
between speci�cations� subspeci�cations �super�programs��� and programs� To us�

�

	 Programs and re�nement

computer

client

programmer

client

programmer

client

programmer

client

�

�

program� � �

�

�

program� � �

�
�
��

�
�
��

program� � � �
�
�I

�
�
�R

program� � �

�

�

program as contract

Figure ��� A programming hierarchy

they are all programs� what we give up is that all programs are directly executable�

What we gain instead is a more uniform approach in which programs play a
role at every level� Figure ��� illustrates the resulting hierarchy� At the top of
the hierarchy we �nd abstract programs� not necessarily executable� Section ��
��
describes some of the constructions they can use�

At the bottom of the hierarchy we �nd executable programs� which we call
code� The constructions used there are typical of imperative languages� assignment
commands� sequential composition� alternation� iteration� and recursion� Section

c� Carroll Morgan ����� ����� ����

Programs as contracts� re�nement �

cost ��� �paperback� v cost ��� �paperback�� �	� �hardback�
		�V outlet v 		�����V outlet

safe working load ����kg v safe working load 	���kg
splash�proof v water�resistant to ��m

needs at least
Mb v needs at least 	Mb

Figure ��� Informal examples of re�nement

����	 describes some code�

In the middle� we �nd programs in which both abstract and executable constructs
appear� They contain too much detail for convenient comprehension� but still too
much abstraction to be executed� We meet those later� in our case study chapters�

��� Programs as contracts� re�nement

A program has two roles� it describes what one person wants� and what another
person �or computer� must do� With respect to any particular program� we distin�
guish the client and the programmer� Remember that a single person can be both�
a systems analyst is a programmer with respect to his �rm�s clients� but a client
with respect to his own programming team�

When a contract is made by negotiation between a client and a programmer� each
party has primarily his own interests at heart� The client wants the program to do
more� to be more accurate� to apply in more situations� to operate more quickly�
The programmer wants more freedom in making the program� more leeway in
the selection and presentation of results� more information about the situations in
which the program is to run� more access to cheap and standard implementation
techniques� Their aims are complementary� and the result is always a compromise�

We take the client�s point of view in describing the negotiation� if program prog	
is better than program prog�� for the client� we write prog� v prog	� That relation
v� between programs� is called re�nement � we say that prog	 re�nes prog�� In
Figure ��	 are some examples of re�nement from more familiar settings� Figure
��� illustrates the role of v in contract negotiation�

c� Carroll Morgan ����� ����� ����

 Programs and re�nement

client

program
as

contract

programmer

v �

Figure ��� Re�nement in contract negotiation

initial
state

��
action
of

program
�� �nal

state

Figure ��	 The imperative view of programming

��� Abstract programs

��	�� Initial and �nal states

Any program takes a computer from an initial state to a �nal state� That view�
illustrated in Figure ��
� is called imperative� and it is appropriate for most com�
puter languages in general use today� We suppose that the data on which the
computer is to operate �the input� are placed in the initial state� the results of the
computation �the output� are found subsequently� in the �nal state�

The state of a computer is a collection of named values� The names are called
variables� and the values are taken from ordinary mathematical discourse� natural
numbers� integers� real numbers� characters� etc� A state maps variables to their
values�

For the rest of this chapter� let our variables be just x � y � and z � and let their
values be real numbers� from the set R� We shall see later that the set R is the
type of x � y � and z � Here are two states that di�er in the value of y only�

state� �
x 	
y ��
z �

state� �
x 	

y
p
	

z �
�

An imperative program is used to take state� initially to state� �nally�

c� Carroll Morgan ����� ����� ����

Abstract programs �

��	�� Descriptions of states

Pictures of state mappings� however� are not very useful for our development of
programs� they say both too much and too little� They say too much because
the value of every variable must be given exactly� even the variables in which we
might not be interested� They say too little because each gives only one state� and
to understand a program completely we need to know its behaviour on all initial
states� That is far too many pictures� � �

We describe states rather than draw them� A formula describes a state if it is
made true by the mappings in the state� And we say that a state satis�es a formula
if that formula describes it� Thus each of the formulae x � 	� x � z � y � and z ��

describes state�� This formula describes state� exactly�

x � 	 � y � �� � z � � �

The formula y� � x � for example� describes state��
As an extreme case� the formula true describes all states �because it is true in

all states�� Similarly� the formula false describes no states �because it is true in no
states��

We use the predicate calculus as the language of our formulae� It includes the
usual equations �like x � y� and relations �z � ���� the logical connectives � �and��
� �or�� � �not�� and	 �implies�� and it has the familiar quanti�ers
 �for all� and
� �there exists��

��	�� Speci�cations

The speci�cation is the principal feature of abstract programs� Its precondition
describes the initial states� its postcondition describes the �nal states� and its
frame lists the variables whose values may change� If a computer could execute it�
this would be the e�ect�

If the initial state satis�es the precondition then change only the vari�
ables listed in the frame so that the resulting �nal state satis�es the
postcondition�

It is deliberate that a speci�cation can leave some possibilities unconstrained� If the
initial state does not satisfy the precondition� we do not know what will happen�
one possibility is that the computer does not deliver any �nal state at all � that
is� it fails to terminate� If there are several possible �nal states satisfying the
postcondition� we do not know which will be chosen �nondeterminism��

Here is a speci�cation which assigns to y the square root of x � provided x lies
between � and ��

precondition � � x � �
postcondition y� � x

frame y

y �
h
� � x � � � y� � x

i
� �����

c� Carroll Morgan ����� ����� ����

� Programs and re�nement

x � �true � y� � x � Make x the square of y �

y � �x � � y� � x � Make y a square root of x � pro�
vided x is not negative�

e� �s �� fg � e � s� Make e an element of the set s�
provided s is non�empty�

x � �b�
ac � ax � � bx � c � �� Make x a solution to the quadratic
equation� provided the discrimi�
nant is non�negative�

Figure ��
 Example speci�cations

On the right is the same speci�cation written more compactly� in general� for
precondition pre� postcondition post � and frame w � the compact form is

w � �pre � post � �

Speci�cation ����� leaves some possibilities unconstrained� we do not know what
would happen if it were applied to an initial state which mapped x to ��� because
the precondition would not be true� Even when the precondition is true� there is
still some uncertainty� applied to state�� it will produce either state� �above� or
state� below � but beforehand we do not know which it will be�

state� �
x 	

y �p	
z �

Figure ��� lists some other examples of speci�cations� Notice how in those exam�
ples �especially the quadratic� the use of formulae allows a speci�cation to capture
the intention without necessarily giving the method� It can say �what� without
having to say �how��

��	�	 Re�nement of speci�cations

A speci�cation is improved �for the client� by strengthening its postcondition� so
that the new postcondition implies the old� if a book is available in paperback and
hardback� then it is available in paperback at least� Requiring the square root to
be non�negative is another example� if you have a non�negative square root� then
you at least have a square root� So ���	� re�nes ������

y �
h
� � x � � � y� � x � y �

i
� ���	�

c� Carroll Morgan ����� ����� ����

Executable programs �

Speci�cation ���	� is better for the customer because he knows more about the
�nal state� he can depend on y �� if he wants to� and he could not before�
In general� we have the following law of re�nement� of which ����� v ���	� is an

example�

Law ��� strengthen postcondition If post � V post � then

w � �pre � post � v w � �pre � post �� �

�

�For now� read �V� as implication� it is de�ned in Chapter 	�� The requirement
post � V post must hold whenever the law is used� and it is called the proviso� The
symbol � indicates the end of a law �or similar�� and the resumption of normal
text�

A di�erent kind of improvement is gained by weakening a precondition� so that
the old precondition implies the new� if at least
Mb is required� then certainly
at least 	Mb is required� Requiring our square root program to operate for any
non�negative x is another example� if x is non�negative and no greater than �� then
x is still non�negative� So ����� re�nes ���	��

y �
h
� � x � y� � x � y �

i
� �����

Speci�cation ����� is better than ���	� because it works even when x � ��
The general law for preconditions is the following�

Law ��� weaken precondition If pre V pre �� then

w � �pre � post � v w � �pre � � post � �

�

Note that it too has a proviso�

��� Executable programs

��
�� Code

Speci�cations are written in a language �predicate calculus� whose meaning is
known precisely� They are unambiguous� and very convenient because they are so
expressive� Why not build a computer that executes them�

The simple answer to that question is �it�s impossible�� It can be proved that no
computer� as the term is presently understood� can be built which could execute
all speci�cations�

The problem is that our formulae are written in too powerful a language� we can
say too much with them� We could use a weaker language � but the weaker the

c� Carroll Morgan ����� ����� ����

 Programs and re�nement

language� the more involved become the constructions that we need to say what
we must� And the more involved they are� the more likely it is that the client
and programmer will misunderstand each other at the very beginning� before the
design� modularisation� coding� integration� debugging� � � The enterprise would be
doomed before it had started�

Our approach is to have it both ways� The programming language includes
speci�cations� for their expressive power� but has also constructions which are
designed to be executable� We call them code�

��
�� The assignment command

The notation w � �E is an assignment command� and is our �rst example of code�
It changes the state so that the variable w is mapped to the value E � and all other
variables are left unchanged� Assignment commands form the basis of imperative
programming languages� they are easy to execute provided the expression E is
constructed from constants and operators that the programming language provides
�such as �� �� 	� �� �� � and ��� Below we give a law of re�nement for assignments�

Law ��� assignment If pre V post �wnE �� then

w � x � �pre � post � v w � �E �

�

The formula post �wnE � is obtained by replacing in post all occurrences of w by
E � �Such substitutions are explained more fully in Section A�	���� Note that the
frame w � x can include variables x not assigned to in the code� the frame says that
x may change� not that it must�

Law ��� allows a programmer to implement a speci�cation w � �pre � post � by
code w � �E that is better from the client�s point of view � it is better because
where post may have allowed several �nal values for w � now it allows only one� and
the customer knows exactly which one it will be� In quite a di�erent sense� it is
better for the programmer too� a computer can execute it� Laws like assignment
��� are the programmer�s tools� his expertise is in deciding which to use�

In a programming language with a positive square root operatorp �and assuming

in�nite precision arithmetic�� Law ��� gives us this re�nement immediately�

y �
h
� � x � � � y� � x � y �

i
v y � �

p
x �

That is because we can prove the relevant proviso�

� � x � �

V �
p
x well�de�ned in given range

�
p
x �� � x

� �de�nition of
p

c� Carroll Morgan ����� ����� ����

Mixed programs �

�� increasing clarity

programs code

increasing executability ��

Figure ��� Code is the language of executable programs

�
p
x �� � x � px �

� �y� � x � y ���ynpx � �
�For now� read ��� as equivalence� it is de�ned in Chapter 	��

If
p

is not provided by the programming language� then more complex � but
still executable � coding features must be used� And that is the usual case�
The overall re�nement of speci�cation �eventually� to code is made in steps� each
introducing a little more executability� or a little more e!ciency� A sequence
results� each element re�ned by the next�

spec v mixed� v � � � v mixedn v code �

We see later that the intermediate steps mixedi mix speci�cations and code to�
gether� Indeed� in such sequences it is di!cult to say when specifying stops and
coding begins� and there is nothing to be gained by trying� We call all of them pro�
grams� whether executable or not� and we reserve the term �speci�cation� for frame
and predicate pairs w � �pre � post � only� they can be an entire program �like spec��
or parts of programs �occurring in mixedi�� We use the term �code� for programs
written entirely in our executable language �which we de�ne shortly�� Usually� an
assignment command is code� a speci�cation is not�

All that is summarised in Figure ���� Program development moves� via a series
of re�nement steps� within the outer box �of programs� towards the inner box �of
programs that are code as well��

Developing programs� in that sense� is the main topic of this book�

��	 Mixed programs

Mixed programs occur during development� They contain both abstract and ex�
ecutable constructs� linked by program constructors like sequential composition�
here de�ned informally�

The e�ect of the program prog�� prog	 is the e�ect of prog� followed
by the e�ect of prog	�

For example� the mixed program

c� Carroll Morgan ����� ����� ����

�� Programs and re�nement

x � � ��
y � �true � y� � x �

sets x to � and y either to � or to ���
Constructors like sequential composition are introduced by their own laws� which

are the subject of later chapters�

��
 Infeasible programs

Suppose Speci�cation ����� is re�ned still further �by Law ��	� to

y �
h
true � y� � x � y �

i
� ���
�

Here� the programmer has given up too much� His job in Speci�cation ���
� is
impossible� as we can easily show� since x � y are in R there are some allowed initial
values of x for which no �nal value of y will do� Such a speci�cation is infeasible�

Infeasible speci�cations cannot be re�ned by any code� and so agreeing on a
contract containing an infeasible speci�cation means eventual disappointment for
the client� and possible �nancial ruin for the programmer� For that reason it is
important to be able to check for feasibility�

De�nition ��	 feasibility The speci�cation w � �pre � post � is feasible i�

pre V ��w � T � post� �

where T is the type� of the variables w �
�

The right�hand side is read �there exists a w of type T such that post � The
symbol � is further discussed in Chapter 	� and types are the subject of Chapter
��

Applying De�nition ��
 to Speci�cation ���
�� the programmer tries to prove

true V

�
� y � R � y� � x � y �

�
under the assumption that x is of type R� But he cannot� the right�hand side is
equivalent to x �� which is not implied by true� Hence ���
� is infeasible� For
historical reasons� infeasible programs are sometimes called miracles�

Remember that code is designed to be executable� all code� therefore� is feasible�
�See Exercise ������

�In Chapter � the notion of type will be generalised to include so�called �local invariants�� and
then a more comprehensive de�nition ��	
� of feasibility will be appropriate	 It does not concern
us now� but must be borne in mind if ever referring to the de�nition above once local invariants
have been introduced	

c� Carroll Morgan ����� ����� ����

Some common idioms ��

��� Some common idioms

We can compact our new notations somewhat by taking advantage of common
idioms� Often the precondition of a speci�cation is just true� for example� indicating
termination in all circumstances� In that case we just omit it�

Abbreviation ��
 default precondition

w � �post � b� w � �true � post � �

�

The symbol � b� � indicates a de�nition� and is used in preference to equality when
the left�hand side is newly introduced� �Colon ��� is used instead of membership
��� in the same circumstances��

When the frame is empty and the postcondition is true� we have a command
that either fails to terminate �because its precondition is false�� or terminates but
changes nothing �because the frame is empty�� We call those assumptions� and
they are related to the practice of �annotating� a program with formulae that are
supposed to hold at various points� With that in mind we have

Abbreviation ��� assumption

fpreg b� � �pre � true� �

�

As a special case �to strengthen further the resemblance to annotating programs��
we allow the semicolon that would normally indicate sequential composition to be
omitted if it follows an assumption� Thus the program

f� � x � �g y � �px �����

sets y to the non�negative square root of x provided x lies between � and � inclusive�
If x does not fall within that range� then f� � x � �g aborts� e�ectively aborting
the whole of ������

The similarity between ����� and ���	� is not accidental� and suggests some
further correspondences� One is

Law ��� simple speci�cation Provided E contains no w �

w � �E � w � �w � E � �

If w and E are lists� then the formula w � E means the equating of corresponding
elements of the lists�
�

Law ��� together with a law relating assumptions and preconditions will allow
us to show that ����� and ���	� are equal� The law is

c� Carroll Morgan ����� ����� ����

�	 Programs and re�nement

Law �� absorb assumption An assumption before a speci�cation can be absorbed
directly into its precondition�

fpre �g w � �pre � post � � w � �pre � � pre � post � �

�

Law �� highlights the fact that �aborting now� �at fpre �g� is the same as �aborting
later� �at �pre � � � � �� in imperative programs� �See Exercise �����

With those new laws� the proof of equality runs as follows�

f� � x � �g y � �px
� �simple speci�cation ���

f� � x � �g y � �y �
p
x �

� �absorb assumption ��
y � �� � x � � � y �

p
x �

� �rewrite postcondition
y � �� � x � � � y� � x � y �� �

With the comment �rewrite postcondition we are merely relying on the fact that
for reals x and y

y� � x � y � � y �
p
x �

��� Extreme programs

We �nish with some speci�cation pathology� From the client�s point of view� the
worst speci�cation of all is

w � �false � true� �

It is never guaranteed to terminate �precondition false�� and even when it does�
it has complete freedom in its setting of the variables �postcondition true�� As
a contract� it allows any re�nement at all� in�nite loops� programs setting w to
arbitrary values � even programs that change variables other than w � We call it
abort�

Slightly better is the program that always terminates� but guarantees no partic�
ular result�

w � �true � true� �

It can be re�ned to any terminating program that changes only w � we can imagine
that it just chooses w at random� We call it choose w �

Better still is the program which always terminates� changing nothing� Its frame
is empty�

� �true � true� �

c� Carroll Morgan ����� ����� ����

Exercises ��

We call it skip�
Best of all is the infeasible program that always terminates and establishes the

impossible false�

w � �true � false� �

No computer can execute that program� no contract based on it could ever be met�
We call it magic�
Most of the above are seldom written deliberately in programs �skip is the

exception�� But we need their names if only to reason about them�

��� Exercises

Exercises marked with � are answered in Appendix B�

Ex� ��� � �The programmer�s job is to take speci�cations� via a sequence of
re�nement steps� to code� Hence the more re�ned the client�s requirements� the
fewer re�nement steps remain for the programmer to do� and the easier his job��

The above argument suggests the opposite of Figure ���� Where is the error�

Ex� ��� � Recall Speci�cation ����� from p��� Write a new speci�cation that
�nds a square root y of x if x is non�negative but no more than �� and sets y to �
if x is negative�

Ex� ��� Revise your answer to Exercise ��	 so that when x is negative initially
the speci�cation does not choose any particular �nal value for y � but still termi�
nates�

Ex� ��	 � Which of these re�nements are valid� �Use strengthen postcondition

��� and weaken precondition ��	��

�� x � �x �� v�x � �x � ��

	� x � �x � � true� v�x � �x � � � true�

�� x � �x � � x � �� v�x � �x � � � x ��

� x � �x � � � x �� v�x � �x � � x � ��

�� y � �x � � � x � y �� v�y � �x � y ��

�� y � �x � y �� v�y � �y � ��

�� y � �x � � � x � y �� v�y � �y � ��

Ex� ��
 What re�nement relations hold between Speci�cation ����� and those
in Exercises ��	 and ���� �You cannot yet prove them��

c� Carroll Morgan ����� ����� ����

�
 Programs and re�nement

Ex� ��� Use absorb assumption �� to show that

fpre �g w � �pre � post � � fpreg w � �pre � � post � �

Ex� ��� � Give an informal argument to show that contracting the frame is a
re�nement� that is� argue that

w � x � �pre � post � v w � �pre � post � �

�That re�nement appears later as contract frame ��
��

Ex� �� � Prove that your answer to Exercise ��	 is feasible�

Ex� ��� Prove that your answer to Exercise ��� is feasible�

Ex� ���� � Show that the following is not feasible�

y �
h
x � � y� � x � y � �

i
�

Explain informally why it is not�

Ex� ���� � Describe informally the program

� �false � false� �

Is it magic� �Is it feasible�� Is it skip� �Can it change w�� Is it abort� �Is it
ever guaranteed to terminate��

Ex� ���� � What is the e�ect of adding to a program an assumption that might
not be true during execution� Are there circumstances in which that has no e�ect
at all�

Ex� ���� � Is it a re�nement to strengthen or to weaken assumptions�

Ex� ���	 � Prove this equality�

Law ��� merge assumptions

fpre �g fpreg � fpre � � preg �

�

c� Carroll Morgan ����� ����� ����

Exercises ��

Ex� ���
 Show that assumptions can be removed from a program uncondition�
ally� as expressed in this law�

Law ���� remove assumption Any assumption is re�ned by skip�

fpreg v skip �

�

Does that mean that assumptions are code�

Ex� ���� Show that neither strengthen postcondition ��� nor weaken precondition
��	 can re�ne an infeasible speci�cation to a feasible one�

Ex� ���� � �Infeasible speci�cations cannot be re�ned by any code� �p����� From
that� show that all code is feasible�

Ex� ��� � Show that anything re�nes abort� that is� that

w � �false � true� v w � �pre � post � �

for any formulae pre and post �

Ex� ���� Show that magic re�nes anything� that is� that

w � �pre � post � v w � �true � false� �

for any formulae pre and post �

c� Carroll Morgan ����� ����� ����

Chapter �

The predicate calculus

��� Its relevance

The pre� and postconditions of speci�cations are predicate calculus formulae� And
some re�nement rules have formulae attached as provisos� meaning that the rule is
applicable only if its attached formula is true � which may require a proof� Thus
we use the predicate calculus in two ways� for describing� and for reasoning�

Predicate calculus was developed by logicians well before the appearance of com�
puters� With it� they hoped to formalise human reasoning about mathematics at
least� The truth or falsity of any conjecture was to be decided as follows�

�� Express the conjecture as a formula A� �That requires a precise notion of
the meaning of formulae��

	� Using a precise system of proof� given beforehand� either prove A or its
negation �A�

The system of proof �based on axioms and inference rules� was designed so that
there could never be any doubt about whether a text was a proof or not� Finding
a proof� however� remained as much a problem as before�

In fact� it became harder to �nd proofs � and not only because incorrect ones
were newly excluded" The rigorous rules each expressed very small reasoning steps�
and so proofs required very many of them� But in a theoretical sense that did not
matter� every true formula could be proved in that way�

Predicate calculus is of practical concern to computer scientists� however� To
use it e�ectively� we must avoid long proofs� We do that in three ways� First� we
choose our laws of program re�nement so that they generate few proof obligations�
For example� we do not include feasibility checks at every stage� because infeasible
programs cannot lead to �incorrect� code � they lead to no code at all� They lose
time� but not human life�

Second� we use routinely the more advanced techniques of logical argument
�proof by contradiction� etc�� which have themselves been justi�ed formally by
others� We will not justify them ourselves�

��

Terms ��

Finally� in each program to be developed we look for suitable notation of our
devising� appropriate to the characteristics of the problem� We might assume some
properties of the structures involved� calling them �obvious�� others we might prove�

In summary� We do not use or advocate any particular system of formal logi�
cal reasoning with the predicate calculus �axiomatic� natural deduction� tableaux�
etc��� Our use of the predicate calculus is based on familiarity �eventually"� with a
number of predicate laws� usually equalities between formulae� which are used to
reduce a complex formula to a simple one� That is how other calculi in mathematics
are employed� we only do the same�

��� Terms

Terms �also called expressions� are built from variables� constants� and functions�
Thus x on its own is a term �it is a variable�� and � is a term �it is a constant��
and x � � is a term �it is formed by applying the function � to the two terms x
and ��� A state� which maps variables to values �recall Chapter ��� determines the
values of terms� one speaks of a term having some value in a state� In a state that
maps x to three� the term x has the value three �trivially�� and � has the value
zero �in every state� in fact� that is why it is called a constant�� and x � � has the
value four�

Our variables will have short lower�case italic names� drawn from the Roman
alphabet�

Our constants will have their usual mathematical names� like � and �� �The real
number constants e and i will not cause trouble��
Our functions will have their usual mathematical names too� like square rootp
� plus �� and factorial " � Some of those take one argument �

p
and "�� some

take two ���� and the position of the arguments can vary� sometimes the function
is written before its argument �

p
�� sometimes between its arguments ���� and

sometimes after its argument �"�� The number of arguments a function takes is
called its arity�

We often need to introduce new functions� of our own� just for a particular
problem� For those� the syntax is more regular� they will have short lower�case
sanserif names� in the Roman alphabet� Their arguments follow them� separated by
spaces� For uniformity� we use that convention even for the mathematical functions
log� sin� etc�

Terms are made from all the above� A term is either

�� a variable�
	� a constant� or
�� a function applied to the correct number of other terms� depending on its

arity�

Figure 	�� lists some terms�

c� Carroll Morgan ����� ����� ����

� The predicate calculus

�
x

x � �
log x

sin���	�
�a � b�� �"

Figure ��� Some terms

false

� � �a � 	�
�x � �� � �

even �
� � R

Figure ��� Some simple formulae

��� Simple formulae

Simple formulae� are built from terms and predicate symbols� The best�known
predicate symbols represent the binary relations from arithmetic� �� �� � etc�
Like functions� predicates have an arity� for binary relations� the arity is two�
Again like functions� predicates are applied to terms�

Unlike functions� a predicate applied to �the correct number of� terms is not
another term� it is a simple formula� Simple formulae do not have general values
like terms� instead� they take only the values true and false�

For conventional predicates �like binary relations� we use the usual notation�
Predicates that we introduce ourselves will be short Roman sanserif names� and
their arguments will follow them� separated by spaces �as for our functions��

Finally� there are the two constant predicates true and false� In every state� the
�rst is true and the second is false�

Figure 	�	 lists some simple formulae�

�They are called atomic formulae in the logic literature	

c� Carroll Morgan ����� ����� ����

Propositional formulae ��

A B A� B
true true true
true false false
false true false
false false false

A B A � B
true true true
true false true
false true true
false false false

A B A 	 B
true true true
true false false
false true true
false false true

A B A � B
true true true
true false false
false true false
false false true

A �A
true false
false true

Figure ��� Truth tables for propositional connectives

��� Propositional formulae

Propositional formulae are built from simple formulae� using propositional connec�
tives� The connectives are � �and�� � �or�� � �not�� 	 �implies�� and � �if and
only if� or i��� �As nouns� they are conjunction� disjunction� negation� implication
and equivalence�� Except for �� all have two arguments� written on either side� the
single argument of � is written after it�

Like simple formulae� propositional formulae are either true or false� once given
a state� If� for example� A and B are propositional formulae� then the propositional
formula A � B is true exactly when both A and B are true� That is summarised
in this table�

A B A � B
true true true
true false false
false true false
false false false

A complete set of �truth tables� for the �ve connectives is given in Figure 	��� In
a formula A	 B� the subformula A is the antecedent� and B is the consequent�

Following convention� we allow the abbreviation a � b � c �and similar� for the
propositional formula a � b � b � c�

Figure 	�
 gives some propositional formulae�

c� Carroll Morgan ����� ����� ����

	� The predicate calculus

true

x � � ��
�x � y� � �y � x � ��
�x � ��	 �x � y �� y�
�� � p � q�	 �� � q�

�n" � n�� �n � �� � �n � 	�

Figure ��	 Some propositional formulae

��� Quanti�ers

��
�� Universal quanti�cation

A universally quanti�ed formula is written

�
 x �A� �

where x is a variable� called the bound variable� and A is some other formula� called
the body� It is true exactly when A is true for all values of x � where it is understood
that we know the set from which those values of x are drawn �for example� the real
numbers�� We also allow a list of bound variables� as in �
 x � y �A�� There� the
quanti�cation is true exactly when the body is true for all values of those variables
chosen independently� The order in the list does not a�ect the meaning�

Consider this parody of the distributive law from arithmetic�

a � �b � c� � �a � b�� �a � c� �

Although one would say informally �that is false�� it is in fact true in some states�
�Map all three variables to one�third��

But the quanti�ed formula

�
 a� b� c � a � �b � c� � �a � b�� �a � c�� �	���

is identically false� because it is not the case that the body is true for all values of
a� b� and c�

Now consider the similar formula

�
 b� c � a � �b � c� � �a � b�� �a � c�� � �	�	�

in which we have quanti�ed only b and c� It depends on a� and it is true when a

is zero� and false otherwise�

c� Carroll Morgan ����� ����� ����

Quanti�ers 	�

��
�� Free and bound variables

Formula �	�	� depends on a� but not on b or c� Variable a is a free variable�
variables b and c are not free� because they are bound by the quanti�er
� In fact�
variables b and c are just place�holders in that formula� indicating the positions
at which all values are to be considered� Changing their names does not a�ect the
formula �provided the new names do not con#ict with existing ones�� Thus

�
 d � e � a � �d � e� � �a � d�� �a � e��

has the same meaning as �	�	�� Formula �	��� has no free variables� since a� b� c
are bound� it does not depend on the value of any variable�

In general� bound variables are those bound by a quanti�er� as is x in �
 x �A�� all
free occurrences of x in A itself become bound occurrences in the larger �
 x �A��
Section A�	�� further discusses free and bound variables�

��
�� Existential quanti�cation

Existential quanti�cation is used to express �there exists�� An existentially quanti�

�ed formula is written

�� x �A� �
where x and A are as before� It is true exactly when there exists a value for x that
makes A true� So the existentially quanti�ed formula

�� a� b� c � a � �b � c� � �a � b�� �a � c��

is true� Free occurrences of x in A are bound in �� x �A� just as they are in
�
 x �A��

��
�	 Typed quanti�cations

A typed quanti�cation indicates explicitly the set from which values for the bound
variable are drawn� For example� let Z denote the set of all integers� and N the set
of all natural numbers �non�negative integers�� Then �� x � Z � x � �� is true� but
�� x � N � x � �� is false �because � is the least natural number�� In general� typed
quanti�cations are written

�
 x � T �A� and �� x � T �A� �
where T denotes some set of values� The variable x then ranges over that set�

If we know beforehand the set from which values are drawn� we can use the
simpler untyped quanti�ers� the typing is then understood from context� But
when several such sets are involved simultaneously� we use typed quanti�ers�

c� Carroll Morgan ����� ����� ����

		 The predicate calculus

true

x �� �
y � �	 y �� �

�
 x � R � �� y � C � y� � x ��
a � b � c � �� r � � � r � b � a � b � c � r�

Figure ��
 Some general formulae

��	 �General� formulae

Now we draw together all the above� A formula is any one of the following�

�� A simple formula�
	� �A� where A is a formula�
�� A � B� A � B� A	 B� or A � B� where A and B are formulae�

� �
 x � T �A� or �� x � T �A�� where x is a list of variables� T denotes a set�

and A is a formula�

That de�nition allows nested quanti�cations� such as

�
 a � R � �� b� c � R � a � �b � c� � �a � b�� �a � c���

�which is true�� and the application of propositional operators to quanti�cations�
such as

x �� �	 �� y � Z � � � y � y � x � �

true if x is a natural number�
Figure 	�� gives some general formulae�

��
 Operator precedence

Strictly speaking� a term like 	 � � �
 is ambiguous� is its value fourteen or
twenty� Such questions can be resolved by parentheses � 	����
� vs �	����

� but they can be resolved also by general precedence rules� The usual rule from
arithmetic is that � is done before �� we say that � has higher precedence�

We adopt all the usual precedence rules from arithmetic� adding to them that
functions have highest precedence of all� thus

p

 � � is seven� not three� When

several functions are used� the rightmost is applied �rst� thus log sin���	� is zero��

We do not require parentheses around function arguments� but note that sin ��	
is zero� whereas sin���	� is one�

�Without higher�order functions� the reverse does not make sense anyway	

c� Carroll Morgan ����� ����� ����

Predicate calculation 	�

In propositional formulae� the precedence is �highest� �� �� �� 	� � �lowest��

There is no need for precedence rules of quanti�ers� because they are always
written with enclosing parentheses �� � �� that give their scope�

��� Predicate calculation

���� Relations between formulae

The two �simple� formulae x � y 	 x �� z and x � z 	 x �� y are equivalent
in this sense� in every state they are both true or both false together� In general�
that two formulae A and B are equivalent is written A � B� and means

In every state� A is true if and only if B is true �

That is indeed the same as saying �in every state� A � B is true�� But there is an
important di�erence between � and �� The �rst is a relation between formulae�
A � B is a statement about A and B� it is not a formula itself� The second is
a propositional connective� A � B says nothing about formulae� rather it is a
formula itself�

Here are two other relations between formulae� The statement AV B means

In every state� if A is true then B is true �

That is the same as �in every state� A 	 B is true�� And the statement A W B
means

In every state� A is true if B is true �

It is the same as �in every state� B 	 A is true�� The relation V is known as
entailment�

Those three relations are used to set out chains of reasoning like this one� for
any formulae A� B� and C�

�A	 C� � �B 	 C�
� �writing implication as disjunction

��A � C� � ��B � C�
� �associativity� commutativity of �

��A � �B� � �C � C�
� �de Morgan� idempotence of �

��A � B� � C
� �writing disjunction as implication

A � B 	 C �

c� Carroll Morgan ����� ����� ����

	
 The predicate calculus

Each formula is related to the one before it by the relation �� V� orW� And each
step between formulae carries a decoration� a �hint�� suggesting why it is valid� The
quotes � separate the hints from the proof itself� They are not part of the proof�
they are about the proof�

The relation � is transitive� which means that whenever both A � B and B � C
�which we can write A � B � C�� then we have A � C too� That is why the chain
of equivalences above establishes overall that the �rst formula is equivalent to the
last�

�A	 C� � �B 	 C� � A � B 	 C �

The other relations V and W are transitive as well� but not if mixed together�
Either can be mixed with �� however� thus from A � B V C we still have AV C�
Finally� writing just V A on its own means that A is true in every state�

���� Laws for calculation

To reason as above requires some knowledge of the laws to which one can appeal�
like �associativity� commutativity of � � Appendix A contains a collection of them�
Each can be used to justify steps in a calculation� and often there are several that
will do� One soon acquires favourites�

We do not present all those laws here� indeed� it will be some time before we need
many of them� Where helpful� however� we refer to them directly� The reasoning
above proved Predicate law A���� here it is again� by numbers�

�A	 C� � �B 	 C�
� �Predicate law A�		

��A � C� � ��B � C�
� �Predicate laws A��� A��

��A � �B� � �C � C�
� �Predicate laws A��� A��

��A � B� � C
� �Predicate law A�		

A � B 	 C �

Note the use of equivalence to replace a part of a formula� leading to an equiv�
alence for the whole formula� That is the usual rule in mathematics� we can
substitute equals for equals� But some of our laws are entailments V� not equiva�
lences� their substitution within formulae leads either to overall entailment or to its
converse W� Entailment distributes through quanti�cation� conjunction� disjunc�
tion� and the consequent of implication� it is reversed in negations and antecedents
of implications� It does not distribute at all through equivalence ��

Here is an example of distribution� Suppose we have A V A�� B W B�� and
C � C �� Then we can proceed as follows�

c� Carroll Morgan ����� ����� ����

Exercises 	�

�A	 B�	 C
V �since AV A�

�A� 	 B�	 C
V �since B W B�

�A� 	 B��	 C
� �since C � C �

�A� 	 B��	 C � �

��� Exercises

Ex� ��� Which of these are terms�

�� true

	� ��
�� log� x

� log log x

�� �log x ��

�� log x �

�� 	x
� x � x � �

Ex� ��� Write terms for the following�

�� The square root of the factorial of n�
	� The factorial of the square root of n�

Ex� ��� � Which of these are propositional formulae�

�� true

	� true
�� true

� x � y 	 z

�� x � y V z

�� x � y V y � z

�� x � y 	 y � z

Ex� ��	 Assuming that all variables denote natural numbers� which of these
propositional formulae are true in all states�

�� x �
	� x � y 	 x � � � y

�� x � y � y � x

� x � y � y � x 	 x � y

�� x � y � y � x 	 x � y

c� Carroll Morgan ����� ����� ����

	� The predicate calculus

�� x � y � y � x 	 x �� y

�� x � y � y � x 	 x �� y

Ex� ��
 � Assuming that the one�place predicates even� odd mean �is an even
number�� �is an odd number� respectively� write general formulae for the following�

�� Every integer is either even or odd�
	� Every odd natural number is one more than some even natural number�
�� There is an even integer that is not one more than any odd natural number�

� Zero is the least natural number�
�� There is no least integer�
�� Given any positive real number� there is another real number strictly between

it and zero�

Ex� ��� � Recall that �� x �A� means �there is at least one x such that A��
Write another formula that means �there is at most one x such that A��
Ex� ��� �Recall Exercise 	���� Write a formula that means �there is exactly one
x such that A��
Ex� �� � Use the truth tables of Figure 	�� to show that these formulae are
true in all states�

�� A	 �B 	 A�
	� �A	 �B 	 C��	 ��A	 B�	 �A	 C��
�� ��A 	 �B�	 �B 	 A�

Ex� ��� � Show that AV B 	 A� Hint� Recall Exercise 	�� and the meaning
of V�

Ex� ���� � Prove this� using laws from Appendix A�

�� x � �A	 B� � ��A 	 C�� � �� x �A � B� � �� x � �A � C� �
Ex� ���� Suppose N contains no free x � Prove this�

�� x � �N 	 A� � ��N 	 B�� � �N 	 �� x �A�� � ��N 	 �� x � B�� �
Hint� Recall Exercise 	����

Ex� ���� � Prove this� for any formula A�
�� a � �
 b �A�� V �
 b � �� a �A�� �

Is the converse true�

Ex� ���� Show that �� x � y � x �� y� � �
 x � �� y � x �� y�� � Hint� To show A �
B� show AV B V A�

c� Carroll Morgan ����� ����� ����

Chapter �

Assignment and sequential
composition

��� Introduction

In Chapter � we saw that code is a sub�language in which we write programs
that are executable by computer directly� All conventional computer programming
languages are examples of code� because all of them were designed to be executed
by computers� At least part of our language� however� was designed for program
development� and so we must be explicit about which part of it is code� and which
is not�

Our code will be written in a language that includes assignment� sequential
composition� alternation� iteration and recursion� All of those have more or less
their conventional meaning� but we do not explain them only in the conventional
way�

Each executable construct is introduced in two ways� informally� as an operation
on some computer� and formally� as a re�nement of some speci�cation� The �rst
may aid the intuition� but is not essential for program development� Nor is it
su!cient� The second way is essential for program development� however� because
only that de�nes precisely how to reach code from speci�cations�

In this chapter we meet our �rst examples of code� assignment� and sequential
composition� Others will follow in succeeding chapters�

��� Assignment

Informally� an assignment changes a single variable� leaving all others unchanged�
An expression E is evaluated in the initial state� then in the �nal state� a variable
w is newly mapped to that value� irrespective of its mapping in the initial state�
�The initial value of the variable is lost�� Such assignments are written

w � �E �

	�

	 Assignment and sequential composition

x � � � Assign � to x �

x � � y Assign the �initial� value of y to x �

x � � x � � Assign the initial value of x � � to
x � that is� increment x �

x � � y � �x � y� A more complex expression�

Each of the above assignments takes any initial state that satis�es
x � � � y � � to a �nal state satisfying x � � � y � �� and changes no
variable other than x �

Figure ��� Simple assignments

and they are read �w gets E �� The expression E is built from any constants�
variables� and operators available to us� later we will be more explicit about which
they are� Figure ��� gives some examples of assignments�

A multiple assignment changes several variables at once� It is written

w�� � � � �wn � �E�� � � � �En �

That command assigns E� to w�� � � �� and En to wn simultaneously� �Assigning
E� to w� �rst� and then later En to wn � does not in general have the same e�ect��
Figure ��	 gives examples of multiple assignments� When discussing assignments in
general we use the simple form w � �E � and allow w and E to be lists if appropriate�

We have already met the re�nement law for assignment as assignment ��� in
Section ����	 � think of that as a preview of this chapter� The law is based on the
observation that in an assignment w � �E � only w is changed� then post describes
the �nal state provided that post �wnE � described the initial state�

Law assignment ��� shows that each of the assignments of Figure ��� re�nes the
speci�cation

x � �x � � � y � � � x � � � y � �� �

and similarly each of the multiple assignments of Figure ��	 re�nes the speci�cation

x � y � �x � � � y � � � x � � � y � �� �

In Figure ��� there are more examples of re�nement to assignment�

c� Carroll Morgan ����� ����� ����

Open assignment 	�

x � y � � �� � Assign � to x and � to y �

x � y � � y � x Swap x and y �

x � y � � x � y � x � y Assign the initial value of x � y to x

and the initial value of x � y to y �

Each of the above assignments takes any initial state that satis�es
x � � � y � � to a �nal state satisfying x � � � y � �� and changes no
variables other than x and y �

Figure ��� Multiple assignments

��� Open assignment

A slightly mysterious�looking form of �multiple� assignment� but one that we shall
�nd useful later� assigns any value whatever� the command w � x � �E � � assigns E
to w but leaves open the value that will be assigned to x � For that reason we call it
open assignment� �We assume as usual that w and x are disjoint lists of variables��

Open assignment is used mainly in specifying desired behaviour � although it is
code� in fact � because it is a convenient way of writing �and x may be changed��
Thus the assignment r � s � �

p
s� � is a command that sets r to the square root

of the value found initially in s� and may change s in the process� Similarly� the
command x � y � t � � y � x � � swaps the values of x and y using �possibly� a temporary
variable t along the way�
The re�nement rule for open assignment simply allows the ��� to be replaced by

any expression�

Law ��� open assignment For any expression F �

w � x � �E � � v w � x � �E �F �

�

The command choose x from Chapter � is a special case of open assignment� in
which the list w is empty� we could just as well write x � �� �

��� The skip command

Another unusual command is skip� which does nothing� its �nal state is exactly the
same as its initial state� �It was mentioned in Section ����� It can also be regarded

c� Carroll Morgan ����� ����� ����

�� Assignment and sequential composition

x � �x � �� v x � � �

x � y � �x � X � y � Y � x � Y � y � X � v x � y � � y � x

x � �y �� � � x � ��y � v x � � ��y

x � �false � x � �� v x � � ��

Figure ��� Re�nement to assignment

as a degenerate assignment� in which the list of changed variables is empty� �It can
even be considered to be an assignment of variables to themselves� as in x � � x ��
Its re�nement law is as follows�

Law ��� skip command If pre V post � then

w � �pre � post � v skip �

�

We shall see later that skip is a useful command in spite of its doing �nothing��
�After all� the same holds for �����

��� Sequential composition

So far� we have the atomic programs speci�cation� assignment and skip� The latter
two are code� the �rst is not� But they are all called atomic because they are not
formed from still smaller programs� instead� they cannot be broken down any fur�
ther� Viewing a large program from the bottom up� one �rst sees atomic programs
put together to make compound programs� Then those compound programs are
themselves put together to form larger compound programs� and so on�
Sequential composition� which we met in Section ���� is one way of putting pro�

grams together� Informally� the sequential composition of two programs prog� and
prog	 is a new program which ��rst does prog� and then does prog	�� It is written
prog� � prog	� and operationally one thinks of �control #owing from left to right��
Figure ��
 gives examples of sequential compositions�

Sequential composition is an operator which� like addition of numbers for ex�
ample� is written between its operands� We include it in this chapter on code
because it is executable in the sense that if prog� and prog	 are executable� then
prog�� prog	 is as well � �rst prog� is executed� then prog	�
In using a law for sequential composition� rather than informal reasoning� we are

adopting a top�down view instead of bottom�up� A single speci�cation is re�ned by

c� Carroll Morgan ����� ����� ����

Sequential composition ��

x � � �� x � � � Assign � to x � then assign � to x �

x � � �� y � � x Assign � to x � then assign that
�new� value of x to y �

x � � y � y � � x Assign the initial value of y to x �
then assign that �new� value to y �

y � � y � x � � y Assign y to itself �no change�� then
assign that �same� value to x �

Each of these programs takes any initial state that satis�es x � ��y � �
to a �nal state satisfying x � � � y � ��

Figure ��	 Sequential composition

the sequential composition of two others� and they� in turn� are re�ned by others
still� Here is the law�

Law ��� sequential composition For any� formula mid �

w � �pre � post � v w � �pre � mid � � w � �mid � post � �

�

The intuition operating here is that one way of reaching a �nal state satisfying post
from an initial state satisfying pre is to proceed in two stages� via an intermediate
state satisfying mid �

The intermediate mid can be any formula whatever� if it is strong �tending to
false�� then the �rst component in Law ��� is hard to re�ne subsequently� but the
second is easy� If mid is weak �tending to true�� then the reverse is the case� But
any choice of mid is allowed� even true and false themselves� Figure ��� gives an
example of Law ���� the resulting program hierarchy is shown in Figure ����

For sequential composition with skip speci�cally� we have the following law�

Law ��	 skip composition For any program prog �

prog � skip � skip� prog � prog �

�

Note that the three programs are equal� each re�nes both of the others�

�Neither mid nor post � however� may contain the so�called �initial variables� that are the
subject of Chapter � to come	 That does not at all concern us now� but must be remembered
if ever referring to this law later� once they have been introduced	 Law B	 on page �
 is the
most appropriate replacement for the more general case	

c� Carroll Morgan ����� ����� ����

�	 Assignment and sequential composition

x � y � �x � � � y � ��

v �sequential composition ���

x � y � �x � �� �
x � y � �x � � � x � � � y � �� �

We could re�ne each of those further with assignment ���� as follows�

x � y � �x � �� v x � � �
x � y � �x � � � x � � � y � �� v y � � � �

Figure ��
 Example of sequential composition ���

��	 Assignment and composition together

As our programming repertoire increases� we will �nd many other opportunities for
laws that combine several constructions� One such is this special case of assignment
��� and sequential composition ���� which is useful when one �knows� that a certain
assignment is likely to be appropriate in the �nal code�

Law ��
 following assignment For any term E �

w � x � �pre � post �
v w � x � �pre � post �xnE �� �

x � �E �

�

What is left after applying Law ��� is a speci�cation for the �rst half of the com�
position� which must be further developed� the assignment in the second half is
code already�

Note that Law ��� allows any assignment in its second half provided the changed
variables lie within the frame of the original speci�cation� The required �rst half�
on the other hand� is calculated by the law� �Ridiculous choices for the assignment
in the second half probably lead to infeasible speci�cations in the �rst half � but
that does not a�ect the validity of the step�� The laws sequential composition �

and leading assignment �� �both still to come� allow similar calculations�

��
 Example� Swapping variables

We illustrate the laws so far by showing� in full� the development of the program
which swaps x and y � �Note that the speci�cation below allows the variable t to
be changed as well��

c� Carroll Morgan ����� ����� ����

Example� Swapping variables ��

computer

client

programmer

client

programmer

client

programmer

client

�

�

x � � �

�

�

y � � �

�
�
��

�
�
��

x � �x � �� �
�
�I

�
�
�R

x � y � �x � � �
x � � � y � ��

�

�

x � y � �x � � � y � ��

Figure ��� A programming hierarchy� recall Figure ����

If the symbol � marks part of a program� then that part alone is next re�ned�
with the rest of the program assumed to be carried forward around it� Decorations
in quotes are hints� referring to the law�s� that justify the re�nement step�

x � y � t � �x � X � y � Y � x � Y � y � X �

v �following assignment ���

x � y � t � �x � X � y � Y � t � Y � y � X � � �
x � � t

c� Carroll Morgan ����� ����� ����

�
 Assignment and sequential composition

v �following assignment ���

x � y � t � �x � X � y � Y � t � Y � x � X � � �
y � � x

v �assignment ���

t � � y �

Overall� the above development is summarised

x � y � t � �x � X � y � Y � x � Y � y � X �

v t � � y � y � � x � x � � t �

It is the standard swap via a temporary variable�

��� Exercises

Ex� ��� Use assignment ��� to show that each of the assignments of Figure ���
re�nes the speci�cation

x � �x � � � y � � � x � � � y � �� �

Do the same for Figure ��	� using the speci�cation

x � y � �x � � � y � � � x � � � y � �� �

Ex� ��� Prove the re�nements of Figure ����

Ex� ��� � Fill in the details of this re�nement� using sequential composition ����

x �
h
x � X � x � X �

i
v x � � x �� x � � x � �

Ex� ��	 Use assignment ��� to derive a law speci�cally for the assignment
w � �w � Comment on its similarity to skip command ��	�

Ex� ��
 Re�ne the following speci�cation to a sequential composition of two
assignments� neither of which uses the operation �raise to the fourth power��

x � y �
h
x � z � � y � z �

i
�

Ex� ��� � Redo the example of Section ��� without using following assignment
���� use sequential composition ��� directly�

c� Carroll Morgan ����� ����� ����

Exercises ��

Ex� ��� � A leading assignment law for multiple assignments is the following�

Law ��� leading assignment For disjoint w and x �

w � x � �E �F �wnE � � w � �E � x � �F �

�

Note that as a special case we have

w � x � �E �F � w � �E � x � �F �

provided F contains no w �
Use Laws ��� and ��� to show that

x � y � t � � y � x � � v t � � y � y � � x � x � � t �

Ex� �� � Use sequential composition ��� to prove following assignment ����

c� Carroll Morgan ����� ����� ����

Chapter �

Alternation

��� Operational description

Alternations �sometimes called �if statements�� can informally be said to implement
a case analysis� based on the initial state� one of several possible commands is
selected for execution� They are built from guarded commands� each comprising
a guard and an associated program called the command� A guard is a formula
which selects those states to which its associated command applies� The guarded
command itself is written

G � prog �

and it is pronounced �G then prog �� the guard is G and the command is prog �
An alternation is a collection of guarded commands grouped together� They

are separated by the symbol �� �pronounced �else�� and enclosed in the alternation
brackets if and �� Here is an example�

if G� � prog�
�� G� � prog�

���
�� Gn � progn
� �

We also write the above as if ���i �Gi � progi� �� with the limits � and n understood
from context�

The case analysis occurs in this way� In the initial state� none� one� or several
of the guards Gi will be true� If exactly one is true� its corresponding command is
executed�

If several guards are true� then one of them is selected and its corresponding
command is executed� If the alternation has been properly developed� it will not
matter which of the several guards is chosen � and one can make no assumptions
about which it will be�

��

Re�nement law ��

If no guard is true� the alternation aborts� in that case it can do anything� and
one may assume that �anything� means �something bad�� �Recall the discussion of
abort in Section ����� That is not usually the programmer�s intention �unless it
was the client�s too�� a proper development will avoid it�

Consider this alternation for calculating the maximum m of two integers a and
b�

if a b � m � � a

�� b a � m � � b

� �

There are two cases � they are a b and b a � and they overlap� Together�
they cover all possibilities� thus avoiding abort� Whenever a � b� the �rst com�
mand is executed� whenever b � a� the second is executed� If a � b� then either

can be executed� and of course in this alternation it makes no di�erence which�
�Since the problem is symmetric� it is especially appropriate to have a symmetric
solution��

As a second example� consider

if 	 j x � x � � x � 	
�� � j x � x � � x � �
� �

The formula �	 j x � means �	 divides x exactly�� If x is initially 	� then �nally it
will be �� if initially �� then the result is the same �but by di�erent means"� If
initially x is �� then �nally it could be either 	 or �� and we cannot predict which�
And if initially �� �nally it could be ��� � � or 	�� or nothing at all �because of
nontermination��

��� Re�nement law

Since we deal with the general case� any number of guarded commands� we intro�
duce a notation for the disjunction of all their guards� The name GG abbreviates
the formula

G� � G� � � � � �Gn

in the following re�nement law�

Law 	�� alternation If pre V GG � then

w � �pre � post �
v if ��� i � Gi � w � �Gi � pre � post �� � �

�

c� Carroll Morgan ����� ����� ����

� Alternation

The precondition of the speci�cation ensures that at least one guard is true� and
each command assumes additionally in its precondition the truth of its guard�

Now let us reconsider the maximum��nding program� Using the binary operator
t for maximum� we begin

m � � a t b
� �simple speci�cation ���

m� �m � a t b�
v �alternation
��

if a b � m� �a b � m � a t b� �i�
�� b a � m� �b a � m � a t b� �ii�
� �

Note that each command has in its precondition the corresponding guard�
The numbering �i� and �ii� is to allow those commands to be re�ned separately

below� As with � �a special case�� the context is carried forward� and the code
can be collected at the end� Continuing� we use assignment ��� to re�ne each
command�

�i� v m � � a

�ii� v m � � b �

The resulting program is as shown earlier�
It is deliberate that alternation has no provision for defaults� each case must

be explicitly mentioned� If in some case there is �nothing to do� � because the
initial state will serve as the �nal state � then skip is the appropriate command�
Consider this development�

m � � a t b t c

v �simple speci�cation ���� sequential composition ���

m � � a�
m� �m � a � m � a t b t c� �

v �sequential composition ���

m� �m � a � m � a t b� � �i�
m� �m � a t b � m � a t b t c� �ii�

�i� v �alternation
��

if m � b � m� �m � a �m � b � m � a t b� �iii�
�� m b � m� �m � a �m b � m � a t b� �iv�
�

�iii� v m � � b

�iv� v skip

�ii� v if m � c � m � � c �� m c � skip � �

The resulting code� collected from the derivation above� is

c� Carroll Morgan ����� ����� ����

Exercises ��

m � � a�
if m � b � m � � b �� m b � skip ��
if m � c � m � � c �� m c � skip � �

If we abbreviate if G � prog �� �G � skip � by

if G then prog � �

then we can write the above

m � � a�
if m � b then m � � b ��
if m � c then m � � c � �

��� Exercises

Ex� 	�� � Assuming that x and y are real numbers� re�ne

x � � abs y

to an alternation� thence to code�

Ex� 	�� Assume that x and y are real numbers� and supposing that
p

takes
reals to reals and always terminates� re�ne this to code�

y �
h
x �	 y� � x

i
�

You may use
p

in expressions�

Ex� 	�� Mortgage Let c� s� b�m be respectively the cost of a house� savings in
the bank� borrowing limit� and mortgage granted� they are all integers� Specify
using maximum t and minimum u a program that determines m in terms of c� s� b�
Then re�ne that program to code in which t and u do not appear�

Ex� 	�	 � Prove alternation
�� from this law�

Law 	�� alternation

f�W i � Gi�g prog
� if ��� i � Gi � fGig prog� � �

�

c� Carroll Morgan ����� ����� ����

� Alternation

Ex� 	�
 Sometimes one wants to re�ne one alternation to another� simply re�
arranging the guards� The following law can be used for that�

Law 	�� alternation guards Let GG mean G� � � � � � Gn � and HH

similarly� Then provided

�� GG V HH � and

	� GG V �Hi 	 Gi� for each i separately�

this re�nement is valid�

if ��� i � Gi � progi� � v if ��� i � Hi � progi� � �

�

Use Law
�� to show that the second example of Section
�� can be re�ned to

if 	 j x then x � � x � 	 else x � � x � � � �

where if G then prog� else prog	 � abbreviates

if G � prog�
�� �G � prog	
� �

Does that mean that we can write our nondeterministic alternations in the pro�
gramming language C �

c� Carroll Morgan ����� ����� ����

Chapter �

Iteration

��� Operational description

Iterations �sometimes called �while loops�� implement repetition� typically a com�
mand is executed repeatedly while a certain condition holds� In their general form
iterations are� like alternations� built from guarded commands� We write them as
follows�

do G� � prog�
�� G� � prog�

���
�� Gn � progn
od �

We can also write do ���i � Gi � progi� od�
The repetition occurs in this way� In the initial state� none� one� or several

guards will be true� If none is true� the command terminates successfully and the
state is unchanged� �Note the di�erence from alternation� which aborts in that
case��

If one or several guards are true� just one is chosen and its corresponding com�
mand is executed� Then the process is repeated� beginning with a re�evaluation of
all the guards�

It is possible �but usually undesirable� for iterations to repeat forever� From
the above� we see that they terminate only when all guards are false� thus as an
extreme example �of the opposite�

do true� skip od

never terminates� By convention� a never�ending iteration is equivalent to abort�
Successful iterations �nally make all their guards false� and that may occur from

some initial states but not others� Consider the following program� which for

�

	 Iteration

natural number n establishes n � � �nally whenever n is a power of 	 initially�

do 	 j n � n � �n � 	 od � �����

If n is not a power of two initially� then we are not assured of n � � �nally� starting
with n � �	 for example would lead via n � � to n � �� where the iteration would
terminate successfully because 	 does not divide � exactly� And if n � � initially�
there is no �nally� variable n is set and reset to � forever�

Even from our informal view� we see that an iteration can be unfolded without
a�ecting its meaning�

do G � prog od

� if G then

prog �
do G � prog od

� �

Each unfolding makes one more repetition explicit� Thus we can unfold again� � �

� if G then

prog �
if G then

prog �
do G � prog od

�

� �

� � � any number of times� and that shows that an iteration can be regarded as
equivalent to an unbounded nesting of alternations�

��� Re�nement law� informally

Rather than unfolding as above� we rely instead on a re�nement law that abstracts
from the number of repetitions� it is all captured in a single formula� the invari�
ant� An invariant for an iteration is a formula which� if true initially� is true also
after every repetition including the �nal one� Overall� the iteration maintains the
invariant� and establishes additionally the negation of the guards � provided it
terminates at all� And that is true no matter how many repetitions occur �even
���

For an example we return to Program ������ de�ning a predicate pt to mean �is
a power of 	��

pt n b� �
� k � N � n � 	k

�
�

c� Carroll Morgan ����� ����� ����

Re�nement law� informally
�

The formula ptn is an invariant for the iteration� if it is true initially� and a
repetition occurs �because 	 j n is true also�� then after execution of the iteration
body n � � n � 	 it is true still� Another way of writing that is

n� �	 j n � pt n � pt n� v n � �n � 	 � ���	�

In general� a formula inv is an invariant of do G � prog od if for some frame w

w � �G � inv � inv � v prog � �����

That is� if the guard G holds� then the iteration body prog preserves the invariant
inv �

The utility of an invariant is that� assuming termination� its preservation as in
����� is su!cient to establish

w � �inv � inv � �G � v do G � prog od � ���
�

And in ���
� we have the essence of our re�nement law� which will allow us to
replace a speci�cation by an iteration� As an example� we derive ����� from the
informal speci�cation given earlier�

n� �pt n � n � ��

v �� is the only power of 	 not divisible by 	

n� �pt n � pt n � ��	 j n��
v ����
�� justi�ed by ���	� in this case

do 	 j n � n � �n � 	 od �

Our re�nement rule �if ����� then ���
�� is not yet complete� however� in fact if
used in that form it would produce �re�nements� that were invalid� That is because
�an extreme case� we could reason

because w � �true � true � true� v skip

we �conclude� w � �true � true � false� v do true� skip od �

Put more starkly� we would be claiming that

because choose w v skip

we �conclude� magic v do true� skip od �

That is clearly nonsense� the premise is true� but the conclusion is false�

What we are missing is the idea of termination� that the iteration body not only
maintains the invariant but cannot be executed inde�nitely� For that we need a
variant function�

c� Carroll Morgan ����� ����� ����

 Iteration

��� Termination of iterations� variants

In the example� termination is guaranteed informally by the following observation�

Each repetition of n � �n � 	� when 	 j n� strictly decreases the integer
n� yet n cannot become negative�

We say therefore that the variant of the iteration is n� In general� some integer�
valued� variant expression is chosen that is strictly decreased by each repetition�
but never below some �xed lower bound �often chosen to be ���

���� Specifying decrease of the variant

We have no di!culty writing a command that decreases an integer�valued variable
n � the assignment n � �n�� is one of many that would do � but to specify that
n is strictly decreased is another story� Writing

n� �n � n � �� �

or more generally n� �n � n�� would not do� both of them are equivalent to magic�
We adopt a convention that ��subscripted variables in a postcondition refer to

the initial �rather than to the �nal� values of the variables� With that� the above
discussion could be summarised

n� �n � n�� v n � �n � � � �����

That is� the assignment n � �n�� �the more re�ned side� is just one of many ways
of strictly decreasing n �expressed by the speci�cation on the left�hand side��

We will meet initial variables in more generality shortly� For now we re�examine
just three of our earlier laws� generalising them to take initial variables into account�
They become

Law
�� strengthen postcondition If pre�wnw�� � post � V post � then

w � �pre � post � v w � �pre � post �� �

�

Law ��� strictly generalises our earlier strengthen postcondition ��� in that the
precondition of the left�hand side can now be taken into account�

Law
�� assignment If �w � w�� � �x � x�� � pre V post �wnE �� then

w � x � �pre � post � v w � �E �

�

�More general variants are possible� they range over well�founded sets	

c� Carroll Morgan ����� ����� ����

Termination of iterations� variants
�

Law ��	 generalises our earlier assignment ���� Notice that the substitution �wnE �
a�ects only ��nal� �unsubscripted� variables in the postcondition�

Law
�� skip command If �w � w�� � pre V post � then

w � �pre � post � v skip �

�

Law ��� generalises skip command ��	� taking advantage of the fact that in a skip
command the initial and �nal variables have the same value�

Each of the above reduces to its earlier version if initial variables are not present�
and the earlier versions remain valid even when initial variables are present � but
they are not as powerful as the newer versions�

Using our new assignment ��	 we can show Re�nement ����� in just one step�

n� �n � n��

v �n � n� � true V �n � n���nnn � ��

n � �n � � �

Simpli�ed� the proviso would be simply n � n� V n � � � n��

���� Initial variables and the frame

We should also mention at this point an interaction between initial variables �values
before any change� and the frame �listing which variables may be changed�� If a
variable x is not in the frame� then x and x� may be used interchangeably in the
postcondition since the initial and �nal values of x are equal in that case� Put
another way� if we remove x from the frame� then we can replace x� by x in the
postcondition� That is summarised in the following law�

Law
�	 contract frame

w � x � �pre � post � v w � �pre � post �x�nx �� �

�

Note that x� need not occur in post for Law ��
 to apply � and that means� as a
special case� that simply removing a variable from the frame is a re�nement too�
�Recall Exercise �����

That concludes our look at initial variables� we return to them in Chapter �

c� Carroll Morgan ����� ����� ����

� Iteration

��� The re�nement rule for iteration

With initial variables available for specifying the decrease of the variant� we can
now give the full re�nement rule� It is

Law
�
 iteration Let inv � the invariant� be any formula� let V � the variant� be
any integer�valued expression� Then if GG is the disjunction of the guards�

w � �inv � inv � �GG �
v do ���i � Gi � w � �inv � Gi � inv � �� � V � V���� od �

Neither inv nor Gi may contain initial variables� The expression V� is V �wnw���
�

In the interests of keeping the amount we must write to a minimum� we introduce
an abbreviation that avoids writing inv twice in the iteration body� When a formula
appears in both the pre� and the postcondition of a speci�cation �as inv does in
the iteration body above�� it can instead be written once in between� as a third
formula�

Abbreviation
�� speci�cation invariant Provided inv contains no initial variables�

w � �pre � inv � post � b� w � �pre � inv � inv � post � �

�

The iteration body in Law ��� can now be written �more brie#y as� just

w � �Gi � inv � � � V � V�� �

Figure ��� gives a complete development of Program ������ including the variant�
In the simpli�ed proviso we have used n � n� on the left�hand side to replace n�
by n on the right�

��� The iteration �checklist�

In planning one�s approach to developing an iteration� it is sometimes useful to
consider the following characteristics of iterations that are built in to the iteration
law�

�� The invariant holds initially�
	� The invariant and negated guard are su!cient to establish the desired result�
�� The iteration body maintains the invariant provided the guard holds as well�

� The variant is strictly decreased by execution of the iteration body� provided

the invariant and guard hold�
�� The variant cannot be decreased below � by the iteration body� provided the

invariant and guard hold�

c� Carroll Morgan ����� ����� ����

Exercises
�

n� �pt n � n � ��
v n� �pt n � pt n � ��	 j n��
v do 	 j n �

n� �	 j n � pt n � � � n � n�� �
od

v �	 j n � pt n V pt�n � 	� � � � n � 	 � n

n � �n � 	 �

Figure
�� Example iteration development

Characteristic � is found in the precondition of the speci�cation on the left�hand
side� by �� � � �inv � � � �� we express that the invariant must hold initially� Similarly�
Characteristic 	 is found in the postcondition� writing �� � � � inv � �GG � � � �� states
what is required of the iteration�

In �� � � �Gi � inv � inv � � � �� of the iteration body is found Characteristic �� Char�
acteristic
 is expressed by �� � � �Gi � inv � � � �V � V���� and �nally Characteristic �
is given by �� � � �Gi � inv � � � �� � V � � ���

When choosing an invariant it is sometimes helpful to run through the checklist�

informally� before setting out the development in full � one is then �literally�
carrying out a feasibility study�

��	 Exercises

Ex�
�� Give a single assignment command that re�nes

n� �pt n � n � �� �

Ex�
�� � Checking for powers of two Use the invariant n �� � � �ptN � pt n�
to complete the following development� in which N is used to hold the original
value of n�

n� �n �� � � n � N � n � �� ptN �
v n� �n �� � � �ptN � pt n� � �ptN � ptn� � ��	 j n��
v � � �

Hint� You have seen the code before�

Ex�
�� � Consider this factorial program� in which we assume f and n are
integers� What laws are used for the �rst re�nement step �shown�� �The constant
F is used to refer to the desired factorial value��

�It is borrowed from �Gri���	

c� Carroll Morgan ����� ����� ����

 Iteration

f � n� �F � n" � f � F �
v f � �F � n" � f � n" � F � � �i�

f � n� �f � n" � F � f � n" � F � n � �� � �ii�

Complete the re�nement to code�

Ex�
�	 � The law strengthen postcondition ��� is stronger than strengthen

postcondition ��� because it uses information from the precondition� Assuming
x � y � R� use it to show that

y � �� � x � � � y� � x �
v y � �� � x 	 y� � x � �

Explain the fact that the law is called �strengthen postcondition�� yet above the
new postcondition is weaker than the old�

Ex�
�
 � Assuming x � y � R� prove each of the following�

�� x � �y � x � x � x�� v x � � y

	� x � �x � � � x � x�� v x � ��x
�� x � y � �x � y� � y � x�� v x � y � � y � x

� x � �x � X � � � x � X � 	� v x � � x � �
�� x � �x � X � � � x � X � 	� v x � �x � x� � ��
�� x � �x � x� � 	�

v x � �x � x� � �� �
x � �x � x� � �� �

Ex�
�� � Design an initialised iteration law of this form�

w � �pre � inv � �G �

v prog��
do G � prog	 od �

You should supply prog� and prog	� as speci�cations� and you may assume that
inv and G contain no initial variables�

Ex�
�� Logarithm Here is a speci�cation of a logarithm��nding program� in
which l � n and N are integers�

l � n�
h
� � n � N � 	l � N � 	l	�

i
�

Variable N holds the initial value of n� Develop the speci�cation to code using the
invariant

n � 	l � N � �n � ��� 	l � � � n �

c� Carroll Morgan ����� ����� ����

Exercises
�

Ex�
� � Handing out sweets Suppose S sweets are to be handed out to C

children� If C divides S exactly� then each child should receive S�C �whole"�
sweets� But if the division is not exact� then some will receive bS�C c and others
dS�C e� where b c and d e are the �oor and ceiling functions that take a real number
to the closest integer no more than and no less than it respectively�

Here is a program for handing out the sweets� using natural number variables s�
c and t �

s� c � �S �C �
do c �� ��

t � � bs�cc � t � ds�ce � �
�hand out t sweets to the next child��
s� c � � s � t � c � �

od �

We say the handing out is fair if

all the sweets are handed out� and �����

each child receives between bS�C c and dS�C e sweets� �����

Does the program implement a fair handing out�
Hint� Use informal invariant�based reasoning� following the checklist of Section

���� consider an invariant resembling

bS�C c � bs�cc ����

ds�ce � dS�C e �����

S � s � �the number of sweets handed out already� � ������

Useful facts about b c and d e are that for all integers i and reals r

i � brc � i � r

and dre � i � r � i �

�You may have to alter it slightly	 	 	

c� Carroll Morgan ����� ����� ����

Chapter 	

Types and declarations

	�� Types

The only types we have met so far are various numbers� like the reals R� the integers
Z and the natural numbers N � They are examples that we borrow directly from
mathematics� more or less taking their existence for granted� Figure ��� gives other
examples of standard mathematical types� but in general we can use any set as a
type�

In code� however� the available types are restricted� We make the �idealised� as�
sumption that types N and Z� at least� are available in code� with the intention that
they correspond roughly to types INTEGER or int in some everyday programming
language� Other types can be constructed from them� as we will see in Chapters �
and ��� The empty type fg is not code� however�

Every type brings with it certain functions and relations which can be applied
to its elements� For the types of Figure ��� we may use all those from arithmetic�
some examples of which are given in Figures ��	 and ����

Why do we bother with types� They a�ect program development in several
ways� One way is that types provide information about the possible values that
variables can take� and the information can be used to make program development
easier� For example� the following re�nement is not valid in general� but it is valid
if m and n are known to be natural numbers� elements of N �

n� �m �� � � � � n � m� v n� �m � � � n � m� �

The precondition has been weakened because m �� � V m � � for any m in N �
The postcondition has been strengthened because n � m V � � n � m for any n

in N � �Actually the two programs are equal� which is a special case of re�nement��
Thus having the types declared means that the fact m� n � N is available anywhere
the usual scope rules allow� and we do not have to carry the information explicitly
from place to place�

Another way is that types restrict the values that can be assigned to variables�
and that makes program development harder� there are fewer assignments to

��

Declarations ��

N The natural numbers� or non�negative integers�

Z The integers� positive� negative� and zero�

Q The rational numbers�

R The real numbers�

C The complex numbers�

Each of the types is a proper subset of the one below it� thus N � Z �
Q � R � C � For any type T above except the complex numbers� we
write T	 for the set of positive elements of the type� and T� for the
set of negative elements of the type� Thus N	 � Z	 � f�� 	� �� � � �g�
and Z� � f����	���� � � �g�

Figure ��� Some standard mathematical types

choose from� For example� the code m � ��� should not occur in a program where
m has type N � That is partly because everyday languages have explicit typing�
which therefore we must accommodate�

	�� Declarations

����� Variable declarations

To associate a type with a variable we use a variable declaration� and for variable
x and type T that is written var x � T � We also have multiple declarations like
this�

var x � y � T � z � U �

It declares x and y to have type T � and z to have type U �

We have earlier met informal declarations� such as at the beginning of Chapter
�� �let our variables be just x � y � and z � and let their values be real numbers� �p�
��
Now we could write that var x � y � z � R�

c� Carroll Morgan ����� ����� ����

�	 Types and declarations

� Addition�
� Subtraction�

� Multiplication� We allow the conventional 	n
to abbreviate 	� n�

� Division� Note that dividing two integers does
not necessarily yield an integer�

d e Ceiling� the least integer no less than�

b c Floor� the greatest integer no more than�

� Integer division� a � b � ba�bc�

� Natural number subtraction� a � b � a � b�
provided a � b ��

mod Modulus� a � b��a�b���amodb�� provided
b �� ��

abs Absolute value�
t Maximum�
u Minimum�

Figure ��� Some standard arithmetic functions

� Less than�
� Less than or equal to�
� Greater than�
 Greater than or equal to�
j Divides exactly� �ajb� � �b mod a � ���

Figure ��� Some standard arithmetic relations

����� Invariant declarations

A more advanced form of declaration is the local invariant� instead of writing
var x � N we could write

var x � Z� and x � �

c� Carroll Morgan ����� ����� ����

Declarations ��

We could also write just var x and x � N � using an untyped declaration of x �
A local invariant is any formula written after the keyword and� as a declaration�

The declaration

and inv

allows us subsequently to assume inv � as well as any typing information� when
applying laws or de�nitions�

In fact the above examples make it clear that local invariants subsume types�
typing a variable just makes invariant that it is an element of its type�

We can write more interesting invariants too� The declaration and 	 j n means
that n must always be even� And we can relate di�erent variables to each other�
for example� the following declares a rational q � and two integers n and d that
always represent it as a fraction�

var q � Q � n � Z� d � N � and q � n�d �

Finally� invariants can be used to make constants� given a type declaration g � R	 �
the additional declaration and g� � g � � � � makes g the golden ratio ���� � � ��
Unlike the conventional constant declaration �for example const g � ������ the
distinguishing property of g is declared as well�

Unfortunately� local invariants are not code� they are useful during development�
but must at some stage be removed� We return to that later� in Section ����

����� Logical constants

We have seen in some earlier exercises that it is sometimes useful to have a name�
not necessarily a normal program variable� that can be used to refer to values of
interest during a development �Exercises ��	� ��� and ����� For example� although
it is easy enough to write the speci�cation f � n � �n"� � for a program that sets f to
the factorial of n �possibly changing n�� during the development one might need
an invariant along the lines of

n"� f � �the factorial of the initial value of n��

Rewriting the speci�cation as f � n� �F � n" � f � n�"� is a step in the right direc�
tion� since � as long as we do not change F � we can now write the invariant
as

n"� f � F �

In fact� a slightly neater speci�cation would be just f � n� �F � n" � f � F � �as in
Exercise �����

But� strictly speaking� a precondition F � n" means �abort if F �� n"�� and that
certainly is not what we want� we need F to take a value such that the precondition
holds� In this case that value would be n" �

c� Carroll Morgan ����� ����� ����

�
 Types and declarations

That �taking a value such that the precondition holds� is what logical constants
are for� Like variables� they are declared � but we indicate their di�erent nature
with the keyword con� the notation

con F

declares F to be a logical constant� rather than a variable� �Since we declare logical
constants explicitly� we can use either upper or lower case for them � but upper
case is conventional��

Unlike var� a logical constant declaration con is not code� and hence at some
later stage of re�nement it must be removed� Naturally� that can occur only when
all references to those logical constants have been eliminated� since otherwise they
would become undeclared� And since logical constants are not code� typing for
them is optional�

Our speci�cation above is thus to be interpreted in the context of the declarations
var f � n � N � con F � The development� incidentally� is then

f � n� �F � n" � f � F �

v �establish invariant

f � � ��
f � n� �F � n"� f � F � n"� f � n � �� �

v �Note we assume n � because of its declaration�

do n �� ��
f � n� �n � � � F � n"� f � n � n�� �

od

v �How do we know n stays non�negative�

f � �n � � � F � n"� f � F � �n � ��"� f � � �
n � �n � �

v �And now the logical constant F disappears� as it must�

f � � f � n �

�What re�nement rules were used in the above��

	�� Local blocks

����� Variables and invariants

Declarations of variables� invariants and logical constants are made within local
blocks� which indicate precisely the part of the program a�ected� A local block is a
program fragment enclosed in the block brackets j� and �j� any of the declarations
of Section ��	 may be placed immediately after the opening bracket� They are
separated from the following program� the block body� by a spot � �

c� Carroll Morgan ����� ����� ����

Local blocks ��

Declarations are limited in e�ect to the block in which they are declared� such
limitations are necessary� for example� whenever a programmer uses extra variables
not mentioned in the speci�cation agreed with his client� The speci�cation

x � y � �x � X � y � Y � x � Y � y � X � �

which swaps the values of x and y � is not re�ned by

t � � x � x � � y � y � � t �

�Compare Section ���� where t was in the frame��
The speci�cation does not allow t to change� and so its implementation must

not either� We must use a local block� and a correct re�nement is

j� var t � T � t � � x � x � � y � y � � t �j �
where T is the type of x and y � The variable t is signi�cant only within the local
block� it is wholly divorced from any variable t declared outside the local block�
Its initial value is an arbitrary member of its type�

The names of local variables can be systematically altered throughout the block
in which they are declared � thus this program also swaps x and y �

j� var s � T � s � � x � x � � y � y � � s �j �
It is because of that essential arbitrariness in the name of a local variable that it
is clear it cannot have anything to do with variables declared outside the block�

In general examples like the above� we may omit types from declarations� in that
case� we assume all variables to have the same type�

Here is the law for introducing a local variable� and optionally a local invariant
as well�

Law ��� introduce local variable If x does not occur in w � pre or post then

w � �pre � post � v j� var x � T � and inv � w � x � �pre � post � �j �
�

It is the proviso of Law ��� � that x is �fresh� � that ensures there is no
confusion between the �new� x and any �existing� x �s� Without it� a reference to an
existing x could be captured by the new declaration�

The invariant part of Law ��� is optional� of course� and is considered to be true

if omitted� Remember however that an invariant is not code� and so cannot appear
in the �nal program� �See Section �����

For laws like introduce local variable ���� which introduce a block� we can use an
abbreviation when setting out re�nements� the declaration decorates the re�ne�
ment step� and the block brackets are omitted� We use the spot � again to separate
the decoration from the re�ned program� Thus we have this alternative layout of
the law�

c� Carroll Morgan ����� ����� ����

�� Types and declarations

w � �pre � post �
v var x � T � and inv �

w � x � �pre � post � �

The advantage of that is a more concise notation� no need for block brackets during
the development� and no indentation� �The block brackets are required only if we
collect the code and present it linearly� similarly �	 � �� �
�� needs parentheses�
although expression trees do not contain them��

����� Logical constants and blocks

Logical constants are introduced� in general� with this law�

Law ��� introduce logical constant If pre V �� c � T � pre ��� and c does not occur
in w � pre or post � then

w � �pre � post �
v con c � T �

w � �pre � � post � �

If the optional type T is omitted� then the quanti�cation in the proviso should be
untyped�
�

Note that we use the abbreviated layout� just as for var�
Later we shall see direct applications of Law ��	� but more often we use this

more specialised law� an immediate consequence of it�

Law ��� �x initial value For any term E such that pre V E � T � and fresh name
c�

w � �pre � post �
v con c � T �

w � �pre � c � E � post � �

Proof� Law ��	 requires

pre

V pre � E � T

� �c fresh
�pre � c � T ��cnE �

� �Predicate law A���
�� c � pre � c � T � c � E �

� �� c � T � pre � c � E � �

�

c� Carroll Morgan ����� ����� ����

Using types and invariants ��

Law ��� is used when it is necessary later in a development to refer to the value that
some term E had initially� where the constituent variables of E may be changed
by assignments� the logical constant c retains that initial value� Returning to our
factorial example above� we could start from f � n� �f � n�"�� and use �x initial value
��� to introduce F � as follows�

v f � n� �f � n�"�

v con F �

f � n� �F � n" � f � n�"�

v �strengthen postcondition ���

f � n� �F � n" � f � F � �

In practice� of course� we would not dream of setting out all that detail� it would be
su!cient to go from f � n� �f � n�"� �or even f � n � �n"� �� to f � n� �F � n" � f � F �
in one step directly� quoting �con F � as the justi�cation�

Finally� for removing logical constants� we have this law�

Law ��	 remove logical constant If c occurs nowhere in program prog � then

j� con c � T � prog �j v prog �

�

Law ��
 is the justi�cation for removing declarations con c when all occurrences of
c have been removed� We will not use it explicitly� however� �We could formulate
a similar law for variables� but since they are code it would be very seldom that
we would want to remove them��

	�� Using types and invariants

Within a local block such as

j� var x � T � and inv � � � � �j �

the formula x � T � inv may be used when proving the provisos of re�nement
rules� Within several nested blocks� all the enclosing formulae may be used� They
are known collectively as the context�

Thus in our original example�

n� �m �� � � � � n � m� v n� �m � � � n � m� �

we may use the context m� n � N � The provisos for the two re�nements� weakening
the precondition and strengthening the postcondition� are then

c� Carroll Morgan ����� ����� ����

� Types and declarations

m � N �m �� � V m � �
n � N � n � m V � � n � m �

Naturally we need not write in the whole context� only m � N was required in the
�rst case� and n � N in the second�

A slight di!culty arises if there is danger of variable capture� as in this example�

j� var a� b � N�

j� var a � Z�

� � �
�j

�j�
At the point � � �� in the inner block� we cannot refer to the context formula a � N �
because its free variable a would be captured by the inner declaration� One must
either rename the inner bound variable� or use only the weaker b � N from the
outer declaration� In general� we can always use a weaker context than the one we
are given� and that allows us to use a � Z� b � N � for example� in the inner block�

	�� A �nal note on feasibility

With types and invariants now explicit� and initial variables� we can present a more
general de�nition of feasibility that takes them all into account� It is

De�nition ��
 feasibility The speci�cation w � �pre � post � is feasible in context inv
i�

�w � w�� � pre � inv V ��w � T � inv � post� �
where T is the type of w �
�

As an example� recall that we have seen that the speci�cation

y �
h
y� � x

i
�����

is infeasible if x � y range over R� the formula �� y � R � y� � x � is not true for all
x in R� But if x � y had type C � the feasibility formula from De�nition ��� would
reduce to x � C V �� y � C � y� � x � instead� quite a di�erent matter�

	�	 Checking types and invariants

Section ��
 explained the use of context in checking the provisos of re�nements�
and how that makes proposed re�nements more likely to be valid� But there is
a price to pay� at some stage we must check that those types are respected and

c� Carroll Morgan ����� ����� ����

Checking types and invariants ��

invariants maintained� We call that activity type checking� and say that a program
successfully checked is well�typed� If it fails the check� we call it ill�typed�
Experience suggests that type checking is best done at the end of development�

rather than during it� Often it is obvious that a program is well�typed� and if types
are used in a reasonable way� much of type checking can be done automatically by
computer�

We must type�check both types and invariants� we deal �rst with types� Only
assignments can violate types� and so we must be able to tell whether any assign�
ment is well� or ill�typed� In an assignment w � �E � we always know the type of w
because that is given in its declaration� We arrange� as explained below� that we
always know a type for E as well� If the type of w is T � and of E is U � then the
assignment is well�typed if U � T �

A type for any expression can be deduced provided we know the types of the
variables and constants that it contains� and provided the operators have certain
properties� For example� we know that the natural numbers are closed under
addition� and that � is a natural number� therefore we know that in a context
containing a � N the expression a � � has type N � Therefore a � � a � � is well�
typed� The same applies to Z� Q � R� and C � the constant � is an element of them
all� and they all are closed under addition�

But type checking is not always so straightforward� Given m� n � N � consider
this re�nement�

m� �n � � � m � n � �� v m � �n � ��

Though the re�nement is valid� the assignment is ill�typed� because n � N �V
n � � � N � Therefore we do not allow subtraction ��� of natural numbers in
assignments�

For subtraction of natural numbers we use instead the operator �� which agrees
with ordinary subtraction ��� as far as possible� 	� � � 	 � � � �� But � � 	 is
not a natural number� while �� 	 is a natural number �though we choose not to
know which one�� therefore they cannot be equal� Still� in the situation above we
have this alternative re�nement�

m� �n � � � m � n � �� v m � �n � ��

It too is valid� and this time the resulting assignment is well�typed� The validity
rests on the proviso required by assignment ���� which for the above is

n � � V n � � � n � ��

That is true given our declaration m� n � N �
Operationally� one would argue that when n is � initially� and thus m � �n � �

assigns an unknown natural number to m� the re�nement still holds� the precon�
dition of the left�hand side is false�

Now we turn to the type�checking of local invariants� Recall that declarations
�and inv � are not code� and so must be removed once they have served their

c� Carroll Morgan ����� ����� ����

�� Types and declarations

purpose �of providing extra context�� There are general laws for that� but we do
not show them� because our use of invariants will be very modest� Either they
refer to variables that are never changed � that do not appear in any frame � or
we use operators that maintain them trivially� Under those strong conditions� they
can be removed without further checking� we draw attention to that as it arises
below �for example� on page �����

	�
 Unde�ned expressions

Consider this re�nement�

x � �x � ���� v x � � ����

Since the speci�cation terminates �precondition true�� so must the assignment� Yet
that is not the conventional view� Usually� division by � is said to be �unde�ned��
causing assignments like the above to abort�

But recall �� 	 from Section ���� It is de�ned� and is even a natural number�
but we do not know which one� Similarly� we say that ��� is a rational number�
but we do not know which one� The assignment x � � ��� does terminate� but we
simply do not know what value of x results�

Our novel view simpli�es program development considerably� but of course com�
plicates programming language implementations� We insist that divisions a�b
return a result in all circumstances� they cannot abort when b � �� Thus in
programming languages without that property �that is� in most programming lan�
guages� regrettably�� the command x � � a�b cannot be code on its own� Instead�
we would have to allow certain speci�cations as code� in this case� we would allow
only

x � �B �� � � x � A�B �
or the equivalent fB �� �g x � �A�B

���	�

for any variable x and expressions A and B over suitable types� Other partial
operators would be handled similarly� Adherence to the strict form could easily be
enforced by a compiler� a major part of which is dedicated to syntax checking in
any case� �See Exercises ���� and following for further discussion of unde�nedness��

	�� Exercises

Ex� ��� Consider this factorial program� in which we assume f � n � N � What
laws are used for the �rst re�nement step �shown��

f � �f � n"�

c� Carroll Morgan ����� ����� ����

Exercises ��

v var i � N�

f � i � �i � n � f � i "� � �i�
f � i � �i � n � f � i " � f � i " � i � n� � �ii�

Complete the re�nement to code�

Ex� ��� Repeat Exercise
�	� but this time assume that fx �g y � �
p
x is

code� while y � �
p
x �on its own� is not� �Recall Section �����

Ex� ��� � Assuming the context z � Z� show the following to be a valid re�ne�
ment�

z � �z ��
v var n � N�

z � �n �

Ex� ��	 Show that this re�nement is valid�

w � �post �
v and post�

choose w �

Why does that mean that invariants cannot be code� Hint� Use the context when
checking the proviso of strengthen postcondition ����

Ex� ��
 � Some programming languages allow declarations of constants as fol�
lows�

const c � ��

How can that e�ect be achieved with the declarations of this chapter� What are
the remaining di�erences�

Ex� ��� � Suppose we have context n � N � Is the following a valid re�nement�

n�
h
n� � �

i
v n � ����

Ex� ��� � Which of the following speci�cations are feasible� assuming the dec�
larations n � N � z � Z� r � R� c � C �

�� n� �n � z �
	� z � �z � n�
�� r � �z � � r � � z �

� n� �z � � n� � z �
�� r � �cn � � � r � c � ��c�

c� Carroll Morgan ����� ����� ����

�	 Types and declarations

Ex� �� Assume that the invariant is x � �� Which of these speci�cations are
feasible�

�� x � �x � ��
	� x � �x � ��
�� x � �x � � � x � ��

� x � �x � � � x � ��
�� choose x

Ex� ��� Suppose we have type coercion functions for taking types into their
subsets� For example� the function nat takes any natural number to itself� and any
other number to some natural number� It satis�es these two properties�

�� n � N V n � nat n

	� nat c � N � for any c�

The other coercion functions are int� rat� real� and cpx�
Assuming the types n � N � z � Z� q � Q � r � R� c � C � determine whether the

following are valid re�nements�

�� n� �n � z � v n � � nat z

	� n� �z � � n � z � v n � � nat z

�� n� �r � � n � r � v n � � nat r

� z � �n � 	 � z � � n� v z � � int
p
n

�� q � �r � � q� � r � v q � � rat
p
r

�� q � �r �� � � q � 	�r � v q � � rat�	�r�
�� r � �cn � � � r � c � ��c� v r � � real�c � ��c��

Ex� ���� � What is wrong with the following �law� for iterations�

w � �I � I � �G �

v� con e�

do G �
w � �G � �e � E � � I � I � �� � E � e��

od �

Expression E is the variant� captured before each iteration by the logical constant
e�
Hint � Unfold the iteration�

c� Carroll Morgan ����� ����� ����

Chapter

Case study� Square root

In this chapter we follow a small but complete development from beginning to
end� The key to success � as is very often the case � will be the �nding of
an appropriate invariant for an iteration� Application of re�nement laws� and
the setting out of developments� will become routine with practice� but �nding
invariants is always a fresh challenge�

�� Abstract program� the starting point

We are given a natural number s� and we must set the natural number r to the
greatest integer not exceeding

p
s� where

p
takes the non�negative square root of

its argument� Thus starting from s � 	�� for example� we would expect to �nish
with s � 	� � r � ��

Here is our abstract program�

var r � s � N�

r � �bpsc � �i�

Although an assignment� the command �i� is not code� because in this case study
we assume that neither

p
nor b c is code� Our aim in the development to follow

will be to remove them from the program�

�� Remove �exotic� operators

These �rst re�nement steps remove the square�root and #oor functions ��exotic�
only because they are not code� from the program by drawing on their mathemati�
cal de�nitions� The steps are routine� and leave us with a speci�cation from whichp

and b c have disappeared�

��

�
 Case study� Square root

� �simple speci�cation ���

r � �r � bpsc�
� �de�nition b c

r � �r � ps � r � ��
� �de�nition

p

r � �r � � s � �r � ���� � �ii�

Comparing �i� and �ii�� we can see that the assignment is written for the client�
it uses powerful operators� leading to clear and succinct expression� Above all� it is
easy to understand� But we have now moved from assignment to speci�cation� and
for two reasons� we need the freedom of a formula �rather than just an expression�
to exploit the de�nitions of

p
and b c� and a speci�cation is easier to develop from

than an assignment�

�� Look for an invariant

The postcondition in iteration ��� is of the form inv � �GG � and so we should
investigate rewriting our postcondition in �ii� that way� There are two immediate
possibilities�

r � � s � ��s �r � ����
and s � �r � ��� � ��r � � s� �

The �rst would lead to an iteration

do s �r � ��� � � � � od �

with invariant r � � s� �The assignment r � � � could establish the invariant ini�
tially�� The second would lead to

do r � � s � � � � od �

with invariant s � �r � ��� �whose initialisation is not so straightforward � but
perhaps r � � s would do��

Either of those two approaches would succeed �and in the exercises you are
invited to try them�� But the resulting programs are not as e!cient as the one we
are about to develop� We rewrite the postcondition as

r � � s � q� � r � � � q �

taking advantage of a new variable q that will be introduced for the purpose�
�We use �rewrite� here a bit loosely� since the two postconditions are de�nitely not

equivalent� The new one implies the original� as it should � remember strengthen
postcondition ����� That surprising step is nevertheless a fairly common one in
practice� one replaces an expression by a variable� adding a conjunct that makes
them equal�

The re�nement is the following�

c� Carroll Morgan ����� ����� ����

Look for an invariant ��

�ii� v var q � N�

q � r � �r � � s � q� � r � � � q � �

Now having separate bounds on s gives us more scope� initially� r and q could be
far apart� Finally� we should establish r � � � q � and that will be the source of
our increased e!ciency� we can move them in big steps�

The next few re�nements are routine when introducing an iteration� declare an
abbreviation �I for the invariant� just to avoid writing it out again and again�� es�
tablish the invariant with an assignment �initialisation�� and introduce an iteration
whose body maintains it�

The abbreviation I b� � � � is written as a decoration of the re�nement� Like
other decorations there �var� con�� it is available in the development from that
point on�

v I b� r � � s � q��

q � r � �I � r � � � q �

v q � r � �I � � �iii�
q � r � �I � I � r � � � q � �

v �invariant I � variant q � r

do r � � �� q �
q � r � �r � � �� q � I � q � r � q� � r�� �

od �

Note that the invariant bounds the variant below � that is� we have I V � � q�r
� and so we need not write the �� � � � �� explicitly in the postcondition� We leave
the re�nement of �iii� to Exercise ����

Our next step is motivated by the variant� to decrease it� we must move r and q

closer together� If we move one at a time� whichever it is will take a value strictly
between r and q � So we introduce a local variable for that new value� and make
this step�

v var p � N�

p� �r � � � q � r � p � q � � �iv�
q � r � �r � p � q � I � q � r � q� � r�� � �

Strictly speaking� there should be an I in the postcondition of �iv�� since in our
use of sequential composition ��� the formula mid is clearly r � p � q � I � �It is
necessarily the same as the precondition of the ��marked command� which includes
I � recall speci�cation invariant ����� But in fact I is established by �iv� whether
we write it there or not� since it was in the precondition of the iteration body and
does not contain p �the only variable that �iv� can change�� Thus informally we
can see that �iv� cannot falsify I � but in fact we have appealed �tacitly� to this
law�

c� Carroll Morgan ����� ����� ����

�� Case study� Square root

Law ��� remove invariant Provided w does not occur in inv �

w � �pre � inv � post � v w � �pre � post � �

�

We now intend to re�establish r � � s � q� in the postcondition with an as�
signment� either q � � p or r � � p� By investigating the proviso of assignment ��	�
calculating �r � � s � q���qnp�� we can see that the �rst requires a precondition
s � p� �or at least as strong as that�� similarly� the second requires s p�� That
case analysis supplies the guards for our alternation�

v if s � p� � q � �s � p� � p � q � I � q � q�� �v�
�� s p� � r � �s p� � r � p � I � r� � r � �vi�
�

�v� v q � � p

�vi� v r � � p �

Note that the re�nement markers �v� and �vi� refer to the bodies of the alternation
branches� and do not include the guards�

The simpli�cations of the variant inequalities are possible because we have used
contract frame ��
 in each case� In �v� for example� removing r from the frame
allows us to rewrite q � r � q� � r� as q � r � q� � r � thence just q � q��

Now only �iv� is left� and it has many re�nements� the assignment p � � r � �
and p � � q � � are two� But a faster decrease in the variant � hence our more
e!cient program � will result if we choose p midway between q and r �

�iv� v p � ��q � r�� 	 �

There we have reached code�

�� Exercises

Ex� ��� Re�ne �iii� to code�

Ex� ��� � Write out the code of the entire square�root program�

Ex� ��� Why can we assume r�� � q in the precondition of �iv�� Would r � q

have been good enough� Why�

Ex� ��	 � Justify the branches �v� and �vi� of the alternation� where does p � q

come from in the precondition of �v�� Why does the postcondition of �vi� contain
an increasing variant�

c� Carroll Morgan ����� ����� ����

Exercises ��

Ex� ��
 Return to �ii� and make instead the re�nement

v I b� r � � s�

r � �I � s � �r � ���� �

Re�ne that to code� Compare the e!ciency of the result with the code of Exercise
��	�

Ex� ��� Supply all the missing justi�cations and�or steps in this proof of remove
invariant ����

w � �pre � inv � post �
� w � �pre � inv � inv � post �
v w � �pre � inv � post �
v w � �pre � post � �

Where does the proof fail when inv contains w�

c� Carroll Morgan ����� ����� ����

Chapter �

Initial variables

We met initial variables brie#y in Chapter �� where they were necessary to specify
the decrease of variants� In this chapter we study them further� presenting gener�
alisations of earlier laws and de�nitions in order to take initial variables fully into
account�

��� Simple speci�cations

We have seen that both initial variables and logical constants can be used to refer
in a postcondition to a value based on the initial �rather than the �nal� state�
Just which one is used in any particular situation is a matter of taste� the three
commands

x � � x � � �
x � �x � x� � ��

and j� con X � x � �x � X � x � X � �� �j
all increment x by �� They are equal as programs�

That the �rst two are equal is a consequence of this abbreviation� relating as�
signments and speci�cations of a simple kind�

Abbreviation �� simple speci�cation For any relation ��

w ��E � w � �w � E�� �

where E� is E �wnw���
�

As a special case we have that

w � �E � w � �w � E�� �

�

Initial variables precisely ��

which explains the equality of x � � x � � and x � �x � x� � ��� A further speciali�
sation� requiring E to contain no w � returns us to our earlier simple speci�cation
����

But there are many other uses of the idiom� the command x �� x � for example�
increases x strictly� In the context of the declaration n � N � the command n�� n

decreases n strictly� but not below �� Abbreviation �� allows us to write such
assignments in abstract programs without losing the opportunity of re�ning them
subsequently�

That latter example above is perhaps slightly surprising� and we should look at
precisely how the declaration ensures that n remains non�negative� The simple
answer is that in the context n � N nothing can make n negative� not even the
assignment n � ���� �Recall the discussion in Section ����� Thus if we re�ned
n�� n to n � � n�� in the context n � N � and it is a re�nement � the assignment
n � �n�� would be miraculous� and would fail the type�checking� Could we re�ne
n�� n to n � � n� �� for which type�checking would succeed� We cannot� for after
using simple speci�cation �� to produce n� �n � n��� we would by assignment ��	
have to show

n � N V n � � � n �

That we cannot do� because we do not have in particular that �� � � ��

��� Initial variables precisely

The second equality of the previous section is a consequence of this abbreviation�
which by using con makes our ��subscript convention precise�

Abbreviation �� initial variable Occurrences of ��subscripted variables in the post�
condition of a speci�cation refer to values held by those variables in the initial state�
Let x be any variable� probably occurring in the frame w � If X is a fresh name�
and T is the type of x � then

w � �pre � post �b� j� con X � T � w � �pre � x � X � post �x�nX �� �j �
�

The frame of a speci�cation has so far been our only reference to initial values�
those not in the frame are preserved� Now that initial variables allow us to be more
explicit� we can give laws for manipulating the frame�

Law �� expand frame

w � �pre � post � � w � x � �pre � post � x � x�� �

�

c� Carroll Morgan ����� ����� ����

�� Initial variables

Note that Law �� is an equality� the re�nement goes both ways� The conjunct
x � x� in the postcondition prevents x from changing� and so does omitting it from
the frame� With Law �� we can prove our earlier contract frame ��
� as follows�

w � x � �pre � post �
v �strengthen postcondition ���

w � x � �pre � post � x � x��
� w � x � �pre � post �x�nx � � x � x��
� �expand frame �� in reverse

w � �pre � post �x�nx �� �

��� Sequential composition revisited

Initial variables bring also a danger� there are some laws in which they must be
explicitly banned� Consider the following incorrect use of sequential composition
����

x � �x � x� � �� �i�
v� �sequential composition ���

x � �x � �� �
x � �x � � � x � x� � �� �ii�

v x � � �� x � � � �

It is incorrect because at �i� the initial variable x� refers to the initial value of x �
while at �ii� it has come to refer to the intermediate value of x � between the two
commands�

That is why Law ��� carried a warning footnote� it may not be used when initial
variables occur in mid or post �

The correct law for sequential composition� when dealing with initial variables�
is the following�

Law �	 sequential composition For fresh constants X �

w � x � �pre � post �
v con X �

x � �pre � mid � �
w � x � �mid �x�nX � � post �x�nX �� �

The formula mid must not contain initial variables other than x��
�

Law �
 is considerably more complicated than sequential composition ���� and so
should be reserved for cases in which its extra power is essential� Other alternatives
are sequential composition B�	 �probably the most appropriate in general�� leading
assignment �� and following assignment ��� �good for speci�c cases��

c� Carroll Morgan ����� ����� ����

Leading assignment ��

f � n� �n � n� � � � f � f� � n�
v con N �

n� �n � n� � �� �
f � n� �n � N � � � n � N � � � f � f� � n�

v n � �n � ��
f � � f � n �

Figure �� Sequential composition with initial variables

The constraint of Law �
 ensures that mid �x�nX � contains no initial variables
at all� they would not be meaningful in a precondition� �But see Exercise �	��
Figure �� gives an example of using Law �
�

Returning to the example that began this section� using Law �
 we have

x � �x � x� � ��
v con X �

x � �x � �� �
x � �x � � � x � X � �� �

No longer can the second command be re�ned to x � � �� In fact� it cannot re�ne
to any code� since the logical constant X cannot be eliminated from it� But that
is not surprising� we do not expect to increment x by �rst setting it to ��
For more examples of sequential composition �
 see Exercises ��� and ���

��� Leading assignment

As an example of the use of the fuller form of sequential composition� we give
here a law complementary to following assignment ���� now the assignment comes
before� rather than after� the speci�cation�

Law �
 leading assignment For any expression E �

w � x � �pre�xnE � � post �x�nE���
v x � �E �

w � x � �pre � post � �

The expression E� abbreviates E �w � xnw�� x���
�

With sequential composition �
� we can prove Law �� as follows�

c� Carroll Morgan ����� ����� ����

�	 Initial variables

w � x � �pre�xnE � � post �x�nE���
v �de�nition of E�

w � x � �pre�xnE � � post �x�nE �w � xnw�� x����
v �sequential composition �
 � con X �

x � �pre�xnE � � pre � x � E �xnx��� � �i�
w � x � �pre � x � E �xnx���x�nX � �

post �x�nE �w � xnw�� x����x�nX �� �ii�

�i� v x � �E

�ii� v w � x � �pre � x � E �xnX � � post �x�nE �w � xnw��X ���
v �strengthen postcondition ���� using x� � E �xnX ��w�nw � from precondi�

tion

w � x � �pre � x � E �xnX � � post �
v w � x � �pre � post � �

Our earlier version leading assignment ��� is a special case of the above� where we
start with a simple speci�cation derived from an assignment�

��� Exercises

Ex� �� Assuming x � R� prove this�

x �
h
x � � � x � ��

p
x�
i

v x �
h
x � � x �

p
x�
i
�

x � �x �� � � x � ��x�� �

Hint� Use a stronger mid than x �
p
x��

Ex� �� � Suppose a speci�cation w � �pre � post � refers to x� in the postcon�
dition even though x is not in the frame� Why is that unnecessary� Use expand
frame �� to show that it is equal to w � �pre � post �x�nx ���

Ex� �� The abbreviation initial variable �	 gives us this alternative to expand
frame ���

Law �� expand frame For fresh constant X �

w � �pre � post �

v con X �

w � x � �pre � x � X � post � x � X � �

�

Use expand frame �� to show that

skip

c� Carroll Morgan ����� ����� ����

Exercises ��

v con N �

n � �n � �� n � �n � � �

Assume n � N � Hint � Recall the formulation of skip on p����

Ex� �	 � Prove these equalities�

w � �pre � post � �i�
� w � �pre � ��w � pre�	 post � �ii�
� w � �pre � ��w � pre� � post � � �iii�

Hint � To prove equality� show �i� v �ii� v �iii� v �i��

Ex� �
 � Write down the law resulting from sequential composition �
 in the
special case that mid and post contain no x�� In what way is the result more
general than sequential composition ����

Ex� �� Assuming n � N � use De�nition ��� to show that the speci�cation
n� �n �� � � n � n�� is feasible�

Ex� �� � Show for any frame w that

w � �true � false� � � �true � false� �

and hence that magic need not mention its frame� Hint � Use expand frame ���
and recall the hint of Exercise �
�

Ex� � Repeat Exercise �� for abort�

Ex� �� Repeat Exercise ��� this time taking initial variables into account�

c� Carroll Morgan ����� ����� ����

Chapter �

Constructed types

In earlier chapters we used basic mathematical types for our variables� all of them
numbers of various kinds� In this chapter we are more ambitious� and expand our
repertoire considerably by using the types we have already to make other types�
and those to make others still� Our tools are powersets� bags� sequences� functions
and relations�

��� Powersets

����� Making powersets

Given any type we can form its powerset� the type that contains all its subsets�
given a type T � the type setT has as elements all subsets of T � Thus values
of the type setN include fg� f��g� f	� �g� the set of non�negative even numbers
f�� 	�
� � � �g and of course N itself�

As a special case� the type �nsetT has as elements all �nite subsets of T � �Thus
N �� �nsetN ��

That�s all there is to making powersets� but when we introduce a new type� or
type construction� we must also decide how to describe individual elements of the
type and what operators will be available to use with them�

����� Using powersets� set enumeration and operators

Finite sets can be written by giving their elements explicitly� by enumeration be�
tween set brackets f� � �g� For example� the set f�� 	� �g contains three elements
exactly� �� 	� and �� The order of elements does not matter in set enumerations
�f�� 	� �g is the same as f�� 	� �g�� and if by chance a value is written more than
once� it makes no di�erence �f�� 	� 	� �g is still the same��

�

Powersets ��

� union functions
� intersection
� �set� subtraction
� Cartesian product

� membership relations
� inclusion
� strict inclusion

$ cardinality �a function to N�

Figure ��� Basic set operators

Set enumerations cannot describe in�nite sets� except informally� because we
cannot write all the elements down� although we might say that the set of even
numbers is

f�� 	�
� � � �g �
we cannot really give �� � �� any precise meaning in general�
Our numeric types have operators like � and �� and our set types have their

own operators� like � �union� and � �intersection�� Those are what we use in terms
to combine given sets to form others� Figure ��� gives a selection of set operators�

����� Set comprehension

Set comprehensions de�ne sets by some characteristic of their elements� rather than
by writing them out� and they apply equally well to both �nite and in�nite sets�
For example� the even numbers are those natural numbers n for each of which
there is another natural number m with n � 	m�

fn � N j ��m � N � n � 	m�g �

The general set comprehension has three parts �although the example above had
just two�� The �rst is a list of bound variables and their types� In the above� that
list contains just one variable n and its type N � If there are several variables and
types� they are separated by a semicolon� for example m � N � n � N	 � �As in
variable declarations� a repeated type may be omitted� thus we can write m� n � N
for m � N � n � N ��

The set is formed by allowing the bound variables to range over their types�
The second part is a formula� called the range� in the comprehension above�

it is ��m � N � n � 	m�� The formula usually refers to bound variables of the

c� Carroll Morgan ����� ����� ����

�� Constructed types

fn � N j n � �g � f�� 	� �� � � �g � N	

fn � N j n � �g � fg
fm� n � N j m � ng � f��� ��� ��� 	�� � � � � ��� 	�� ��� ��� � � �g
fn�m � N j m � ng � f��� ��� �	� ��� � � � � �	� ��� ��� ��� � � �g

fn � N ��ng � f������	� � � �g
fm� n � N � m � ng � f�� �� 	� � � �g � N

fm� n � N j m n � m� � n�g � f�� �� ��
� �� �� � � �g
fm � N � n � f�� �� �g �
m � ng � f�� �� ��
� �� �� � � �g

Figure ��� Set comprehensions

comprehension �but need not�� It can also refer to other variables� in which case
the set formed depends on the value of those� In any case� only values that satisfy
the formula are considered while the bound variables range over their types� other
values are just ignored� Sometimes the formula is just the formula true� in which
case it �and the j� pronounced �such that�� can be left out�

The third part of the comprehension is a term� For each possible value of the
bound variables� it is the value of the term that is put into the set� In the above�
the term is left out because it is just the bound variable n itself� In general� a
missing term is understood to be the tuple formed from the bound variables taken
in order� �A �monotuple�� containing just one component� is just the component
itself��

If the term is present� it is preceded by a spot � �pronounced �make��� Here is
another de�nition of the set of even numbers�

fm � N � 	mg �

Figure ��	 gives further examples�

����	 Promoted relations

If we have a type T with some relation � on its elements� we can use the same
symbol � for a promoted relation between sets s�� s	 � setT as follows�

s�� s	 b� �
 t� � s�� t	 � s	 � t�� t	� �

And given a single element t � T we further de�ne

t � s	 b� �
 t	 � s	 � t � t	�
s�� t b� �
 t� � s� � t�� t� �

The convenience of promotion usually outweighs the danger of confusing the two
relations denoted by the symbol�

c� Carroll Morgan ����� ����� ����

Bags ��

Often the relation � is a total order� and the promoted relation allows formulae
of this kind�

�� s� � s	� every element of s� is less than every element of s	�
	� n � s � n � s� the minimum value in s is n�

One must be especially careful� however� with transitivity� a promoted relation
is not necessarily transitive� even if it is based on a transitive relation� from � � fg
and fg � � �both true� we cannot conclude that � � �� �See Exercise �����

��� Bags

����� Bag enumeration and operators

A bag� like a set� is a collection of elements� Unlike a set� however� an element
can belong to a bag �more than once�� Given a type T � the type of all bags of its
elements is written bagT �
For bag b and element e� we write b�e for the number of times e occurs in b� and

the formula e � b is true if and only if b�e �� �� Traditional set operators carry
across to bags�

�b� � b	��e � b��e t b	�e
�b� � b	��e � b��e u b	�e
�b�� b	��e � �b��e � b	�e� t � �

As well� there is a new operation of bag addition�

�b� � b	��e b� b��e � b	�e �

Like sets� bags can be explicitly enumerated� the elements are written between
bag brackets bb and cc� Unlike set enumerations� bag enumerations are sensitive to
how many times an element is written� if it is written twice� then it occurs twice
in the bag� But order is still ignored� Figure ��� gives examples of bags and bag
operations�

����� Conversion between bags and sets

The function set converts a bag to a set by �forgetting� multiplicity�

set � bagT � setT �

For example� setbb�� 	� 	� �cc � f�� 	� �g� In general� for s � set b we have that e � s

i� e � b�
The function bagn goes the other way� converting a set into a bag�

bag � N� setT�bagT �

c� Carroll Morgan ����� ����� ����

� Constructed types

bb�� 	� 	� �cc�� � �
bb�� 	� 	� �cc�	 � 	
bb�� 	� 	� �cc�� � �
bb�� 	� 	� �cc�
 � �
bb�cc � bb�cc � bb�cc
bb�cc � bb�cc � bb�� �cc

bb�cc � bb�� �cc � bb cc
bb�� �cc � bb�cc � bb�cc

Figure ��� Examples of bags and bag operations

bbn � bb�� 	� 	� �cc � 	ncc � bb	�
�
� �cc
bbm� n � N � m � ncc � bb�� �� �� 	� 	� 	� � � �cc

bbm� n � N j m � n � m � ncc � bb�� 	� �� ��
�
� � � �cc
bbm� n � N j m � n � ncc � bb�� 	� 	� �� �� ��
�
�
�
� � � �cc

Figure ��	 Examples of bag comprehensions

Each element in the set is given multiplicity n in the resulting bag� if n is omitted�
it is taken to be �� For example� bag� f�� 	g � bb�� �� 	� 	cc� Whenever b � bagn s�
we have that b�e � n if e � s� and b�e � � if e �� s� Finally� the two functions are
complementary in the sense that for any set s� set bag s � s�

Promoted relations between bags are available as for sets�

����� Bag comprehension

Bag comprehensions� like set comprehensions� de�ne bags by some characteristic of
their elements� the di�erence is that they are written between bag brackets instead
of set brackets� Unlike set comprehensions� the types of the bound variables are
bags themselves� �If they are written as sets� then they are �rst implicitly converted
to bags by the function bag��

Multiplicity in bag comprehensions can arise in two ways� First� particular values
of bound variables can occur more than once �since they are themselves taken from
bags�� Second� if the comprehension makes a term� it is possible for the same value
to result from evaluations of the term with di�erent values for the bound variables�
thus bbn� bb��� �� �cc � n�cc � bb�� �� �cc�

Figure ��
 gives examples of bag comprehensions�

c� Carroll Morgan ����� ����� ����

Sequences ��

��� Sequences

����� Sequence enumerations and operations

A sequence is a collection of elements in which the order �and multiplicity� is
signi�cant� Given a type T � the type seqT has as elements all �nite sequences of
elements of T �of any length� including ��� For the type of all sequences of T with
�xed length L we write seqLT � As a special case we use seq�T for the type of
all strictly in�nite sequences of T �

Sequence enumerations are written between the sequence brackets h and i� For
sequence q and natural number n� we write q �n� for the element occupying the nth

position of q � with the �rst position being index ��
For sequences of integers� we allow a special ellipsis notation� the term m�n

denotes the sequence starting at m and ending just before n� Thus ��
 is the
same as h�� 	� �i�

The principal operations on sequences are cons ���� concatenation ����� head hd�
tail tl� front fr� last lt� and length �$�� They are summarised in Figure ���� and
Figure ��� gives examples of their use�

����� Conversions between sequences� bags� and sets

The function seq� converts a bag or set to a sequence whose elements are ascending
in the total order �� if a occurs before b in the sequence� then a � b� If the order
� is omitted� it is understood to be the standard order on the element type of the
bag or set� For seq� to be well�de�ned� the order � should be such that every
non�empty set has a least element with respect to the order�

If an element occurs n times in the bag� it is repeated n times in the sequence�
when seq is applied to a set� however� each element occurs exactly once in the
resulting sequence�

The function bag takes sequences to bags �as well as sets to bags�� and the mul�
tiplicity in the sequence is preserved� Similarly� the function set takes a sequence
to the set of its elements �in which case the multiplicity is not preserved��

Those functions too are complementary� for any set s and bag b�

bag seq� b � b

set seq� s � s �

We may omit the conversion functions altogether if their use is implicit in the
context� and that allows some compact �and possibly confusing� idioms� Some
examples are given in Figure ����

Promoted relations are available between sequences as for sets and bags� �That
follows in fact from the implicit conversion convention� the sequences are converted
to sets �rst��

c� Carroll Morgan ����� ����� ����

� Constructed types

$q The number of elements in q �

e�q The sequence whose �rst element is e� and
whose subsequent elements are those of q � We
have �e�q���� � e and for � � i � $q �
�e�q��i � � q �i � ���

q� �� q	 The sequence that begins with q� and carries
on with q	� We have �q���q	��i � equals q��i ��
if � � i � $q�� and equals q	�i � $q�� if
� � i �$q� � $q	�

hd q The �rst element of q � provided q is not empty�
We have hd�hei�� q� � e�

tl q The second and subsequent elements of q � pro�
vided q is not empty� We have tl�hei��q� � q �

fr q All but the last element of q � provided q is not
empty� We have fr�q �� hei� � q �

lt q The last element of q � provided q is not empty�
We have lt�q �� hei� � e�

Figure ��
 Operations on sequences� de�nitions

$hi � �
h�� 	i�� hi � h�� 	i
hi�� h�� 	i � h�� 	i

��h	� �i � h�� 	� �i
h�i�� h	� �i � h�� 	� �i
hdh�� 	� �i � �
tlh�� 	� �i � h	� �i
frh�� 	� �i � h�� 	i
lth�� 	� �i � �

Figure ��� Examples of operations on sequences

����� Sequence comprehension

Sequence comprehensions de�ne sequences by some characteristic of their elements�
The bound variables should be sequences themselves �though implicit conversion
c� Carroll Morgan ����� ����� ����

Sequences �

e � q e occurs in the sequence q �
q �e the number of times e occurs in sequence q �
s�n� the nth �from�least element of the set s�
b�n� the nth �from�least element of the bag b�
q � bag q the sequence q is in order�
bag q � set q the sequence is without repetition�
b � set b the bag is without repetition�

Note that in the �nal three cases� it is the right�hand side that is con�
verted implicitly� rather than the left �though either would achieve type
compatibility�� Where there is a choice� we take the conversion that
adds information �for example� from bag to sequence��

Figure ��� Implicit conversion idioms

hn � N � 	ni � h�� 	�
� � � �i
hi � ���� j i� � ��i � h� �i

hi � j � N j j � ii � h��� ��� �	� ��� �	� ��� ��� ��� � � �i
hn � N � n�i � h�� ��
� � � �i �� sq � say�
hn � N � n
i � h�� �� � � � �i �� cb� say�

hi � sq � j � cb j i � j � ii � h�� �� �
� �	�� � � �i

Figure �� Sequence comprehensions

may operate� if the element types have standard orders�� then the order of the
resulting sequence is determined by taking the values of the bound variables� in
order� from their types� If there are several bound variables� then the rightmost
varies fastest� Figure �� gives examples of sequence comprehensions�

Sequences of sequences allow multi�dimensional structures� and for q �i ��j � we
allow the abbreviation q �i � j �� The �i th row� of q is just q �i �� The �j th column� of q
is hi � ��$q � q �i � j �i�

����	 Sequence idioms

We list below some convenient operations on sequences that can be de�ned by
comprehension�

c� Carroll Morgan ����� ����� ����

	 Constructed types

Filter

A �lter is a one�place predicate p which can be used to select those elements of a
sequence to be retained� in their original order� For sequence q � its �lter by p is
he � q j p ei� More succinctly� we can write just p � q �

Composition

Given some sequence i of natural numbers� the composition of a sequence q with i

is made by taking the elements of q indexed by the elements of i � It is written q �i �
�distinguished from the ordinary indexing by the fact that i is a sequence�� and is
equal to hn � i � q �n�i� Note that q �i � is not necessarily a subsequence of q � because
i itself might be out of order�

h�� 	�
� �� i�h	� �i� � h
� 	i �

The operation is called composition because of its being related to functional com�
position when the sequences are considered to be functions from their indices to
their elements�

Subsequence

A subsequence is a sequence composition taken in the original order� For that� we
take a set s of natural numbers� and write q �s�� The implicit conversion takes s to
a sequence � in ascending order � and the resulting composition then selects the
elements in that order� A sequence q	 is a subsequence of another q� i� there is
a set of natural numbers that produces q	 from q� in the above way� in that case
we write q	� q�� which is de�ned to be �� s � setN � q	 � q��s��� For example�

h�� 	�
� �� i�f�� �g� � h	� �i
h	� �i � h�� 	�
� �� i �

We also allow the complementary qns� which is the subsequence formed by exclud�
ing the indices in s� it is hi � ��$q j i �� s � q �i �i� For example�

h�� 	�
� �� inf�� �g � h��
� i �

Subsegment

A subsegment is a contiguous subsequence �without �gaps��� For that� we compose
with a sequence m�n for some natural numbersm and n� the resulting subsegment
of q is q �m�n�� A sequence q	 is a subsegment of another q� i� there is a pair of
natural numbers that produces q	 from q� in the above way� in that case we write
q	 � q�� which is de�ned to be ��m� n � N � q	 � q��m�n��� For example�

h�� 	�
� �� i����� � h	�
i
h	�
i � h�� 	�
� �� i �

c� Carroll Morgan ����� ����� ����

Distributed operators �

Pre�x

A pre�x is a subsegment that begins the sequence� We compose with a sequence
��n for some natural number n� the resulting pre�x is q ���n�� which we can
write q�n and pronounce �q take n�� A sequence q	 is a pre�x of another q� i�
there is a natural number that produces q	 from q� in the above way� in that case
we write q	 � q�� which is de�ned to be �� n � N � q	 � q��n�� For example�

h�� 	�
� �� i�
 � h�� 	�
� �i
h�� 	�
� �i � h�� 	�
� �� i �

Su�x

A su�x is a subsegment that ends the sequence� For sequence q � we compose with
a sequence n�$q that removes the �rst n elements� thus the su!x is q �n�$q ��
We can write that q�n� it is pronounced �q drop n�� Note that q�n �� q�n � q for
all n such that � � n � $q � For example�

h�� 	�
� �� i�
 � hi �

��� Distributed operators

The set� bag� and sequence comprehensions have in common the ideas of bound
variable� range� and term� each makes a set� bag� or sequence respectively as
indicated by the surrounding brackets� f� � �g� bb� � �cc� or h� � �i� That convention can
be generalised� as we see below� But �rst we consider some properties of binary
operators on their own�

A binary operator is associative if for all a�b�c of appropriate type we have

�a b� c � a �b c� �

Many of the arithmetic operators are associative �Figure ��	�� in particular we have
associative �� �� t and u� The set operators �� �� the bag operator �� and the
sequence operator �� are associative as well�

To each associative operator corresponds a distributed operator that can be ap�
plied to a whole sequence� For example� corresponding to �� which sums two
numbers� we have

P
� which sums a sequence of numbers� In general� distributed

operators are written

� x � q j R � E � �

where is the associative binary operator� x is the bound variable� R is the range
formula� and E is the term� The elements x of the sequence q are considered�
one�by�one� in order� those satisfying R are retained� the term E is formed for
each� and �nally is applied �between� the resulting values� in order� Since is
associative� it does not matter how the applications of are grouped�

c� Carroll Morgan ����� ����� ����

 Constructed types

��i � ��n � i�� The sum of the �rst n squares�

��d � N j �d j n�� The product of the divisors of
n � N�

�uz � Z j z r� The ceiling d e of r � R�

�tq � � seqZ j q � � q � q � � � � $q �� The length of the longest sub�
segment of q � seqZ all of
whose elements are negative�

Figure ��� Examples of distributed operators

The same conventions apply to distributed operators as to comprehensions� the
range R defaults to true� and the term E defaults to the bound variable x � Hence
we can de�ne the sum of a sequence q � seq Z� say� asX

q b� ��x � q j true � x � � ��x � q� �

Distributed operators are applicable to the empty sequence only if the original
operator has an identity� a value e such that for all a we have e a � a e � a�
In that case the result is the identity e� and for example we have therefore thatPhi � ��
An operator is commutative if for all a and b we have

a b � b a �

If an operator is commutative and associative� it can be distributed over bags as
well as sequences� A non�commutative operator �like ��� cannot be distributed
over a bag� because the result depends on the order in which elements are taken�
and a bag has no order�

Finally� an operator is idempotent if for all a

a a � a �

Any operator having all three properties can be distributed over sets as well� Thus
the maximum of a set s of numbers is simply

�tx � s� �

If a non�commutative operator is distributed over a bag� or a non�idempotent
operator over a set� we implicitly convert the bag to a sequence� or set to a bag�
as appropriate� Thus ��x � s� is the sum of the elements in the set s�

Figure ��� gives examples of distributed operators�

c� Carroll Morgan ����� ����� ����

Functions �

��	�� Quanti�ers with ranges

Conjunction � and disjunction � are associative� commutative� and idempotent
too� and they are operators over the Boolean type ftrue� falseg� They are also
propositional connectives � symbols we use within formulae � and we can exploit
their properties there as well� we say that distributing � gives
� and distributing
� gives ��

In fact� the notations of Sections 	���� and 	���� are deliberately close already
to that for distributed operators� and the correspondence can be made exact by
introducing ranges for quanti�ers� �See Predicate laws A��
 and A�����

��� Functions

��
�� Partial functions� domain and range

The square root function
p
� taking real numbers to real numbers� has type

R !� R �

The left�hand R� the source� is the set from which the arguments are drawn� the
right�hand R� the target� is the set within which the results lie� The direction of
the arrow indicates which is which �from source to target�� and the stroke on the
arrow indicates that the function is partial� there are some elements of its source
for which it is unde�ned�

There is no reason in principle� given the freedom we already allow ourselves
with abstract programs� that we could not declare a variable of that same type
and assign

p
to it�

var f � R !� R�

f � ��
p
� �

�We have enclosed
p

in parentheses to make it clear that we mean
p
as a function�

not
p

expecting some further argument��
In fact we shall do exactly what is suggested above� allowing for any two types

S and T the function type S !�T which� itself a type� can be used in declarations
or to build still further types�

Our mathematical view of functions is that they are sets of pairs� with each pair
containing one element from the domain and the corresponding element from the
range� Thus these pairs are some of the elements of

p
�

��� ��
��� ��
���	�� ����
���� �� � � �

c� Carroll Morgan ����� ����� ����

� Constructed types

All of the pairs are elements of the Cartesian product of R with R� written R �R�
in general the elements of the set S � T are pairs �s� t� with one element drawn
from S and the other from T � Thus any function in S !�T is a subset of S � T �

Associated with functions� as a type� are certain operations� The domain of a
function is that subset of its source on which it is de�ned� for f � S !�T �

dom f b� fs � S � t � T j �s� t� � f � sg �

Since f is itself a set� we can write that more succinctly as

f�s� t� � f � sg

if we allow tuples as bound variables �which therefore we do��
The range of a function is that subset of the target which it might actually

produce �given the right arguments��

ran f b� f�s� t� � f � tg �

Thus dom�
p
� � ran�

p
� � �the non�negative reals��

Note that ran�
p
� � �the non�negative reals� means in particular that every non�

negative real number is the square root of something�

��
�� Total functions

For any function f � S !�T � we have dom f � S and ran f � T � When equality
holds in either case� we can be more speci�c� function f above is total when it is
de�ned on all its source� In other words�

f is total means that dom f � S �

If f can produce every element of its range� we say that it is onto �or surjective��

f is onto� or surjective� means that ran f � T �

For total functions we have the special notation of �uncrossed� arrow� so that declar�
ing f � S�T is the same as declaring f � S !�T and stating additionally that f
is total� Put another way�

var f � S�T

has the same e�ect as var f � S !�T � and dom f � S �
Totality of a function is relative to its declared source� although partial over R�

the square root function is total over the non�negative reals� The same applies to
whether the function is onto� thus square root is total and onto if declared from
non�negative reals to non�negative reals�

c� Carroll Morgan ����� ����� ����

Functions �

��
�� Function application and overriding

Given f � S !�T and some s � dom f �which implies that s � S as well�� we apply
the function f to its argument s by writing f s� The result is an element of ran f �
and of T �since ran f � T �� An alternative way of writing the application is f �s��

��Ordinarily�� such function application is written f �s�� We have chosen instead
to reserve parentheses for grouping� and indicate application by simple juxtapo�
sition� The f �s� variant is suggested by analogy with sequences� since they are
functions from their indices to their values��

As an �abuse� of notation �actually a convenience�� we allow f �ss�� given ss � setS
as a set of values� and by it we mean the set of results obtained by applying f to
elements of ss separately �and ignoring those that are unde�ned�� Thus

f �ss� b� f�s� t� � f j s � ss � tg �

We can modify a function at one or more of its source values� so that

f �s � � t �

is the function f overridden by s � � t � Letting g be f �s � � t �� we have

g �s� � t �no matter what f �s� is��
and g �s �� � f �s �� for any s � �� s�

If s �� s � and f is not de�ned at s �� then neither is g �
Similarly�

�f �ss � � t ���s� � t if s � ss

� f �s� if s �� ss �

More generally still� we can override f by another function g � the resulting
function f �� g behaves like g if it can �if g is de�ned at that argument�� otherwise
like f � Thus

�f �� g��s� � g �s� if s � dom g

� f �s� otherwise�

If neither f nor g is de�ned at s� then f �� g is unde�ned there also�
In terms of sets�

f �� g � f�s� t� � f � g j s � dom g 	 �s� t� � gg �

That last formulation takes unde�nedness automatically into account�
Our earlier notations for overriding can now be seen as special cases of the

above� because f �s � � t � is just f overridden by the �singleton� function f�s� t�g�
which takes s to t but is unde�ned everywhere else� In the f �ss � � t � case the
overriding function is fs � ss � �s� t�g� de�ned only on ss�

The overriding notations ��s � � � � ��� apply to sequences also� as they are a special
case of functions�

c� Carroll Morgan ����� ����� ����

 Constructed types

��
�	 Restriction and corestriction

Finally we have operators for restricting functions to smaller domains and ranges�
Given f � S !�T � ss � setS and tt � setT � we de�ne

ss C f b� f�s� t� � f j s � ssg
ss �C f b� f�s� t� � f j s �� ssg
f B tt b� f�s� t� � f j t � ttg
f �B tt b� f�s� t� � f j t �� ttg �

An immediate use for �C is an even more compact de�nition of overriding�

f �� g � ��dom g��C f � � g �

��	 Relations

����� Generalised functions

Relations are a generalisation of functions� for source S and target T the corre�
sponding relational type is written

S " T �

and� like functions� relations are sets of pairs� In fact�

S " T � set�S � T � �

which means that any subset of S �T is a relation� In contrast� only some subsets
of S � T are functions� just which subsets they are we shall see shortly�

The generalisation of relations beyond functions is that relations are �multi�
valued�� whereas for function f and source value s there is at most one f �s�� for
relation r there may be many related target values�

Compare for example the function pred of type N !� N �it subtracts � from pos�
itive natural numbers� with the relation �less than� �� of type N " N � The two
agree on source element � �because pred is unde�ned there� and no natural number
is less than ��� and on source element � �because pred � � � and the only natural
number less than � is ��� But beyond � we �nd that � is more generous�

source value s pred s less than s

	 � ���
� 	 ����	

 � ����	��

The function returns just one value� whereas the relation relates s to many values�
the predecessor of s is one of the values less than it�

c� Carroll Morgan ����� ����� ����

Relations �

As sets� we have

pred � f��� ��� �	� ��� ��� 	�� � � �g
��� � f��� ��� �	� ��� �	� ��� ��� 	�� ��� ��� ��� ��� � � �g �

and thus we see clearly the di�erence between a relation and a function� in this
case it is just that pred � ����

����� Functions are relations

Functions and relations are both sets of pairs � but functions have the special
property of being single�valued� for relation r in S " T � we say that r is functional�
or single�valued� if for all s in S there is at most one r �related t in T � That is�
r � S " T is functional i�

�
 s � S � t � t � � T � �s� t� � r � �s� t �� � r 	 t � t �� �

Thus a function is just a functional relation�
A related property is injectivity �or being one�to�one�� a relation r � S " T is

injective if

�
 s� s � � S � t � T � �s� t� � r � �s �� t� � r 	 s � s �� �

The same notion applies to functions � because they are relations � and so an
injection �or one�to�one� function is one that cannot deliver the same result for
di�erent arguments� Thus pred is injective� because a � � � b � � V a � b� but
sqr is not� because for example

sqr���� � � � sqr � �

but �� �� �� �Function sqr returns the square of its argument� Don�t worry about
the font convention for functions � it is only a convention� after all � but we
are using sans serif for speci�c� named functions like sqr� and italic for function
variables like f ��

Most of the operators and notations we have de�ned for functions work for
relations as well� and we summarise them here� for r � S " T �

dom r � f�s� t� � r � sg
ran r � f�s� t� � r � tg

r is total i� dom r � S

r is onto i� ran r � T

if ss � set S � then r �ss� � f�s� t� � r j s � ss � tg �

For overriding we have

r �� r � � ��dom r ���C r� � r � �

c� Carroll Morgan ����� ����� ����

�� Constructed types

and for the more speci�c cases then

r �s � � t � � r �� f�s� t�g
r �ss � � t � � r �� fs � ss � �s� t�g �

Thus for example r �s � � t � replaces all associations from s with a single new asso�
ciation to t �

Finally� for applying a relation one might be inclined to de�ne

r �s� � ft � T j �s� t� � rg �

but there is a potential confusion there in that we would not know for example
whether pred � was � �taking pred as a function� or f�g �taking pred as a relation��

For writing that s and t are related by r � we have two possibilities� either
�s� t� � r � relying on the set�based nature of r � or shrit � a special notation for
relations�

The fact that functions are relations causes no problems here� since �hpredi�
means the same as � � pred �� �Note however the confusion caused by the gen�
eral convention of writing function types from left to right� but supplying their
arguments on the right"�

����� Inverses

Given r � S " T � its inverse is written r�� and is of type T " S � The value of
r�� is obtained from r simply by reversing the pairs�

r�� � f�s� t� � r � �t � s�g �

Thus ����� � ���� and pred�� � succ �where function succ adds � to its argument��
That pred�� is a function �rather than a relation� is just a bit of good luck� it

is because pred is injective� In contrast� inverting sqr does not give a function�
because for example

f������� ��� ��g � sqr�� �

Since sqr is not injective� its inverse is not functional� it is a proper relation that
for any argument supplies both the positive and the negative square root� Our
earlier function

p
is a proper subset of sqr���

��
 Exercises

Ex� ��� Evaluate these terms�

�� bagfg
	� setbbcc

c� Carroll Morgan ����� ����� ����

Exercises ��

�� bag� s

� bagf�� �g
�� setbb�� �cc
�� setbbm� n � N � m � ncc �

Ex� ��� � Write set comprehensions for the following�

�� The perfect squares�
	� The natural numbers whose prime factors are in the set f	� �� �g�
�� The prime numbers�

� The complex nth roots of unity�

Ex� ��� � Consider this alternative de�nition of the promoted relation ��
s�� s	 b� s� �� fg � s	 �� fg � �
 t� � s�� t	 � s	 � t�� t	� �

Now suppose that � is transitive� is its promotion transitive as well� Why don�t
we de�ne promotion as above�

Ex� ��	 Evaluate these terms�

�� seqN �
	� seq bagh	� �� �� �i�
�� seq seth	� �� �� �i�

� fn � N � 	ng ��� �The �th element of the sequence formed from that set��
�� hm� n � N � m � ni��� �The number of occurrences of �� in the bag formed

from that sequence��

Ex� ��
 Show that the operations �� �� and �� applied to bags without repeti�
tions� yield bags without repetitions� �That is why we can use the same symbols
for operations on sets��

Ex� ��� � Consider a set comprehension in which no bound variables are given�
What is the value of fj true �xg� Of fj false �xg� What is the value of hi � ��n �x i�

Ex� ��� � De�ne the product
Q
q of a sequence q � seqZ� What is

Qhi�
Ex� �� If we restrict the distributed maximum

F
to sets s � N of natural

numbers� what would
Ffg be� Why�

Ex� ��� Write as a set comprehension the set of all permutations of a given
sequence q �

Ex� ���� � What is the e�ect of this operator on sets s�

��x � s � �� �

On bags� On sequences�

c� Carroll Morgan ����� ����� ����

�	 Constructed types

Ex� ���� In type expressions� we let Cartesian product bind more tightly than
!� or �� and the latter two both associate to the right�
Give the sizes of these types in terms of the sizes of their components�

�� S�� S	�T � that is� �S�� S	��T

	� S��S	�T � that is� S���S	�T �
�� S�� S	 !�T

� S� !�S	 !�T

�� S��S	 !�T

�� S� !�S	�T �

Explain carefully any discrepancy in size between types � and
�

Ex� ���� A sequence s � seqN T can be regarded as a function of type N !� T �
What subset precisely of N !� T is the set seq T�

With s declared as above� what is dom s�

Ex� ���� Which of these declarations are of total functions over N�

�� s � seqN T

	� s � seq T

�� s � seq� T

Ex� ���	 Consider f � N !� T and s � seq T � For n � N � when is f �n� � � t

meaningful but s�n� � � t not�

Ex� ���
 Linear search Assuming declarations as � seqN A and i � N� a � A�
show that

i � �a � as 	 a � as�i ��
v i � � ��

do i � N � a �� as�i �� i � � i � � od �

Hint� Note that termination is required even if a �� as� use invariant a �� as�i �
Do not worry about possible �unde�nedness� of as�i � when i � N � since the �rst
conjunct i � N is false in that case anyway� �See Exercises ���� and ���� however
in that connection��

Ex� ���� � Linear search Assume our programming language treats as�i � as
�unde�ned� when i is not in the domain of as� and that programs evaluating as�i �
under those circumstances will behave unpredictably �like abort��� Thus �recalling
Section ���� an evaluation of as�i � will not be accepted on its own as code by our
compiler� if as were declared seqN A� for example� then

�That is the usual situation� but di�ers from the convention in this text that all expressions
terminate� we would say for i outside the domain of as that as �i � returned some value but we
do not know which	 Our view is convenient for development� but requires more from compilers�
either they must generate always�terminating code for expressions �as in Exercise �	�
�� or they
must carry out compile�time checks as illustrated in this exercise	

c� Carroll Morgan ����� ����� ����

Exercises ��

a � � as�i �

would not be code� and would be treated as a syntax error �although it is never�
theless meaningful�� We would have to write instead

fi � N g a � � as�i � �

assuming the declaration i � N �which guarantees � � i��
For possibly �unde�ned� iteration guards the compiler would insist on �well�

formedness assumptions� �like fi � N g above� placed as follows�

f�G is de�ned�g
do G �

prog

f�G is de�ned�g
od �

Explain brie#y why they should be placed like that�
Show that

i � �a � as � a � as�i ��
v i � � ��
fi � N g
do a �� as�i ��

i � � i � �
fi � N g

od �

and explain informally why the possible evaluation of the �unde�ned� as�i � is now
acceptable� What general rule can you formulate about the connection between
iteration invariants and de�nedness conditions for the iteration guards�

Ex� ���� � Can Exercise ���� be done under the conditions of Exercise �����
Putting it rigorously� we are asking whether this re�nement is valid�

i � �a � as 	 a � as�i ��
v i � � ��
fi � N g
do i � N � a �� as�i ��

i � � i � �
fi � N g

od �

If it is valid� show it to be so� if it is not� show it to be invalid� and give an
operational explanation for the failure�

c� Carroll Morgan ����� ����� ����

Chapter ��

Case study� Insertion Sort

Insertion Sort is one of the simplest sorting algorithms� and will be our �rst case
study involving sequences �or arrays��

The number of comparisons it makes is proportional on average to the square
of the number of elements to be sorted� Later we will do better than that� but for
now we study Insertion Sort as our �rst example of nested iterations�

��� What it means to be sorted

We are given sequence as of integers� and we must rearrange its elements so that
they are �sorted�� To be more precise� we de�ne a predicate �is in non�strict as�
cending order��

up as b� �
 i � j � ��$as � i � j 	 as�i � � as�j �� �

by which we mean �if the index of one element is no greater than the index of some
other element� then the value of that element is no greater than the value of the
other��

With up� we can start with the following abstract program�

var as � seqN Z� con A�
and A � bag as�

as� �up as� �

The variable as is� of course� the sequence we are to sort�

The logical constant A is the bag of elements in the sequence� and the invariant
A � bag as means therefore that elements may neither be added to nor removed
from as� Thus the sequence can be rearranged but not otherwise altered� and so
we exclude trivial code such as as � � ��N �

�

Similar pre� and postconditions ��

��� Similar pre� and postconditions

We approach the problem by successively sorting larger pre�xes of as� at �rst� no
matter what values as contains� still its empty pre�x is sorted� What we want
is to make its �longest pre�x� sorted� since the longest pre�x of a sequence is the
sequence itself�

The approach above is suggested to us� in fact� by the text of the abstract
program� if we try to make its pre� and postconditions similar� By introducing
pre�xes explicitly�

v as� �up as�� � up as�N � �

we can see that somehow we want �to change the � into an N ��
Both � and N are constants� yet we want them to vary � therefore we replace

them both by a new variable k � and vary that� variable k can move from � to N �
allowing us to write �k in the pre� and postcondition� From there� the development
of our �rst iteration is routine�

v var k � N�

k � � �� �i�
as� k � �k � � � up as�k � k � N � �

v I b� k � N � up as�k �

as� k � �I � I � k � N �
v �invariant I � variant N � k

do k �� N �
as� k � �k � N � I � k � k�� �

od �

�See Exercise ���� if you are puzzled about �i���
Note how in the precondition above �writing k � N rather than k �� N � and in

the postcondition �omitting N k� we have made use of the invariant I �

��� Decreasing the variant

In many cases the easiest way is to deal with a variant is to decrease it explicitly�
and we do that here with following assignment ���� After applying speci�cation

invariant ���� we proceed as follows�

v �following assignment ���

as� k � �k � N � I � I �knk � �� � �k � �� � k�� � �
k � � k � �

v �contract frame ��

as� �k � N � I � I �knk � ��� �ii�
�ii� v as� �k � N � up as�k � up as��k � ��� � �iii�

c� Carroll Morgan ����� ����� ����

�� Case study� Insertion Sort

Speci�cation �ii� is an extremely common pattern in iteration bodies� assume
truth of the invariant at k � then establish its truth at k � ��

��� Iterating up� and down

If the pattern so far is such a common one� then we really should see whether we
can generalise it for later use� Suppose N �� then given a speci�cation

as� k � �k � � � I � k � N � �

we can by choosing invariant I � � � k � N develop the iteration

do k �� N �
as� �I � � � k � N � I �knk � ��� � �
k � � k � �

od

by following steps like those in the previous section� the marked statement �
where development continues � produces code to ensure that� when the subsequent
k � � k�� is executed� the invariant will be re�established� Let us call the re�nement
above iterate up�

A second possibility for iterating up is to increase k �rst� then re�establish the
invariant� Then we have instead

do k �� N �
k � � k � ��
as� �I �knk � �� � � � k � N � I �

od �

Similar possibilities� for decreasing k �from N to � rather than from � to N �� are
examined in Exercise ����� where we call them iterating down�

With our �packaged� up�iteration� we could redo our development so far as fol�
lows�

var as � seqN Z� con A�
and A � bag as�

as� �up as� �
v var k � N�

k � � ��
as� k � �k � � � up as�k � k � N � �

v �iterate up

do k �� N �
as� �k � N � up as�k � up as��k � ��� � �iii�
k � � k � �

od �

c� Carroll Morgan ����� ����� ����

A tricky invariant ��

��� A tricky invariant

With the iteration body �iii� we are left with what appears to be a fairly straight�
forward problem� given a sequence of length k � � whose �rst k elements are in
order� e�ect a rearrangement that brings all k�� of its elements into order� �The
�sequence of length k � �� is the pre�x as��k � ��� in casting the problem as we
have� we are taking a �small� chance by ignoring the possibility of using elements
beyond the pre�x �from as��k � ���� But the chance we are taking is not that we
will develop the wrong code � rather it is that we will develop no code at all��

An obvious move for �making the pre� and postconditions similar� is to write the
postcondition as �the �rst k elements are sorted� and the last one is too��

up as��k � �� � up as�k � as�k � as�k � �

The resulting iteration would begin do ���as�k� � as�k �� � � � �� and the body
would have to maintain up as�k � Thinking about it operationally� however� there
seems no way to move as�k � gradually to its correct place in sequence as while
maintaining the order of as�k � it would just have to be moved all at once� and
then there would be no need for an iteration at all�
A slightly less obvious approach �but we are now forced to try a bit harder� is to

generalise slightly� let the invariant be �all but one of the elements are sorted� �so
to speak � we will be more precise in a moment�� Then initially the one element
that is not is as�k �� �nally it will be some other � say as�l � � but we will add a
conjunct to the postcondition �element as�l � is sorted as well��

Now we must make that idea a bit more precise�
Again we try to make the precondition and postcondition similar� Since our

concern is mainly with the pre�x as��k � ��� we call that P �for �pre�x��� and the
precondition can be written upPnfkg� meaning �P is sorted except at k �� �We
use upper case for P to remind us that it is an expression� not a variable� and so
cannot be assigned to�� In the postcondition we want� for some local variable l �

upPnflg � P�l � P �l � � P��l � �� �

The �rst conjunct expresses that the pre�x P is sorted except at l � the second
expresses that it is sorted at l as well�

After all that preparation� we now have the re�nement step� in which we add
the local variable l � In the postcondition we constrain it to lie within the bounds
of P �it is non�negative anyway� because of its type��

�iii� v

���������
P b� as��k � �� an expression
J b� P�l � P �l � a formula
K b� P �l � � P��l � �� a formula
var l � N�

�

as� l � �upPnfkg � l � k � upPnflg � J � K � �

c� Carroll Morgan ����� ����� ����

� Case study� Insertion Sort

precondition

��P�l � P �l ��
l � k

upPnflg
P �l � � P��l � ��

postcondition
l � � � k

upPnfl � �g
P �l � �� � P�l

Figure ���� Pre� and postcondition of inner iteration body

Looking at the precondition� we see that l should start at k � and so tend to
�� Looking at the postcondition� we see that there are two possibilities for the
guard� either the negation of J �leaving K in the invariant�� or the other way
around� Since l � �V J � we will take �J as the guard� call the invariant L� and
proceed�

v L b� l � k � upPnflg � K �

l � � k �
do �J �

as� l � ��J � L � l � l�� �
od

v as� ��J � L � L�lnl � ��� � �iv�
l � � l � � �

In �iv�� we have met the pattern of �ii� again� this time decreasing� �It is not
strictly speaking in the form of our simple �iterate down�� because the guard is not
just l �� �� But they have many features in common��

To make progress we must now� at last� expand our abbreviations to reveal in
more detail what we have to work with� Figure ���� sets them out in tabular form�
The main di�erence between the two is that the precondition is concerned with l �
and the postcondition with l � �� To bring the two formulae closer together� we
widen the sequence exclusions to fl � �� lg in each case� adding back a conjunct to
constrain P �l � �� in the precondition� P �l � in the postcondition� Doing that� and
some simpli�cation� results in Figure ���	� �See Exercise ���	��

Comparing the four conjuncts one�by�one between pre� and postcondition� we
�nd�

�� The �rst in the precondition implies the �rst in the postcondition�
	� The second conjuncts are complementary with respect to l and l � �� sug�

gesting a swap�
�� The third conjuncts are the same� even if we swap�

c� Carroll Morgan ����� ����� ����

Assignment to sequences ��

precondition

� � l � k

P �l � �� � P �l �
upPnfl � �� lg
P��l � �� � P �l � �� � P��l � ��

postcondition

� � l � k � �
P �l � �� � P �l �
upPnfl � �� lg
P��l � �� � P �l � � P��l � ��

Figure ���� Rewriting of Figure �����

� The fourth conjunct in the precondition implies the fourth in the postcondi�
tion if we swap�

So �swap� it is� we exchange elements l � � and l of P � and that is accomplished
by exchanging them in as�

�iv� v Swap �as� l � �� l� �

That leaves only the de�nition of Swap itself�

��	 Assignment to sequences

In many programming languages� Swap �as� l � �� l� would be written

as�l � ��� as�l � � � as�l �� as�l � �� �

in spite of there being expressions on the left of assignment� In general� what is
meant by as�i � � �E is

as � � as�i � �E � �

where as�i � �E � is the sequence got by replacing the i th element of as by E � �Recall
Section ������� It is de�ned as follows�

Abbreviation ���� sequence assignment For any sequence as� if � � i � j � $as
then

as�i � �E ��j � b� E when i � j

as�j � when i �� j �

�

Sequence assignment extends to multiple indices as in Swap� we have

Swap �as� l � �� l�
� as � � as�l � �� l � � as�l �� as�l � ��� � �v�

c� Carroll Morgan ����� ����� ����

��� Case study� Insertion Sort

��
 Removing the local invariant

All now is code except the local invariant A � bag as� To remove it� we must check
that every command in its scope maintains it� Since the only assignment made to
as is the one above� the swap� and clearly cannot violate the invariant A � bag as�
the local invariant can be removed� �nally� leaving code�

��� Exercises

Ex� ���� � Explain the introduction of �i�� What laws are used�

Ex� ���� � Recall Figure ���	� rewritten from Figure ����� Why are the follow�
ing true�

�� In the precondition� P�l �� P �l � can be replaced by P �l � �� � P �l ��

	� In the postcondition� P �l � �� � P�l can be replaced by P �l � �� � P �l ��

�� In the precondition� P �l � � P��l � �� is not needed�

Hint � Use the other conjuncts too�

Ex� ���� Use sequence assignment ���� and Figure ���	 to check that �iv� v
�v��

Ex� ���	 � Replace the guard �J with code� Hint � Use the invariant� and
recall Exercise ���	�

Ex� ���
 � Here is the inner iteration of Insertion Sort�

do �l �� �� � �as�l � �� � as�l ���
as � � as�l � �� l � � as�l �� as�l � ����
l � � l � �

od �

Note that the value of as�l � is the same on each iteration� We can �tune� the
algorithm to take advantage of that�

� var t � Z�

t � � as�l ��
do �l �� �� � �as�l � �� � t��

as � � as�l � � as�l � ����
l � � l � �

od�
as � � as�l � � t � �

c� Carroll Morgan ����� ����� ����

Exercises ���

On each iteration we avoid two array index operations and one
assignment�

Give the invariant for the tuned iteration� Hint � Consider the expression P �l � � t ��
Why must the local invariant A � bag as have been removed before the program

is changed as above�

Ex� ���� � Modify the predicate up so that it expresses strict order� moving
from lower to higher indices must strictly increase the corresponding elements� �In
other words� in the sorted sequence there may not be repeated elements��

Why doesn�t our development go through with the new de�nition� Find precisely
the step that is in error�

Ex� ���� Binary search You have a sorted sequence as of integers� and must
�nd the position i of a given value x in it� If x is not in as� then i should index
the least element of as greater than x � if any� Here is the abstract program�

var as � seqN Z� x � Z� i � N �
and up as�

i � �as�i � x � as�i � �
Re�ne it to code� it should take time proportional to logN to execute� Hint � Recall
Chapter ��

Ex� ��� As for assignment to sequences� for relation r we allow an abbreviation
for r � � r �s � � t � � we just write

r �s� � � t �

Similarly r �ss� � � t abbreviates r � � r �ss � � t ��
Now suppose that g �s� equals some constant c for all s � S �hence dom g � S ��

How could f � � f �� g be written in the style of f ��� � � ��
What is the e�ect of f �fg� � � t�

Ex� ���� Iterate down Show that� provided � � N �

as� k � �k � N � I � k � ��
v do k �� ��

as� �� � k � N � I � I �knk � ��� �
k � � k � �

od �

Where precisely is � � N used�

Ex� ����� � Why aren�t iterate up and iterate down made into laws�

Ex� ����� � In Exercise ���� the statement k � � k � � appears in the body of
the down iteration� Shouldn�t it be k � � k � ��

c� Carroll Morgan ����� ����� ����

Chapter ��

Procedures and parameters

For any programming problem other than the very smallest� the size of the de�
velopment will in itself require careful management if we are not to �nd that a
rigorous approach is more trouble than it is worth�

One of the most basic ways of controlling size and structure in programming is
the use of procedures� a procedure is de�ned in just one place� but used in many�
For us� with our broader perspective allowing abstract programs as well as code� we
will �nd procedures convenient for avoiding repeated developments� a speci�cation
whose body is a speci�cation may be re�ned in just one place� but used in many�

There are many advantages of such economy� One is that the structure of the
program is more clearly revealed� since sections of identical purpose are clearly
labelled as such� Another advantage is that an implementation can save space
�perhaps at the expense of some time� by keeping only one copy of the machine
code�

But the most signi�cant advantage for us is the one mentioned above� Without
procedures� the re�nement of a repeated speci�cation must be carried out at its
every occurrence� that at the very least involves a lot of copying� With procedures�
re�nement of the declaration alone gives �automatic� re�nement of all its calls�

The basic principle is that if a text is repeated many times in a program� the
program may be improved by naming the text and then using the name many times
instead� The association of a name with program text is procedure declaration� The
use of the name to stand for the text is procedure call�

If a text is repeated not identically� but with systematic variation � say a
renaming of its variables � then there still may be possibilities for reuse of a
single declaration� We can use substitution� which allows a �reference copy� of a
program text to be adapted to slightly di�ering uses� When substitution is applied
to procedures� we have what are usually called parametrized procedures�

In this chapter we look �rst at procedures� then substitution� and �nally the two
together� parametrized procedures�

��	

Procedures without parameters ���

���� Procedures without parameters

������ Declaring procedures

The basic declaration is extremely simple� a procedure is declared by associating
a name with a program fragment� and the fragment is then called the body of the
procedure� For declarations we use the syntax

procedure N b� prog �

where N is the name of the procedure� and prog is its body� Like the declaration
of ordinary variables �for example var declarations�� procedure declarations are
made within a local block that indicates their scope� There are no restrictions on
what may be declared a procedure� or where�

������ Why one bothers

Suppose we are given three integers p� q � r � and are to sort them into increasing
order� We might try

p� q � r �

�
p � q � r

bbp� q � rcc � bbp�� q�� r�cc
	

v p� q � � p u q � p t q �
q � r � � q u r � q t r �
p� q � � p u q � p t q �

which is e�ectively Insertion Sort specialised to three elements� �Note the bbp� q � rcc �
bbp�� q�� r�cc corresponding to our more general A � bag as of Chapter ����

Because the �rst and third commands are the same� we introduce a procedure
�in the spirit of this chapter� and continue the development�

v procedure Sort b� p� q � � p u q � p t q� �i�

Sort �
q � r � � q u r � q t r �
Sort �

As for var declarations� we can write the declaration as a decoration� and add the
block brackets� later� when we collect the code�
Having de�ned the procedure� we can leave until later the development of its

body� When �nally that moment comes� and assuming for now that t and u are
not code� we might conclude with

�i� v if p q then p� q � � q � p � �

c� Carroll Morgan ����� ����� ����

��
 Procedures and parameters

j� procedure Sortb� if p q then p� q � � q � p ��

Sort �
q � r � � q u r � q t r �
Sort

�j

Figure ���� Procedure call

if p q then p� q � � q � p ��
q � r � � q u r � q t r �
if p q then p� q � � q � p �

Figure ���� Procedure removed from Figure �����

The code resulting from those re�nements overall is shown in Figure ����� where
the middle assignment q � r � � � � � stands tantalisingly untouched� We shall return
to it�

All the above can be undone if we replace every occurrence of a procedure name
by its text�� Applied to Figure ����� the result is Figure ���	� where it is clear how
the re�nement of a procedure body �in one place� has in e�ect re�ned its �two�
calls�

������ Variable capture

When declaring a procedure� or removing it� it is essential that the movement of its
text � between point of call and point of declaration � does not move variables
into or out of the blocks in which they are declared� The following will not do� for
example�

j� var p � p � � p � � �j
v� procedure Inc b� p � � p � ��

j� var p � Inc �j �
�That technique� known as the Copy Rule� comes from the de�nition of the programming

language ALGOL���	

c� Carroll Morgan ����� ����� ����

Substitution by value ���

Moving p � � p � � out of the block j� var p � � � in which p is declared �out of
�scope�� results in code that increments a di�erent p altogether� the reference to p
originally is within the local block� but in the �re�ned� program� the reference to p
is outside the local block� We see later that parametrization can avoid that kind
of di!culty�

���� Substitution by value

Now we return to the problem of the second command in Figure ����� which looks
so much like the other two� What we need is a way of altering Sort systematically�
so that it a�ects q and r rather than p and q � Such alterations can be made by
substitution� and we will examine three kinds� by value� by result� and by value�
result�

Underlying all three substitutions is the notion of simple substitution of one
variable for another� Section ��� explains why� simple though it is� it cannot be
used directly in programming�

Our �rst kind of substitution� by value� is used in situations where the code
we have involves some variable f � say� but we would like to replace the f by an
expression A� For example� we may have a command

r � �
q
f ������

that assigns to r the square root of f � but really we would like the square root
of 	 instead� Substituting 	 by value for f in ������ will get us what we are after�
because �as we shall soon see�

�r � �
q
f ��value f � Rn	� � r � �

p
	 �

�Our choice of R for the type of the parameter is fairly arbitrary here� it has 	 as
an element� and the operation

p
is de�ned for it��

In general� we speak of replacing the formal parameter f �a variable� by the actual
parameter A � and provided A itself contains no f � we can de�ne prog �value f �
TnA� to be

j� var f � T �

f � �A�
prog

�j �
The type T of f is used� just as any other type declaration would be� for subsequent
re�nement steps involving f within the procedure body�
If A does contain f �which is very common�� then we must go to just a little

more trouble� to avoid capturing the f in A with the var f declaration� We use a
simple substitution to change the f in prog to some new local variable l � say� In
that case� we would have

c� Carroll Morgan ����� ����� ����

��� Procedures and parameters

j� var l � T �

l � �A�
prog �f nl �

�j �
The �f nl � is a simple substitution� replacing all occurrences of f by the fresh local
variable l � ��All� means occurrences on the left of assignments as well as on the
right� and ��subscripted �initial� variables as well��

If for example prog is s � �n�� but we need the square of n�� instead� we might
use

�s � � n���value n � Nnn � ��

which� by the above� is

j� var l � N�

l � �n � ��
s � � l�

�j �
and that� in turn� equals s � ��n � ����

Note that both �obvious� alternatives to using the fresh variable would be wrong�
the �rst�

j� var n � N�

n � �n � ��
s � �n�

�j �
improperly captures n so that the resulting code �nds the square of one more than
an uninitialised local variable� The other alternative� just

n � �n � ��
s � �n� �

indeed �nds the square of n � �� but changes n in the process � something that
the desired s � ��n � ��� does not do�

���� Procedures with parameters

Our principal use of substitution will be when calling procedures whose bodies are
not quite what we want� Suppose we have two procedures� for example� one for
�nding square roots� and one for �nding squares�

procedure Sqrt b� r � �
p
f

procedure Sqr b� s � �n� �

c� Carroll Morgan ����� ����� ����

Setting out re�nements to procedure calls ���

Then� as we have seen� Sqrt �value f � Rn	� assigns to r the square root of 	� and
Sqr �value n � Nnn � �� assigns to s the square of n � �� Since we are likely to use
those procedures more than once �why else declare them��� and we do not want
to write �value f � Rn � � � or �value s � Nn � � � each time� we use the following
syntax instead� The �substituted for� part of the substitution is written with the
procedure body� as in

procedure Sqrt �value f � R� b� r � �
p
f

���
Sqrt �	� �

and

procedure Sqr �value n � N� b� s � �n�

���
Sqr �n � �� �

�It is no coincidence that these now look like conventional procedure calls��
To �nd out now what exactly is meant above by Sqr �n � ��� for example� we

could reason

Sqr �n � ��
� �parameter declaration with procedure

Sqr �value n � Nnn � ��
� �body of Sqr

�s � �n���value n � Nnn � ��
� �de�nition of value substitution

j� var l � N�

l � � n � ��
s � � l�

�j
� s � ��n � ��� �

That is the reasoning which forms the bedrock of our treatment of procedures
and parameters � but in practice we need not always involve ourselves in quite so
much tortuous detail�

���� Setting out re�nements to procedure calls

Our examples so far have shown the e�ect of a substitution on a given procedure
body� In practice� we will need to go in precisely the opposite direction� setting
out our re�nements in this fashion�

s � ��n � ��� �i�

c� Carroll Morgan ����� ����� ����

�� Procedures and parameters

v j� var l � N�

l � � n � ��
s � � l�

�j
v �assuming declaration Sqr �value n � N� b� s � �n�

Sqr �n � �� � �ii�

Command �i� is where we start� and given a procedure declaration as shown� we
�nish with Sqr �n���� The intermediate step is precisely the form of a substitution
by value of n � � for n� and it is that whole block that is re�ned to Sqr �n � ���

To help with setting re�nements out that way� we can make the move from �i�
to �ii� in a single step� thus avoiding having to deal with the intermediate local
block explicitly� We have for example

Law ���� value assignment Given a procedure declaration that re�nes

procedure Proc �value f � T � b� w � f � �E � � �

we have the following re�nement�

w � �E �f nA� v Proc �A� �

The actual parameter A may be an expression� and it should have type T � �If it
does not� the re�nement remains valid but subsequent type checking will fail�� As
usual� variables w and f must be disjoint�
�

That the procedure body in Law ���� may alter f may seem odd for a value
parameter� but such alterations have no e�ect outside the procedure� since f is not
in the frame of the left�hand side of the law�

Independently of procedures� Law ���� could have been written

�w � f � �E � ���value f � TnA� � w � �E �f nA� �
but as we shall usually be using parameters and procedures together� we give the
combined form in the law�

In speaking above about �a procedure body that re�nes�� we mean one whose body
is a re�nement of w � f � �E � �� One such re�nement is w � f � �E � � itself� another
is w � �E �forgoing the opportunity of changing f �� yet another is w � f � �E �F for
any expression F whatever�

Our squaring example above would now be set out �assuming the same procedure
declaration�

s � ��n � ���

� s � ��n���nnn � ��
v �value assignment ����

Sqr �n � �� �

c� Carroll Morgan ����� ����� ����

Setting out re�nements to procedure calls ���

skip v �p � � q��value qnp�
p � � r v �p � � q��value qnr �

p� �p � p�� v p� �p � q � �value qnp�
skip v �choose p��value pnp�

Figure ���� Value substitutions

Note that we have used the fact that s� n � �n�� � v s � �n��
A similar package exists for speci�cations� it is given by

Law ���� value speci�cation Given a procedure declaration that re�nes

procedure Proc �value f � T � b� w � f � �pre � post � �

with post containing no f �but possibly f��� the following re�nement is valid�

w � �pre�f nA� � post �f�nA��� v Proc �A� �

where A� is A�wnw���
�

As in value assignment ����� the procedure body can alter f � and here is an example
of where that is useful� Suppose we have a procedure declaration

procedure Fact �value n � N� b� p� n� �� � n � p � n�"� �

which we might have used to make the following re�nement steps�

f� � qg p � ��q � ��"

� p� �� � q � p � �q � ��"�

v p� ��� � n��nn�q � ��� � �p � n�"��n�n�q�� ����

v �declaration of Fact

Fact �q � �� �

Later� we could return to Fact itself and� since n is in the frame� develop the
procedure body as follows�

p� n� �� � n � p � n�"�

v p � � ��
do n �� �� p� n � � p � n� n � � od �

In Figure ���� are some other examples of value substitutions�

c� Carroll Morgan ����� ����� ����

��� Procedures and parameters

���	�� Substitution by result

Useful though it is� our substitution by value cannot by itself take us from Proce�
dure Sort to the remaining assignment q � r � � q u r � q t r � The procedure assigns
to p and q � but we want an assignment to q and r � and value substitution cannot
change that�

Substitution by result is complementary to substitution by value� it takes a
value �out of� a procedure rather than �into� it� Thus� for example� if we want
to adapt our assignment r � �

p
f to assign to s rather than to r � we could use

�r � �
p
f ��result r � Rns�� That follows from the general form of substitution by

result� given by de�ning prog �resultf � Tna� to be

j� var l � T �

prog �f nl ��
a � � l

�j �
The actual parameter this time must be a simple variable� since it is assigned to�
�That is why we write a� rather than A as before�� For r � �

p
f � the local block

would be

j� var l � R�

l � �
p
f �

s � � l

�j �
which equals s � �

p
f � just as we hoped�

As with substitution by value� however� we can avoid setting out the intermediate
local blocks �if we want to�� The law for assignments is

Law ���� result assignment Given a procedure declaration that re�nes

procedure Proc �result f � T � b� w � f � �E �F �

with f not occurring in E or in F � we have the following re�nement�

w � a � �E �F v Proc �a� �

Variables a and f need not be di�erent from each other� but w must be disjoint
from both�
�

The reason that f cannot appear in the expressions E � F is that they would then
depend on the initial value of f � and glancing at the local�block form of substitution
by result shows that the procedure body can have no access to those initial values�

For procedures whose bodies are speci�cations� we have this law��

�See also Ex	 ��	�	

c� Carroll Morgan ����� ����� ����

Multiple substitutions ���

skip v �p � � q��result pnq �
r � q � � q � r v �p� q � � q � r��result pnr �
q � �q �� �� v p� �p �� �� �result pnq �
q � �q � q�� v p� �p � q�� �result pnq �

Figure ���	 Result substitutions

Law ���	 result speci�cation Given a procedure declaration that re�nes

procedure Proc �result f � T � b� w � f � �pre � post �anf �� �

with f not occurring in pre� and neither f nor f� occurring in post � we have the
following re�nement�

w � a� �pre � post � v Proc �a� �

Again� variables a and f need not be di�erent from each other� but w must be
disjoint from both�
�

With Law ����� the square root example would be done in just one step�

s � �
p
f

v �result assignment ����

Sqrt �s� �

Figure ���
 gives further examples of result substitutions�
Note that in all substitutions� if the formal parameter f is actually a list then

it cannot contain repeated variables� That is because the same restriction applies
to the simple substitution �f na� from which the others are constructed� �x � xn�� ���
for example� is meaningless� Since in result substitution the assignment a � � f

appears as well� also the actual parameters must be distinct from each other� but
that restriction does not apply to value substitution�

���� Multiple substitutions

An obvious possibility with the square root procedure is now to parametrize both
its �input� and its �output� � then it would be much more useful� and we could
for example realise s � �

p
	� We do that by putting our two kinds of substitution

together� in this case� the e�ect of �value f � R� result r � Rn	� s� on r � �
p
f

would be

c� Carroll Morgan ����� ����� ����

��	 Procedures and parameters

j� var l �m � R�

l � � 	�

m � �
p
l �

s � �m

�j �
where the simple substitution used was �f � rnl �m�� That means our general square�
root��nding procedure might be declared

procedure Sqrt �value f � R� result r � R� b� r � �
p
f �

and we would write just Sqrt �	� s� to invoke it as above�
Although there are laws �of course"� for dealing directly with multiple substi�

tutions� they tend to be more trouble than they are worth� they simply pile up
the various simple substitutions in the separate laws� For multiple substitutions�
therefore� we will stick with the local�block form of development�

���	 Substitution by value�result

We still have our original q � r � � q u r � q t r to deal with� and at this stage it is
tempting to suggest declaring

procedure Sort �value p� q � T � result p� q � T � �

so that Sort �q � r � q � r� would mean

j� var l �m � T �

l �m � � p� q �
l �m � � l um� l tm�
p� q � � l �m

�j �
In doing so� we would be brushing aside the feeling that somehow we should be
declaring four local variables� one for each formal parameter� rather than just two�

In fact for situations like the above� we use our third kind of substitution� value�
result� The local block above would then result from declaring

procedure Sort �value result p� q � T � �

and using Sort �q � r�� In general� prog �value result f � Tna� means

j� var l � T �

l � � a�
prog �f nl ��
a � � l

�j �

c� Carroll Morgan ����� ����� ����

Syntactic issues ���

p � � r v �p � � q��value result qnr �
r � � q v �p � � q��value result pnr �
q � � p v �p � � q��value result p� qnq � p�

p� �r � � p � r�� v p� �q � � p � q�� �value result qnr �
r � �q � � r � q�� v p� �q � � p � q�� �value result pnr �
r � �s � � r � s�� v p� �q � � p � q�� �value result p� qnr � s�

Figure ���
 Value�result substitutions

It is indeed a combination of value and result�
As usual� there are laws for the special cases in which the procedure body is an

assignment or a speci�cation and� as earlier� we assume that the variables w are
distinct from f and a� Here is a law for assignments�

Law ���
 value�result assignment Given a procedure declaration that re�nes

procedure Proc �value result f � T � b� w � f � �E �F �

we have the following re�nement�

w � a � �E �f na��F �f na� v Proc �a� �

�

And for speci�cation�bodied procedures we have

Law ���� value�result speci�cation Given a procedure declaration that re�nes

procedure Proc �value result f � T � b� w � f � �pre � post �anf �� �
with post not containing f � we have the following re�nement�

w � a� �pre�f na� � post �f�na��� v Proc �a� �

�

Figure ���� gives examples of value�result substitutions�

���
 Syntactic issues

We follow common practice and use parentheses �� � �� for procedure parametriza�
tion� reserving brackets �� � �� for substitution� Formal parameters �that is� in the
declaration� or on the left of the �n�� will be separated by ��� except that we allow
for example �� � �value x � value y � � �� to be written �� � �value x � y � � ��� and so

c� Carroll Morgan ����� ����� ����

��
 Procedures and parameters

j� procedure Sort �value result x � y � T �b� if x y then x � y � � y � x ��

Sort �p� q��
Sort �q � r��
Sort �p� q�

�j

Figure ���� Parametrized procedure calls

on� Actual parameters �at the point of call� or on the right of the �n�� are as be�
fore separated by ���� The correspondence between actual and formal parameter is
therefore by position�

The formal parameters� with their types� act as local variables for the procedure
body� Those types should be chosen so that an assignment taking actual to formal
parameters �for value and value�result�� or taking formal to actual parameters �for
result and value�result�� would be well�typed�

Returning �nally to our original example� we have Figure ����� in which we
have changed the name of the formal parameters� �Such name changes make no
di�erence as long as variable capture does not result�� Note that all three calls
must be parametrized�

���� Substitution by reference

The most common substitution techniques provided in programming languages are
call by value and call by reference�

For variables� substitution by reference is identical to simple substitution� and
it is dangerous�

Consider the following�

z � � �
v z � � �� z � � �
v �y � � �� x � � ���reference x � ynz � z �
v procedure Wrong �reference x � y� b� y � � �� x � � ��

Wrong �z � z � �

�We have omitted types��
Now if we re�ne the body ofWrong as follows� the resulting program is equivalent

to z � � � �see Exercise ������

Wrong v x � � �� y � � � �

c� Carroll Morgan ����� ����� ����

Exercises ���

Our di!culty is due to aliasing� the substitutions in each case have identi�ed two
variables that were distinct� This can occur explicitly � as in �reference x � ynz � z �
above � or implicitly as in the substitution �a � � f "��reference f na��

Aliasing is permitted with any of the substitutions of Section ���	 however�
and that is why we use them� there is no need to check� The problem is that
substitution by reference is often more e!cient� and certainly is more common�

Fortunately� we have the following�

When aliasing is absent� substitution by reference is identical to sub�
stitution by value�result�

Thus our techniques are available in most practical cases�

���� Exercises

Ex� ���� � Simplify the following�

�� �a � � f � ���value f na�
	� �f � � a � ���result f na�
�� �f � � a � ���value result f na�

� �f � � f � ���value result f na�

Ex� ���� � Supply the missing substitution�s��

�� n � ��n � ��" v �f � � a"��value �� result �n�� ��
	� a�� a v �a�� b��value �n��
�� x � �x �� � � x � ��x��

v q � �p �� � � p � q � �� �value �� result �n�� ��

Ex� ���� � Assuming the procedure declaration

procedure Sqrts �value a � R� result b � R� b� b� �� � a � b� � a�

is in scope� show that the following re�nement is valid�

x �
h
� � x � x � � x�

i
v Sqrts �x � x � �

Ex� ���	 � We noted that �procedureless� programs can be recovered by replac�
ing procedure names with their bodies� Consider the following case�

j� procedure One b� a � � � � j� var a � One �j �j
�� j� var a � a � � � �j
v skip �

�In Pascal and Modula�� it is call by var� for example� and it is the default in FORTRAN	 In
C� however� call by value is used� but the e�ect of call by reference is regained by using pointers	

c� Carroll Morgan ����� ����� ����

��� Procedures and parameters

Explain why the equality is dubious� Argue instead that the correct result is a � � ��
Hint � Rename the local variable�

Ex� ���
 Verify that the program of Section ��� is equivalent to z � � � by
removing the procedure Wrong from it�

Ex� ���� � Show that

p� q � r �

�
p � q � r

bbp� q � rcc � bbp�� q�� r�cc
	

v p� q � � p u q � p t q �
q � r � � q u r � q t r �
p� q � � p u q � p t q �

Hint� Recall Insertion Sort�

Ex� ���� � What is the invariant needed for the re�nement in Section ���
 of
Fact to the iteration

p � � ��
do n �� �� p� n � � p � n� n � � od �

Ex� ��� � Show that the following is equivalent to Law ���
�

Given a procedure declaration that re�nes

procedure Proc �result f � T � b� w � f � �pre � post � �

with f not occurring in pre� and neither a nor f� occurring in post � we
have the following re�nement�

w � a� �pre � post �f na�� v Proc �a� �

Again� variables a and f need not be di�erent from each other� but w
must be disjoint from both�

Under what circumstances would you prefer one over the other�

c� Carroll Morgan ����� ����� ����

Chapter ��

Case study� Heap Sort

Our earlier sorting case study� Insertion Sort in Chapter ��� took time proportional
to the square of the number of elements sorted� The code developed in this chapter�
Heap Sort� does considerably better� if N elements are to be sorted� then the time
taken is proportional to N logN �

That alone is worth the extra trouble needed to develop Heap Sort� but it is
also worth seeing how radically di�erent code can be reached from the same initial
speci�cation�

���� Time complexity of code

The outer iteration of Insertion Sort is executed N times� thus its inner iteration�
on average� is executed k�	 times for each k from � to N � �� Overall� therefore�
the code performs this many comparisons �one for each inner iteration��

�

	
�� � � � 	 � � � �� N � �� � N �N � ���
 �

Thus if the sequence is doubled in length� the time taken to sort it is roughly
quadrupled�

In general� the number of operations required to execute code is expressed as
some function of the size N of the data given to it� For two such functions f and
g� we write f � g if there are two numbers M � N and c � R	 such that for all
N M �

f N � c � gN �

Put informally� that reads �up to a constant factor �c��� the function f is less than
or equal to g for su!ciently large arguments � M ��� We write f # g if g � f� and
f $ g if both f � g and f # g� and �nally f % g if f � g but f �$ g� Thus in this
case we have

N �N � ���
 $ N � �

���

�� Case study� Heap Sort

and we say that Insertion Sort has N �� or quadratic� time complexity�
Heap Sort has complexity N logN � and is therefore asymptotically more e!cient

than Insertion Sort� since

N logN % N � �

Even better� it can be shown that N logN is the lowest complexity possible� for
sorting sequences� in that sense� Heap Sort cannot be improved� Its complexity is
optimal�

With that background� we now present our abstract program� exactly the same
as for Insertion Sort�

var as � seqN Z� con A�
and A � bag as�

as� �up as� �

But our development is completely di�erent�

���� Heaps

Heap Sort achieves its better�than�quadratic N logN complexity by sorting a bal�
anced tree� rather than a sequence� of values� That is where the logN comes from
in its complexity N logN � a balanced binary tree of N nodes has depth dlogN e�
�The N factor comes from the fact that it has N nodes��
Surprisingly� it is possible to lay a balanced tree out entirely within our given

sequence as� The arrangement is easily observed in a sequence numbered from ��
in that case� element as�i � is the parent of element as�j � exactly when i � j � 	�

And element as�i � is an ancestor of element as�j � exactly when
�
� k � i � j � 	k

�
�

Child and descendant are the complementary terms� note that an element is both
an ancestor and a descendant of itself�
Our sequences begin at �� and so we de�ne a relation � as follows� for i � j � N �

i � j b� �
� k � N � i � � � �j � ��� 	k

�
�

The relation is illustrated in Figure �	���
We say that a sequence as is a heap whenever the balanced binary tree within

it is ordered so that ancestors are no smaller than their descendants� for that we
write hp as� where

hp as b� �
 i � j � ��$as � i � j 	 as�i � as�j �� �

That means incidentally that for any non�empty heap as� its �rst element is its
largest� thus hd as tl as�

�Better performance is possible� however� if several computers are used at once	

c� Carroll Morgan ����� ����� ����

Shrinking a heap ���

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

� 	

�
 � �

� � et cetera � � �

������	

HHHHHHj

�
�
��

�
�
��

�
�
�R

�
�
�R

�

�

�

�AAU AAU AAU AAU

Figure ���� Parent%child relation in a heap

���� Shrinking a heap

Our strategy is to form the sequence into a heap� and then sort that� thus the �rst
step is

v as� �hp as� � �i�
as� �hp as � up as� � �ii�

Note that we have diverged immediately from the path taken earlier with Insertion
Sort� Motivation for it is the suspicion that sorting a heap is faster than sorting a
sequence� naturally we hope that our advantage is not eaten up by the cost of �i��
the making of the heap in the �rst place�

Since �ii� has more detail� we work �rst on it� The operational idea is to pluck
successive greatest elements from the root of the heap� at as���� reforming the heap
each time� �There are N elements� and each reforming of the heap takes no more
than logN comparisons��
Using the form of �ii� as a guide� we bring its pre� and postcondition together

by introducing up on the left and hp on the right�

�ii� v as� �hp as�N � up as�N � hp as�� � up as��� �
Rushing into an iteration here may be premature� however� The speci�cation above
suggests shrinking the heap towards �� leaving sorted elements in a su!x behind it�
That su!x should contain elements which need not be moved again� they should
be in their �nal positions� We add that to the invariant� just to be sure�� and now
proceed

�That sounds a bit imprecise� it means only that if we had not added it� we would have been
stuck later on	 It does not mean that if we had not added it we would have developed incorrect
code	

c� Carroll Morgan ����� ����� ����

�	� Case study� Heap Sort

v fn i b� as�i � as�i � up as�i �
as� �hp as�N � fnN � hp as�� � fn ��

v var i � N�

i � �N �
as� i � �i � N � hp as�i � fn i � i � �� �

v �iterate down

do i �� ��
i � � i � ��
as� �i � N � hp as��i � �� � fn�i � �� � hp as�i � fn i � �

od �

In the precondition we have fn�i � ��� and in the postcondition we have fn i �
therefore we need to place the maximum as��� of as��i � �� at index i � But as�i �
must go somewhere � perhaps to index �� Unfortunately� that does not establish
the remaining conjunct hp as�i � the new as��� is more likely to be the minimum
than the maximum of a�i "

As for Insertion Sort� we need to say �as is � � � except at ��� Just hp�tl as� will
not do� since the ancestor relation in tl as is quite di�erent� Thus we must de�ne
a partial heap as follows� for s � ��N �

ph s b� �
 i � j � s � i � j 	 as�i � as�j �� �

Remember that ��N does not contain N �p����� and note that ph ��N � hp as�
Now we can proceed by swapping elements i and ��

v Swap �as� �� i��
as� �ph ��i � fn i � ph ��i � � �iii�

Speci�cation �iii� requires us to �repair the heapiness� of as���i �� without disturb�
ing the elements at i and beyond�

�It is that last step that needed fn i in the invariant rather than the weaker
up as�i � having only up as��i ��� is not su!cient for a Swap �as� �� i� to establish
up as�i even when as��� as��i � ����

���� Establishing the heap

Now we return to �i�� in fact speci�cation �iii� above suggests an approach� since
it extends a heap towards lower indices� We are further encouraged by the fact
that ph�N � 	��N is identically true �since there are no ancestors to consider��
any sequence is �half a heap� already� So we proceed

�i� v var j � N�

j � �N � 	�
as� j � �j � N � 	 � ph j�N � j � �� �

c� Carroll Morgan ����� ����� ����

Procedure Sift �	�

v �iterate down

do j �� ��
j � � j � ��
as� �j � N � 	 � ph�j � ���N � ph j�N � �iv�

od �

Speci�cation �iv� looks very much like �iii�� and since fnN is identically true� we
can bring the two closer still� as follows�

�iv� v as� �ph�j � ���N � fnN � ph j�N � � �v�

We are now ripe for a procedure�

���� Procedure Sift

The similarity of Speci�cations �iii� and �v� suggests a procedure de�ned as follows�

procedure Sift �value l � h � N� b�
as� �ph�l � ���h � fn h � ph l�h� �

and that gives the following re�nements immediately�

�iii� v Sift ��� i�

�v� v Sift �j �N � �

We have used value substitution for both parameters�
Now of course we still must develop Sift itself� but at least we need do that

only once� and not twice as would have been necessary had we treated �iii� and �v�
separately�

The invariant fn h of Sift suggests that we con�ne our attention to the pre�x
��h of as� just leaving the su!x from h on alone� The pre� and postcondition
suggest that we need to say �as is a partial heap l�h at some k as well � and so
we de�ne

lo k b� �
 i � l�h � i � k 	 as�i � as�k ��
hi k b� �
 j � l�h � k � j 	 as�k � as�j �� �

so that lo k means that element k is correctly ordered with respect to elements
below it� and hi k means the same for elements above it�

Then we continue as we did for Insertion Sort�

Sift

v
�
var k � N
J b� ph�l�h � fkg� � lo k � fn h�

c� Carroll Morgan ����� ����� ����

�		 Case study� Heap Sort

k � � l �
do � hi k �

as� k � �� hi k � J � k� � k � h� �
od �

Now if � hi k holds� we know two things�

�� as�k � has a child in l�h �otherwise� hi k would be vacuously true�� hence
	k � � � h�

	� as�k � is less than one of its children� certainly it is less than the greater of its
children�

Accordingly� we make our �nal re�nement by swapping as�k � with the greater of
its children� say as�m�� Since that establishes ph�l�h�fmg�� we also assign m to
k �thus increasing k � but not beyond h��

v var m � N�

if 	k � 	 � h � m � � 	k � �
�� 	k � 	 � h � as�	k � �� as�	k � 	�� m � � 	k � �
�� 	k � 	 � h � as�	k � �� � as�	k � 	�� m � � 	k � 	
��
Swap �as� k �m��
k � �m �

That concludes the development of Sift � and thus of Heap Sort itself�

���	 Exercises

Ex� ���� Prove that hp as V hd as tl as� if as is not empty�

Ex� ���� � Use the invariant J to code the guard � hi k � Hint � Recall Exercise
���
�

Ex� ���� Make Sift more e!cient� as we did for Insertion Sort�

Ex� ���	 � Show that if

lim
N��

�f N � gN � � ��

then f % g�

Ex� ���
 Show that N logN % N ��

Ex� ���� Show that loga N $ logb N for any logarithmic bases a� b � ��

c� Carroll Morgan ����� ����� ����

Exercises �	�

Ex� ���� Prove that polynomial complexity is always better than exponential

complexity by showing that� for all e � �no matter how large� and all b � � �no
matter how small��

N e % bN �

Hint � Use l�H&opital�s Rule�

Ex� ��� � The conventional notation for f � g is f � O�g�� and for f # g

it is f � '�g�� Finally� f $ g is written f � (�g�� What makes those notations
unusual� Hint � Consider the properties of equality�

How could the conventional notations be improved� Hint � Suppose O�f� were a
set of functions� how would f � g be written then�

Ex� ���� Give two functions f and g such that neither f � g nor g � f�

Ex� ����� � In spite of its optimal complexity� Heap Sort is not the fastest
sorting code� �Quick Sort� for example� is considerably faster in most cases�� How
can anything be faster than optimal�

Ex� ����� Bubble Sort Using the de�nitions of this chapter� complete the fol�
lowing development�

as� �up as�
v var i � N

i � �N �
as� i � �i � N � fn i � i � �� �

Hint � Imagine Heap Sort with no heap� in the inner iteration� you must neverthe�
less establish as�i � as�i ��

c� Carroll Morgan ����� ����� ����

Chapter ��

Recursive procedures

Recursive procedures are those that �call themselves�� and the following factorial
procedure is perhaps one of the best�known examples�

procedure Fact �value n � N�b� if n � �� f � � �
�� n � ��

Fact �n � ���
f � � f � n

� �

If we know that Fact �n � �� assigns �n � ��" to f � then we can deduce that Fact �n�
assigns n" to f � and to know that Fact �n � �� assigns �n � ��" to f we must know� � �

In this chapter we see how to develop recursive procedures directly from their
speci�cations �without the �� � � � above�� The principal feature� beyond what we
know about procedures already� is the use of a variant expression to ensure that
the recursion terminates properly� It is essentially the same technique we used in
iterations�

���� Partial correctness

Here is how we might develop the factorial procedure above� using a straightforward
case analysis into an alternation�

procedure Fact �value n � N� b� f � �n"
v �the type N of n gives cases n � � and n � �

if n � �� fn � �g f � �n" �i�
�� n � �� fn � �g f � �n" �ii�
�

�i� v ��" � �

f � � �

�	

Partial correctness �	�

�ii� v �following assignment ���

f � �n � � � f � n � n"� � �
f � � f � n

v f � �n � � � � f � �n�� ��"�

v� �value speci�cation ���	

Fact �n� �� �

Only the last step is dubious� using the speci�cation of Fact within its own devel�
opment � yet clearly we must do something of that kind for recursive procedures�
Before seeing exactly what it is� however� we should �nd out why we cannot accept
developments like the above just as they are� Consider therefore this alternative
development of Fact �

procedure Fact �value n � N� b� f � �n"

v�" �recursive reference to Fact

Fact �n� �

That astonishingly short development gives the code

procedure Fact �value n � N� b� Fact �n� �

and � what is worse � the same strategy would �work� for any procedure at all�

The reason it does not work is that we have taken no account of termination�
both versions of Fact have the e�ect of assigning n" to f if they terminate� but only
the �rst version terminates� The second recurses forever� so that any statement
about its e�ect on termination is vacuously true�

Similarly ignoring termination for iterations would have allowed us to argue that

f � �n" v � do true� skip od �

If that iteration terminated it would indeed assign n" to f � but it never does
terminate�

Such �re�nements�� ignoring termination� establish what is known as partial cor�
rectness� that one program re�nes another �except for termination�� Unhelpful as it
sounds� such partial re�nements �as we might call them� are useful ways of having
a quick look ahead in a development to see whether it is worth proceeding that
way� � for if one cannot reach even partial correctness� there is clearly no point
in trying the approach at all�

Our normal re�nement relation expresses total correctness� however� and takes
termination into account� For that� we need variants�

�Partial correctness was the basis� in �Hoa���� of early arguments for rigour in program devel�
opment	 It has the advantage that its rules are simpler� but then one gets less from them	

c� Carroll Morgan ����� ����� ����

�	� Recursive procedures

���� Variants for recursion

The extra we pay for total correctness is that we must declare a named variant
expression for the development of any recursive procedure� In the factorial example�
it would look like this�

procedure Fact �value n � N� b� f � �n"
v variant N is n�

� � �
In general� the e�ect of a variant declaration variant V is E � for name V and
integer�valued expression E � is to require that any recursive reference to the pro�
cedure be formulated as if the procedure included � � E � V in its precondition�
�References from outside the procedure itself� however� need not include the extra
precondition�� In the factorial example� therefore� we would have had to refer to

f� � n � N g f � �n"
or equivalently f � �� � n � N � f � n"�

at the point of recursive reference to Fact � rather than just f � � n" on its own�
In doing so we are stipulating �as with iterations� that the variant �n� must have
decreased strictly �� � � � N �� but not below � �� � � � ��� before the recursive call is
made�

In order to be able to include such an assertion� we allow the introduction of
fV � Eg at the point immediately after the declaration of the variant� �Alterna�
tively� it is just included as a conjunct in the precondition� if that �rst step is a
speci�cation�� The e�ect on the factorial development would be

v variant N is n�

fn � N g
if n � �� fn � �g f � �n" �
�� n � �� fn � �g f � �n" �i�
� �

and in fact there is no reason it cannot immediately be distributed through the
guard of the second branch of the alternation in that same step� we would write
�instead of the above� just

v variant N is n�

if n � �� fn � �g f � �n" �
�� n � �� fN � n � �g f � �n" �i�
� �

�Since the �rst branch does not lead to a recursive call� we have no need of the
variant there�� Then the development would continue as before� but this time
carrying the variant along�

c� Carroll Morgan ����� ����� ����

A complete example �	�

�i� v �following assignment ���

f � �N � n � � � f � n � n"� � �
f � � f � n

v f � �N � n � � � � f � �n � ��"�
v �value speci�cation ���	

f � �N � n � � f � n"� �value n � Nnn � ��
v �note that N � n � is correctly placed

Fact �n� �� �

The second� bogus� development of Fact is no longer possible�

procedure Fact �value n � N� b� f � �n"
v variant N is n�

fn � N g f � �n"
v �What now�

The assignment cannot be replaced by Fact �n�� as we did before� because the
precondition is not N � n � as it must be�

���� A complete example

Here� as a second example� we develop a recursive searching procedure� Consider a
�nite set es of type �nset E � each of whose elements might satisfy a given property
p� �The elements could be integers� for example� and the property �is even��� For
e � E � the formula p e means �p holds for e �

We develop a recursive procedure which� assuming that some element of s sat�
is�es p� assigns to e one such element� the abstract declaration is

procedure Find �value es � �nsetE �b� e� ��� e � es �
p e� � e � es � p e� �

Our strategy is simply to choose an element e from es at random� If it satis�es
p then we are �nished� if it does not� we invoke Find recursively on es with the
non�p�satisfying e removed� For conciseness� we de�ne P es to be �� e � s �

p e�� a
convenient abbreviation for �es contains an element satisfying p�� Here is our �rst
step�

v variant V is $es�

e� �es �� fg � e � es� �
e� �V � $es � e � es � P es � e � es � p e� � �

We have moved both V � $es and P es through to the precondition of the sec�
ond command� since neither contains variables in the frame of the �rst command�
The precondition es �� fg of the �rst command itself follows from the original
precondition P es�

c� Carroll Morgan ����� ����� ����

�	 Recursive procedures

Now we have chosen an element e� and there are two cases� either e satis�es p

or it doesn�t� We treat them with an alternation�

v if p e � e� �e � es � p e � e � es � p e� �
�� � p e �

e� �V � $es � e � es � P es � � p e � e � s � p e� �i�
�

v skip �

The �rst branch has been easily disposed of�
Consider now the precondition of the second branch� if there is some element

of es satisfying p� but it is not e� then that element must lie in es � feg and so

P�es � feg�� We can also strengthen the postcondition� allowing us to make the
recursive call�

�i� v e� �V � $�es � feg� � P�es � feg� � e � es � fe�g � p e�
v Find �s � feg� �

We have not bothered with � � $es� since set sizes are non�negative by de�nition�

���� Epilogue� recursion blocks

What we have seen above is all we need for developing recursive procedures� but
there is a special case that deserves a closer look� Sometimes the recursive pro�
cedure is declared �just to be able to recurse�� rather than to make the procedure
widely available� As matters stand� we have to do that in order to have a name
with which to indicate the point of recursion�

We will allow ourselves to write parameterless recursions that are not procedures
as follows�

re R � prog er �

for some name R and program fragment prog � The e�ect is precisely as if R had
been declared locally� as a procedure� called once� and then forgotten about�

j� procedure R b� prog�

R

�j �
If we were to develop a recursion block directly� rather than �rst developing a

�temporary� procedure as above� we would set it out as in this example�

f � n � �n"� �
v f � � ��

f � n � � f � n"� � �

c� Carroll Morgan ����� ����� ����

Epilogue� recursion blocks �	�

v re F variant N is n�

if n � �� skip

�� n � �� fN � n � �g f � n � � f � n"� � �
�

v f � n � � f � n� n � ��
fN � n �g f � n � � f � n"� � �

v F �

Collecting the code� and collapsing the development� we can see that we have
shown

f � n � �n"� �

v f � � ��
re F �

if n � �� skip

�� n � �� f � n � � f � n� n � �� F
�

er �

and it is interesting to note that� since we began developing the recursion block
only after the �rst re�nement step� the �nal code is not in its entirety a recursion�
only the second half is�

In fact what we have seen above is an example of a more general phenomenon
known as tail recursion� and summed up in this equality�

do G � prog od

� re D�

if G then prog � D �

er

Using the equality �and remembering that n is a natural number� so that we can
rewrite the guards n � � and n �� �� converts the above factorial program to the
more familiar

f � � ��
do n �� �� f � n � � f � n� n � � od �

Tail recursion is more general than �ordinary� iteration� however� as illustrated
by this second equality�

loop

prog��
if G then exit ��
prog	

end

c� Carroll Morgan ����� ����� ����

��� Recursive procedures

� re L�

prog��
if �G then prog	� L �

er �

The loop � � �exit � � �end construction iterates its body �until an exit is exe�
cuted�� The above not only makes that precise� but shows how to develop programs
of that form�

���� Exercises

Ex� ���� � Would Find terminate if es were in�nite� Where in its development
do we use the fact that es is �nite�

Ex� ���� � For f � n � N � show that

f � �f � n"� v Fact ��n� �� �

where

procedure Fact � �value m� k � N�b� if m � �� f � � k

�� m � �� Fact � �m� ��m � k�
� �

Hint � Consider f � �m"� k �

Ex� ���� Linear search Assuming declarations as � seqN A and i � N� a � A�
show that

i � �a � as 	 a � as�i ��
v i � � ��

loop

if i N then exit ��
fi � N g if a � as�i � then exit ��
i � � i � �

end

by re�ning the left�hand side to the tail�recursive code

i � � ��
re L �

if i N � skip

�� i � N �
fi � N g
if a � as�i �� skip

�� a �� as�i �� i � � i � �� L
�

�

er �

c� Carroll Morgan ����� ����� ����

Exercises ���

Hint� Do not bother about the �obvious� rewriting of the recursion block to
introduce the loop and exits as given above� concentrate on reaching the recursion�
block itself� Its speci�cation should be i � �a � as�i� 	 a � as�i ���

What is the point of the assumption fi � N g� Need it be there� Hint� See
Exercise ���� concerning unde�ned expressions�

Ex� ���	 Develop an iteration �rather than a recursion� from the speci�cation

e� es� �P es � e � es� � pe� �

similar to Find in Section ���� except that es may now be changed� Hint � Introduce
a logical constant S to capture the initial value of the set es� and use the invariant
e � es � es � S � P es�

Ex� ���
 Show that

w � �inv � inv � �G �
v re D�

if G then w � �G � inv � � � E � E�� � D �

er

by carrying on after this �rst step�

w � �inv � inv � �G �
v re D variant V is E �

w � �V � E � inv � �G � �

c� Carroll Morgan ����� ����� ����

Chapter ��

Case study� The Gray code

In this chapter we use our new techniques for recursion in a slightly out�of�the�way
case study� and in passing examine the issues of input and output�

���� The Gray code

The Gray code represents natural numbers as sequences of digits � or �� but not in
the usual way� If we let the function gc � N� seqf�� �g take a natural number to
its Gray code� then we �nd it has these properties�

�� As for the usual binary code�

gc � � h�i
gc � � h�i�

and for n 	�

gc n � gc�n � 	� �� hdi� for d either � or ��

Alternatively� we could say fr gcn � gc�n � 	��

	� But gcn and gc�n � �� di�er in exactly one position� for all n�

Property � applies to both Gray and binary codes� with the di�erence being only
the choice of d � Property 	� on the other hand� applies to the Gray code alone�
Figure �
�� lists the �rst few Gray codes� comparing them with the corresponding
binary codes�

The Gray code is used in applications where it is important that only one bit
changes at a time in counting up or down� We shall develop a program to output
Gray codes� but �rst� we examine input and output in general�

��	

Input and output ���

n gcn binary
� � �
� � �
	 � � � �
� � � � �

 � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
 � � � � � � � �
� � � � � � � � �

Figure �	�� The �rst Gray codes

���� Input and output

For programs using input and output we introduce two special�purpose variables
named� by convention� � and 	� Their types will depend on the problem at hand�
but usually � is a sequence of input values� and 	 is a sequence of output values�

Input is performed by removing the �rst element of �� and that may be abbre�
viated as follows for any variable x �

input x b� f� �� hig x � � � � hd�� tl� �

Testing for end of �le on input is just testing for emptiness of ��

eof b� � � hi �
Output is performed by appending an expression E to 	�

output E b� 	 � �	 �� hE i �
And output may be initialised by setting it to empty�

rewrite b� 	 � �hi �
Finally note that� since input x changes � �by removing an element�� programs

performing input should include � in the frame�
Our abstract program for this case study � a procedure � outputs the Gray

code corresponding to a given integer n�

procedure Gray �value n � N� b� 	 � �	 �� gc n �

We are assuming in this case that 	 is a sequence of binary digits �thus 	 �
seqf�� �g��

c� Carroll Morgan ����� ����� ����

��
 Case study� The Gray code

���� Isolate the base cases

Since the �rst two Gray codes are given explicitly� we treat them on their own�
using an alternation� Our variant �for the recursion� is n itself�

v variant N is n�

if n � 	� output n

�� n 	� f	 � n � N g 	 � �	 �� gc n �
� �

To make further progress� however� we must return to Properties � and 	� From
Property 	� the number of ��s in gc n must alternate between even and odd� Let
the parity of a sequence as� written pr as� be � if the number of ��s in as is even� �
if it is odd� Thus pr gc n alternates as n increases� Since from Property � we know
gc � � �� we have by a simple induction that

pr gcn � n mod 	 � ��
���

The above suggests that to calculate gc n� we could �rst calculate gc�n � 	� and
then use its parity to calculate the �nal bit d � That leads to

v 	� �	 � n � N � 	 � 	� �� gc n�

v �sequential composition �
 � con ' � seqf�� �g�
	� �	 � n � N � 	 � 	� �� gc�n � 	�� � �i�
	� �	 � '�� gc�n � 	� � 	 � ' �� gc n� �ii�

�i� v f� � n � 	 � N g 	 � �	 �� gc�n � 	�

v Gray �n � 	� �

To re�ne �ii� we need a small calculation� For a� b � N let a b be the sum
�a � b� mod 	� then we have

gc�n � 	� �� hdi � gc n

V pr�gc�n � 	� �� hdi� � pr gc n

� �from ��
���
�n � 	� mod 	 d � n mod 	

V d � n � 	 n �

Hence� with that equality� we have �nally

�ii� v output �n � 	� n �

That concludes the development� which is summarised in Figure �
�	�

c� Carroll Morgan ����� ����� ����

Exercises ���

procedure Gray �value n � N�b� if n � 	� output n

�� n 	 �
Gray �n � 	��
output �n � 	� n

� �

Figure �	�� Recursive Gray�code code

���� Exercises

Ex� �	�� � Continue Figure �
�� up to n � ���

Ex� �	�� � The base case in recursions is often �� but for the Gray code it is �
and � together� Why�

Ex� �	�� Develop recursive code for the following� where br n is the �ordinary�
binary representation of n�

var n � N � 	 � seqf�� �g�
	 � �	 �� br n �

Of course� br itself is not code"

Ex� �	�	 Let gcb � seqf�� �g� seqf�� �g take the binary representation of n to
the sequence gc n� For example�

gcbh�� �i � h�� �i�
Develop iterative code for

var n� g � seqf�� �g�
fn �� hig g � n � � gcb n� � �

Ex� �	�
 Re�ne the following to iterative code�

var n �N � � � seqf�� �g�
�� n� ��eof � gcn � ��� �

Ex� �	�� � For sequence q � de�ne its reverse rv q as follows�

rvhi b� hi
rv�hei�� q� b� rv q �� hei �

Re�ne this program to recursive code� using a recursion block�

var �� 	 � seqE �

�� 	 � ��� rv� �

Hint� Rewrite output �rst�

c� Carroll Morgan ����� ����� ����

Chapter ��

Recursive types

We have already seen a number of basic ways of making types for use in variable
declarations� As well as the �standard� types like the natural numbers N and the
reals R� we encountered the type�constructing functions set� bag and seq that
make new types from existing ones� and we considered functional and relational
types�

In this chapter we go further� showing how to invent such structuring tools for
ourselves�

���� Disjoint union

The principal new ingredients of our type constructions will be disjoint union and
recursion� Normal set union forms a new set from two given sets by including in
the new set exactly those elements that are in either of the two given sets� thus
for sets A� B and elements x � we have the equivalence x � A�B � x � A� x � B �
One property that normal set union does not have in general� however� is equality
between $�A � B� and $A � $B � that property holds only when A and B are
disjoint� �Recall that the size of the ��nite� type S is written $S ��
Disjoint union resembles ordinary union in that it aggregates the elements of its

two operands� but it makes them disjoint by giving each operand a distinct �tag��
Thus� while the elements of the �ordinary� union f�� �g� f�� 	g are �� � and 	� the
elements of the disjoint union

left f�� �g j right f�� 	g
are left �� left �� right � and right 	� The names left and right are the tags� made up
by the programmer �or mathematician� speci�cally to keep the two sides disjoint�
elements left � and right � are not equal�

In fact left and right are injection functions� because they inject the component
types �f�� �g and f�� 	g� into the disjoint union type �and because they are injec�

���

Disjoint union ���

tive�� If we let the disjoint union above be X then we have the following function
types for the injections�

left � f�� �g�X

right � f�� 	g�X �

Notice that X has four elements �not just three�� and more generally� for any
��nite� sets A and B we have

$�left A j right B� � $A �$B �

If we write several types following a tag� rather than just one� then the injection
functions take values of those types successively�� Thus for example

nats N N j reals R R ������

is a type including the elements nats 	 � and reals ��� �� �Writing nats �N � N� j
reals �R � R� would have had a similar e�ect� but there the elements would have
been nats�	� �� and reals����� �� instead��

It is also possible to have a tag just on its own� in which case just a single
element� of that name� is contributed to the type� �Think of the injection function
in that case as a constant� which is after all just a function of no arguments��

Here are some examples of disjoint unions�

�� The type of days of the week is

sunday jmonday j tuesday j wednesday j thursday j friday j saturday �

Typical elements are sunday and monday�
	� A value that is either an integer or is �unde�ned� could be typed

ok Z j unde�ned �

Typical values are ok � and unde�ned�
�� A collection of currencies could be typed

pounds Z j guilders Z j ecu Z j lira Z �

Typical values would be pounds � and lira�����������

� A database entry might either be empty or associate a key of type K with a

datum of type D � its type would be

empty j full K D �

Typical values are empty and full k d � with k of type K and d of type D �

Note that the injections are written in the function font� just as other functions
and predicates are�

�That is� the injection functions are Curried	

c� Carroll Morgan ����� ����� ����

�� Recursive types

���� Testing for tags

Consider the type empty j fullK D in the �nal example above� Given an element
x of it� we may wish to know which alternative it inhabits ��what its tag is���
Although the formulae

x � empty

and x � full k d �

make sense for k � K and d � D � they are not exactly what we want� The �rst
formula indeed determines whether x is in the �rst alternative� But the second is
too speci�c� depending on a particular k and d � instead we need the existential
quanti�cation �� k � K � d � D � x � full k d�� asking whether x � full k d for some
k and d �

We therefore introduce the abbreviation

x is full�

for �� k � K � d � D � x � full k d�� using a new two�place predicate is for the purpose�
it tests for membership of an alternative�

���� Pattern�matching in alternations

Testing as in the previous section is not yet enough to make our disjoint unions
useful� the truth of m is guilders tells us what kind of money we have� but not how
much� Consider for example the type de�nition

�rst j second A j third B C �

and suppose E is some expression of that type� then the program

if E is

�rst � prog�
�� second a � prog	
�� third b c � prog�
�

executes prog�� prog	� or prog� depending on the the tag of E � In addition� the
variables a� b� and c are local in their respective branches of the alternation� and
are initialised appropriately� Thus in general we access the components of elements
of such types with a tagged alternation� as above�

Note that �sanserif� is �of the previous section� is a binary predicate� while �bold�
is simply distinguishes the tagged alternation from the ordinary one� Although
the e�ect of the tagged alternation can be partially achieved using the predicate is

instead� the expression E in that case must be repeated� and in prog	�� for example�
the variable a is not available as it is in prog	�

c� Carroll Morgan ����� ����� ����

Pattern�matching in alternations ���

if E is �rst � prog��

�� E is second� prog	�

�� E is third � prog��

�

is less useful� That shows the advantage of the pattern matching�
If the expression E does not match any of the supplied patterns in a tagged

alternation� then the alternation aborts �just as ordinary alternation aborts when
no guard is true��

Although the use of tagged alternation should not need much formal justi�cation
in practice� it does � like the other constructs of our language� have an associated
re�nement law�

Law �
�� tagged alternation Let �rst� middle and last be tags from a typical type
declaration

�rst A � � �H jmiddle I � � �P j last Q � � �Z �

Provided none of a � � �h� q � � � z appear free in E or prog � this re�nement is valid�

fE is �rst � E is lastg prog
v if E is

�rst a � � � h � fE � �rst a � � � hg prog
�� last q � � � z � fE � last q � � � zg prog
� �

�

We have of necessity given just an example of the types to which law tagged al�

ternation ���� applies� but the principle should be clear� the assumption fE is

�rst � E is lastg makes explicit the possible tags of E � which need not be all
that the type allows� �We have left out middle� for example�� The guards of the
alternation then correspond exactly to the disjuncts of the assumption�

Here are some alternations based on the example types mentioned earlier�

�� if dd is

wednesday � prog�
�� tuesday � prog	
�

executes prog� if dd is wednesday holds� and prog	 if dd is tuesday holds� it
aborts otherwise�

	� if nn is

unde�ned � skip

�� okn � nn � � ok�n � ��
�

�increments� nn if it is not unde�ned� if unde�ned it is left so�

c� Carroll Morgan ����� ����� ����

�
� Recursive types

�� if mm is

guildersm � mm � � ecu��
��m�
�� poundsm � mm � � ecu�����m�
�� liram � mm � � ecu�m����
�� ecum � skip

�

converts m into European Currency Units� �The ecu branch does nothing�
but what would happen if it were not there��

� Suppose we represent a database db as a sequence of length N of entries�
each either empty or containing a key�datum pair�

db � seqN �empty j full K D� �

Then for given k � K the following program searches the database for the
associated datum d in D �

i � � ��
re S �

if db�i � is
empty� i � � i � �� S

�� full k � d � �
if k � k � � d � � d �

�� k �� k � � i � � i � �� S
�

�

er �

Note how in the pattern�matching guards the local variables are k � and d ��
allowing a distinction to be made between the values found in the sequence
and the original k and d � The program behaves unpredictably if the key does
not occur in the database�

As an example of the use of tagged alternation ����� we will now look at the
development steps that led to the last of the four program fragments above� First
we de�ne for convenience a predicate expressing the presence �or absence� of k in
db�

k in db b� �� d � full k d � db� �

Then� starting with a speci�cation that allows abortion �hence� unpredictable be�
haviour� if k does not occur� we proceed�

d � �k in db � full k d � db�

v var i � N�

i � � ��
d � i � �k in db�i � full k d � db� �

c� Carroll Morgan ����� ����� ����

Type declarations �
�

v re S variant I is i �

d � i � �I � i � k in db�i � full k d � db� �

v �k in db�i V i � N V db�i � is empty � db�i � is full
if db�i � is

empty� d � i �

�� db�i � � empty

I � i � N

k in db�i
� full k d � db

�� �i�

�� full k � d � � d � i �

�� db�i � � full k � d �

I � i � N

k in db�i
� full k d � db

�� �ii�

�

�i� v i � � i � ��
d � i � �I � i � N � k in db�i � full k d � db� �

v S

�ii� v if k � k � � d � i �

�
i � N

db�i � � full k d �
� full k d � db

	
�iii�

�� k �� k � � d � i �

����
k �� k �

db�i � � full k � d �

I � i � N

k in db�i
� full k d � db

���� �iv�

�

�iii� v d � � d �

�iv� v �as for �i�

i � � i � ��
S �

The variant I is increasing� in this example� it starts at i and is bounded above by
N � �Following the earlier presentation strictly� our variant would have been N � i �
bounded below by ���

���� Type declarations

With the introduction of our new type�forming mechanisms it becomes more im�
portant that we allow types to be named and reused� The syntax is� by analogy
with procedures�

type Name b� type�expression �

thus allowing declarations like

c� Carroll Morgan ����� ����� ����

�
	 Recursive types

type Money b� pounds Z j guilders Z j ecu Z j lira Z
Days b� sunday jmonday j tuesday

j wednesday j thursday j friday j saturday
Entry b� empty j full K D

DataBase b� seqN Entry �

Unless the types refer to each other recursively �a case we treat shortly�� the
meanings of programs with such declarations can be recovered simply by replacing
type names by the expressions they stand for� Thus the declaration

var db � DataBase

means

var db � seqN Entry

which in turn means

var db � seqN �empty j fullK D� �

We allow type parameters as well� writing for example

Maybe T b� ok T j unde�ned �

and� again in the absence of recursion� the meaning is recovered by substitution�

var marks � seqN Maybe N

means var marks � seqN �ok N j unde�ned� �

���� Recursive types

We are now well�enough equipped to discuss type declarations that refer to them�
selves� Consider� as our �rst example� the recursive declaration

type Tree b� empty j node N Tree Tree � ����	�

Typical elements of the type are

empty

node � empty empty

node � �node � empty empty� empty �

One might depict them as in Figure ����� where their tree�like nature is evident�
In fact we de�ne the elements of a recursive �or any other� type to be exactly

those whose membership in the type can be demonstrated by �perhaps repeated�
but only �nitely often� reference to the type de�nition� In the case above� for
example� we know that empty is a Tree from the left alternative of the declaration�
and it does not matter what the right alternative says� Once we do know that empty

c� Carroll Morgan ����� ����� ����

Recursive types �
�

empty t

node � empty empty ��
��
�

�
�
��

�
�
�Rt t

node � �node � empty empty� empty ��
��
�

������	

HHHHHHj

��
��
�

�
�
��

�
�
�R

t

t t

Figure �
�� Elements of type Tree

is a Tree� we can use the right alternative to deduce that node � empty empty is as
well �and the same holds of course for other natural numbers� not only ��� Once
we know that� we consider node � �node � empty empty� empty� and so on�

The above is just about the simplest view one could take to recursively de�ned
types� and it does restrict us to �nite structures� excluding for example the �in�nite�
tree of Figure ���	� node � empty �node � empty �node 	 �� � ����� There is nothing
inherently wrong with such in�nite structures� although we do not treat them here�
but there can be problems however with declarations such as

type TooBig b� one j several �setTooBig� �
Since no set �or type� can be big enough to contain representations of all subsets
of itself� it is not at all certain that the type TooBig exists� in spite of the fact that
we can enumerate elements as before�

one

severalfg
severalfoneg
severalfseveralfgg
severalfone� severalfgg �

c� Carroll Morgan ����� ����� ����

�

 Recursive types

��
��

t
��� ��R

��
��

t
��� ��R

��
��

t
��� ��R

�

�

	

� � �

Figure �
�� An �in�nite� tree

We avoid such problems by restricting our use of type functions within recur�
sive de�nitions� avoiding set and bag in particular� �The function seq we allow�
however��

���	 Structural order

Along with a de�nition such as ����	� of Tree comes an ordering relation which we
will write as ��� it is the �is�a�component�of� order� relating two elements whenever
one occurs structurally within the other� For example�

empty

�� node � empty empty

�� node � �node � empty empty� empty �

The order �� has these properties in common with the �strict� order � over the
integers� for example�

& It is irre�exive� for all x we have ��x �� x ��
& It is antisymmetric� for all x and y we have x �� y � y �� x 	 false�
& It is transitive� for all x � y and z we have x �� y � y �� z 	 x �� z �

The order � has one property that �� does not share� however� it is a total order�
which means that for all distinct x and y we have that either x � y or y � x �
Because the same is not true for ��� we call it a �strict� partial order� and strict
partial orders are characterised exactly by the three properties above�

To see that �� is partial� consider

node � empty empty and node � empty empty �

Neither occurs as a component of the other� and so they are unrelated by ���

c� Carroll Morgan ����� ����� ����

Pattern matching in iterations �
�

When developing programs over recursive data structures � as we shall do
shortly � often the variant function is not an integer expression� Instead it is
some element of the recursive type itself� and rather than use �� as we would
over integers� we use the structural order �� over the recursive type� For that to
be sound� we use one additional property of �� as a structural order� that it is
well�founded� for no starting point x is there an in�nite descending chain

� � � �� x ��� �� x �� �� x � �� x �

Note that our total order � is well�founded over the natural numbers� since no
natural number is negative� Thus our usual technique� writing � � v � v� for
integer�valued v � is a special case of the more general approach we are examining
at the moment� the � � v restricts attention to the natural numbers �rather than
the integers as a whole including negatives�� and � is well�founded over the natural
numbers�

���
 Pattern matching in iterations

By analogy with tagged alternations� we can de�ne tagged iterations� where a
tagged alternation would abort in the case of no match� a tagged iteration simply
terminates ��successfully��� Consider for example the type

NatList b� empty j cons N NatList � ������

whose typical elements include

empty

cons � empty

cons � �cons � empty� �

Given the declarations n � N� nl � NatList � the following iteration assigns to n the
sum of the elements originally in nl �

n � � ��
do nl is cons n � nl � �

n� nl � �n � n �� nl �

od �

�Note that nl is modi�ed in the process�� The iteration guard covers only one of
the two possible tags for nl � and so termination occurs when nl has the tag of the
other alternative� that is� termination occurs when nl is empty�

The law for the introduction of tagged iterations is

Law �
�� tagged iteration Let �rst� middle and last be tags from a type declaration

Type b� �rst A � � �H jmiddle I � � �P j last Q � � �Y �

Provided none of a � � �h� q � � � y appears free in z � inv � E � or V � this re�nement is
valid�

c� Carroll Morgan ����� ����� ����

�
� Recursive types

z � �inv � inv � ��E is �rst � E is last��
v do E is

�rst a � � �h� z � �E � �rst a � � � h � inv � V �� V��
�� last q � � � y� z � �E � last q � � � y � inv � V �� V��
od �

The formula inv is the invariant� the expression V is the variant� and the relation
�� must be well�founded�
�

Note that� as in tagged alternation� the guards of the iteration correspond exactly
to the disjunction �negated� in the postcondition� and that they need not exhaust
the type� �Indeed� if they did then the iteration would never terminate"�

As an example� we de�ne the function suml � NatList�N � for summing a list�
as

suml empty b� �
suml�cons n nl� b� n � suml nl �

����
�

and develop the program above as follows�

n� nl � � suml nl � �
v con N � N�

n� nl � �N � suml nl � n � N �
v I b� N � n � suml nl �

n � � ��
n� nl � �I � I � nl is empty� �

v n� nl � �I � I � ��nl is cons��
v �tagged iteration ���	

do nl is cons n � nl � �
n� nl � �nl � cons n � nl � � I � nl �� nl�� �

od

v n� nl �

�
nl � �� nl

N � n � n � � suml nl �
� N � n � suml nl � nl �� nl�

	
v n� nl � �n � n �� nl � �

Since the type NatList is structurally identical to seqN � we could almost have
�de�ned� the latter

seqN b� hi j N ��seq N� �
Continuing that analogy� if nl were declared of type seq N we could have written
for the above program

n � � ��
do nl is n ��nl � � n� nl � �n � n �� nl � od �

which is a very compact imperative notation for summing a sequence�

c� Carroll Morgan ����� ����� ����

Example� Summing a tree �
�

���� Example� Summing a tree

We return now to our de�nition ����	� of trees of N� and we develop code to sum
the node values� As one would expect� the recursive code is straightforward �type
Tree is recursive� after all�� iterative code will require some ingenuity� however� In
this section we investigate both approaches�

�
��� Recursive tree�summing

First� we de�ne sumt ��sum for trees� as opposed to lists�

sumt empty � �
sumt�node n nt� nt	� � n � sumt nt� � sumt nt	 �

������

and then begin the development using a procedure�

procedure SumT �value nt � Tree� result n � N�b� n � � sumt nt
v variant NT is nt�

n� �nt � NT � n � sumt nt �
v if nt is

empty� n � � �
�� noden � nt� nt	�

n� �NT � nt � noden � nt� nt	 � n � sumt nt � �
�

v n�

�
nt� �� NT

nt	 �� NT
� n � n � � sumt nt� � sumt nt	

	
v var n�� n	 � N

n�� �nt� �� NT � n� � sumt nt�� � �i�
n	� �nt	 �� NT � n	 � sumt nt	� � �ii�
n � �n � � n� � n	

�i� v SumT �nt�� n��
�ii� v SumT �nt	� n	� �

The result is shown in Figure �����

�
��� Iterative tree�summing

Matters are not so straightforward for the iterative development� Comparing the
two types of sum ����
� and ������� the �rst for lists and the second for trees� we
�nd one recursive occurrence in the �rst case but two in the second� �That is� sumt

�calls itself� twice on the right�hand side�� Such multiple occurrences are not so
easily dealt with by iteration�

c� Carroll Morgan ����� ����� ����

�
 Recursive types

procedure SumT �value nt � Tree� result n � N� b�
j� var n�� n	 � N�

if nt is

empty� n � � �
�� node n � nt� nt	�

SumT �nt�� n���
SumT �nt	� n	��
n � �n � � n� � n	

�

�j

Figure �
�� Recursive tree�summing

Thus we look at replacing ������ by something more like ����
�� On the right�
hand side of ������ we �nd

sumt nt� � sumt nt	 �

and note that it can be rewritten

sumlhsumt nt�� sumt nt	i �
We are generalising� in other words� and if we carry on for more than two we would
de�ne�

sumlthi b� �
sumlt�nt �ntl� b� sumt nt � sumlt ntl �

������

We now have only one recursive occurrence of sumlt� and we can obtain our original
sumt as a special case of it�

Our iterative development is thus

n � � sumt nt

v var ntl � seqTree�

ntl � �hnti�
n� ntl � � sumlt ntl � � �

v con N � N�

n� ntl � �N � sumlt ntl � n � N �
v I b� N � n � sumlt ntl �

n � � ��
n� ntl � �I � I � ntl � hi� �

�Functional programmers will recognise this as just suml �map sumt	

c� Carroll Morgan ����� ����� ����

Example� Summing a tree �
�

j� var ntl � seqTree�
n� ntl � � �� hnti�
do ntl is

empty�ntl � � ntl � �ntl �

�� �noden �nt� nt	��ntl � � n� ntl � �n � n �� nt��nt	�ntl �

od

�j

Figure �
�	 Iterative tree�summing

v �invariant I � variant V �later�

do ntl is

empty�ntl � � n� ntl � �ntl � empty�ntl � � I � � � V � V�� �i�
�� �node n � nt� nt	��ntl � �

n� ntl � �ntl � �noden � nt� nt	��ntl � � I � � � V � V�� �ii�
od

�i� v ntl � � ntl �

�ii� v n� ntl � � n � n �� nt��nt	�ntl � � �iii�

Those last two steps� perhaps rather large at �rst sight� are easily justi�ed �still
leaving aside the variant�� For the second� we could have proceeded more slowly

�ii� v n� ntl � �N � n � sumlt��noden � nt� nt	��ntl �� �
N � n � sumlt ntl � � � V � V��

v n� ntl � �N � n � n � � sumt nt� � sumt nt	 � sumlt ntl � �
N � n � sumlt ntl � � � V � V��

v n� ntl � �N � n � n � � sumlt�nt��nt	�ntl �� �
N � n � sumlt ntl � � � V � V��

v �ignoring the variant part

�iii� above�

The collected code for the iterative version is shown in Figure ���
� The sequence
ntl that occurs there is typical of imperative implementations of problems that are
inherently recursive� examination of the code shows that ntl is accessed as a stack�

But that does leave the variant V � The �obvious� choice of ntl itself �using the
structural order for lists� does not work� since the second branch of the iteration
actually increases the size of ntl � albeit with structurally smaller elements� What

c� Carroll Morgan ����� ����� ����

��� Recursive types

is decreased is in fact the overall size of ntl � taking its components into account�

sizelthi b� �
sizelt�nt �ntl� b� sizet nt � sizelt ntl

sizet empty b� �
sizet�node n nt� nt	� b� � � sizet nt� � sizet nt	 �

Thus our variant V is sizelt ntl � with these more elaborate structures� variants are
not as easily found as before"

���� Exercises

Ex� �
�� What is the size of the type

�rst j second A j third B C �

in terms of $A� $B � and $C �

Ex� �
�� � Give types for each of the following�

�� A one�place bu�er which either is empty or contains a natural number�

	� The �nite binary trees with real numbers at the tips �a recursive type��

�� The colours of the spectrum�

Ex� �
�� � Example alternation 	 of Section ���� leaves n untouched if it is
unde�ned� Write an alternation that instead aborts if n is �unde�ned��

Ex� �
�	 � Recall the code of example alternation
 in Section ����� How would
you specify such a search so that termination is guaranteed even if key k does not
occur in the database db� �In that case d may be given a value arbitrarily��

Ex� �
�
 How would you implement the speci�cation of Exercise ���
�

Ex� �
�� � Use a type similar to that of example alternation 	 in Section ����
to modify your answer to Exercise ���
 so that ok d is returned when full k d � db�
and unde�ned is returned otherwise�

Ex� �
�� How would you implement the speci�cation Exercise �����

Ex� �
� Write your answers to Exercises ���� and ���� as loop � exit � end
constructions�

c� Carroll Morgan ����� ����� ����

Exercises ���

Ex� �
�� � Recall the type of Section ����

type TooBig b� one j several �setTooBig� �
and consider the following subset of it�

paradox b� ft � TooBig j �� ts � setTooBig � t � several ts � t �� ts�g �

Because paradox is a subset of TooBig we have that several paradox is an element

of TooBig � and we can then reason

several paradox � paradox

� �de�nition of paradox as set comprehension
�� ts � setTooBig � several paradox � several ts � several paradox �� ts�

� �several is injective
�� ts � setTooBig � paradox � ts � several paradox �� ts�

� �Predicate law ���
���

What can we deduce at ��� What can we then conclude about TooBig itself�
�The above construction is an example of Russell�s paradox��

Ex� �
��� Recall Exercise ����� concerning the type TooBig � Consider now the
declaration

type QuiteBig b� one j several ��nset QuiteBig� �
which di�ers from TooBig only in its using �nset in place of set� Replay from
here the argument of Exercise ����� do we reach the same conclusion�

Ex� �
��� In Section ���� we introduced the notion of �strict� partial order�
together with its three de�ning properties �page �

�� Show that� given transitivity�
properties irre�exivity and antisymmetry are equivalent� each implies the other�

Ex� �
��� A non�strict partial order is obtained from a strict one by allowing
equality� thus we could de�ne

x �� y b� x �� y � x � y � ������

Show that ��� de�ned as above� satis�es these three properties�

& It is re�exive� for all x we have x �� x �
& It is antisymmetric� for all x and y we have x �� y � y �� x 	 x � y �
& It is transitive� for all x � y and z we have x �� y � y �� z 	 x �� z �

Then show that any non�strict partial order �� satisfying those three proper�
ties may be written as ������ for some strict partial order �� satisfying the three
properties of Section �����

c� Carroll Morgan ����� ����� ����

��	 Recursive types

Ex� �
��� In Exercise ����	 there were three properties given to characterise
a non�strict partial order� In Exercise ����� you were asked to show that the
�rst two of the corresponding properties for a strict partial order were equivalent�
Does that equivalence hold for the non�strict case as well� If not� propose a slight
modi�cation to the three �non�strict� properties so that equivalence of re�exivity
and antisymmetry follows from transitivity�

Ex� �
��	 � Is strict subset inclusion� a strict partial order� Is it well founded�

Ex� �
��
 In Section ���� it was pointed out that NatList as de�ned at ������
is structurally equivalent to seqN � and as a result we used from then on their
notations interchangeably�

Can you de�ne a type Nat that is structurally equivalent to N itself� and would
justify the notation used in the following factorial calculator�

f � � ��
do n is n � � �� f � n � � f � n� n � od �

Ex� �
��� � Usually in Law tagged iteration ���	 the variant is the expression
E itself� and the relation �� is �is a component of�� Use the law to show that the
following tagged iteration is a re�nement of r � s � � rv s� �� where rv is the list�reverse
function�

r � �hi�
do s is h�t � r � s � � h�r � t od �

Hint� You will need a logical constant in the invariant�

Ex� �
��� Consider the binary tree type

BT X b� tip X j node �BT X � �BT X � �

The frontier of such a tree is the sequence of tip�values in left�to�right order� The
following recursive procedure puts out the frontier of a given binary tree bt in
BT X �

procedure Frontier �value bt � BT X �b� if bt is

tip a � output a

�� node bt� bt	�
Frontier �bt���
Frontier �bt	�

� �

Develop iterative code �neither recursive nor parametrized� with the same e�ect�
using a local variable s � seqBT X as a stack� Hint� To express the invariant� use
a recursive mathematical function frontier that you de�ne yourself� You will need
a logical constant�
Harder� What is the variant of your iteration�

c� Carroll Morgan ����� ����� ����

Exercises ���

Ex� �
�� � Recall Exercise ������ Develop iterative code� using two stacks�
that determines whether the frontiers of two binary trees are equal�

var bt�� bt	 � BT X �
eq � Boolean�

eq � ��frontier bt� � frontier bt	�

Your solution should be as space�e!cient as possible� do not just �output� into
two sequences and then compare them�

Ex� �
��� � Verify the strict decrease of the variant sizelt ntl in Section ����	�

c� Carroll Morgan ����� ����� ����

Chapter �	

Modules and encapsulation

We have seen already how procedures act as a structuring tool for large programs�
and that they simplify the development process� Going further� groups of proce�
dures can themselves be organised� usually into units corresponding to data ab�
stractions� We call those modules� and they are the subject of this chapter and the
next�

�	�� Module declarations

Suppose in a large program there were a need for uniquely allocated natural number
tags� The program would declare a set u of used tag values�

declaration� var u � setN �

It would contain commands for acquiring and returning tags �assume that t is in
N��

acquire new tag� t � u� �u �� N � t �� u� � u � u� � ftg�
return tag� u � � u � ftg �

And it would contain an initialisation of u� placed before any other use of it�

initialisation� u � �fg �
Finally � an important point � the variable u would not be used in any other
way�

If the commands occur often� they could be made procedures� But there would
still be a lack of organisation in the program� the three aspects of u �declaration�
use� initialisation� would be widely separated� though they are all to do with a
single abstraction� With a module they can be brought together�
Modules contain all three features� local variable declarations� procedure decla�

rations� and initialisations� They encapsulate their data and all aspects of their

��

Exported and local procedures ���

module Tag

var u � setN �

procedure Acquire �result t � N�b� t � u� �u �� N � t �� u� � u � u� � ftg� �

procedure Return �value t � N�b� u � � u � ftg�

initially u � fg
end

Figure ���� Module declaration

use� Figure ���� gives an example� note that a module is a declaration� not a
command�

A local block containing a module declaration is equivalent in meaning to one
in which the components are distributed back to their normal positions� Its vari�
able declarations are placed with the other variable declarations of the block� its
procedure declarations are placed with the other procedure declarations� and its
initialisation �made a command� is placed at the beginning of the block body� Fig�
ures ���	 and ���� illustrate that distribution� Normally in program development�
however� we would move in precisely the reverse direction� from Figure ���� to
���	�

�	�� Exported and local procedures

In Figure ���	 it is not possible for prog to refer to the variable b� because prog is
outside the module but b is inside the module� The procedures P� and P	 can be
used in prog � however� that is precisely what they are for� They are exported from
the module� In general� we indicate explicitly the procedures to be exported� an
export list gives their names� It is written

export P��P	 �

and is placed inside the module� If it is missing� then by default all procedures are
exported�

Procedures not exported are local� and are available for use only within the mod�
ule� As for local variables� they can be given fresh names if the module is removed�
Figure ���
 gives an example of the use of a local procedure� it is equivalent to
Figure �����

c� Carroll Morgan ����� ����� ����

��� Modules and encapsulation

j� var a�

module M

var b�
procedure P� � � � �
procedure P	 � � � �
initially init

end�

var c�

procedure P � � � �

prog

�j

Figure ���� Local block with module

j� var a�
var b�
var c�

procedure P � � � �
procedure P� � � � �
procedure P	 � � � �

b� �init � �
prog

�j

Figure ���� Equivalent local block without module

Variables may be exported also� in which case they may be accessed but not
changed ��read� but not �written�� by commands outside of the module� They may
be changed by commands within the module�

c� Carroll Morgan ����� ����� ����

Re�nement of modules ���

module Tag

export Acquire�Return�

var u � setN �

procedure Acquire �result t � N�b� Choose �t�� u � � u � ftg�

procedure Return �value t � N�b� u � � u � ftg�

procedure Choose �result t � N�b� t � �u �� N � t �� u� �

initially u � fg
end

Figure ���	 Module with local procedure

�	�� Re�nement of modules

We saw in Chapter �� that re�ning a procedure body re�nes the program containing
it� and we regard that as re�ning the procedure itself�

Similarly� we can re�ne a module� as a whole� by re�ning its exported proce�
dures� The local procedures can be changed in any way we please �as long as that
results in re�nement of the exported procedures�� The initialisation is re�ned by
strengthening it�

Law ���� re�ne initialisation If init � V init � then

initially init v initially init � �

�

Figure ���� contains a re�nement of the module in Figure ���
� By re�ning
Choose� we re�ne the exported Acquire� which uses it� The re�ned module acquires
the least unused tag�

�	�� Imported procedures and variables

Modules developed for one program can often be reused in another� because their
encapsulation makes them largely independent of the surrounding program�

c� Carroll Morgan ����� ����� ����

�� Modules and encapsulation

module Tag
���
procedure Choose �result t � N�b� t � ��ue � N j e � N � u�
���

end

Figure ���
 Re�nement of Figure ���

For reuse� however� we must be explicit about the dependencies there are� Ref�
erences made by the module to its environment are imported using an import list�
Both variables and procedures may be imported�

An imported variable is redeclared within the module� and that declaration must
be implied� by the original declaration of the variable�

An imported procedure is redeclared within the module� and its original dec�
laration must re�ne its redeclaration� The e�ect of an imported procedure on a
module is given by the text associated with its �re�declaration in the module� not
for example by the text of the actual �external� procedure � a necessary precau�
tion if we are to allow modules to be re�ned in isolation� without direct reference
to the context in which they will be placed��

Both sorts of redeclarations � of variables and procedures � are to make rea�
soning about the module independent of the surrounding program� and the import
list distinguishes redeclarations from declarations�

Imported procedures cannot refer directly to local variables of the module �be�
cause of variable capture�� for that� they must use parameters� Figure ���� con�
tinues the example by importing Choose� The redeclaration of Choose� within
the module� records the assumptions made about it� Re�ning the module means
assuming less�

Law ���� re�ne module Let E be the list of exported procedures from module M �
I its imported procedures� and init its initialisation� A module M � re�nes M if
the following three conditions are satis�ed�

�� Its exported variables are unchanged�

�Consider types as local invariants for that purpose� so that for example the declaration a � N
�implies� the declaration a � Z	

�Naturally an implementor is likely to resolve calls to the imported procedure by using the
actual external procedure	 Given our rule about imported procedures being re�ned by the proce�
dures they redeclare� the e�ect of that is a re�nement of the whole program � but one on which
the developer cannot depend	 No more can he depend on the fact that a particular compiler might
implement all assumptions as skip� or all nondeterministic choices as a deterministic choice of
the �rst enabled alternative	

c� Carroll Morgan ����� ����� ����

Imported procedures and variables ���

module Tag

export Acquire�Return�
import Choose�

var u � setN �

procedure Acquire �result t � N�b� Choose �N � u� t��
u � � u � ftg

procedure Return �value t � N�b� u � � u � ftg�

procedure Choose �value s � setN � result e � N�b� e� �s �� fg � e � s� �

initially u � fg
end

Figure ���� Module with imported procedure

	� Its exported procedures E � re�ne E �

�� Its initialisation init � re�nes init �

In addition� the following changes may be made provided the three conditions
above are not invalidated as a result�

�� Its imported variables� declarations are weakened�

	� Its imported procedures I � are re�ned by I �

�� An imported procedure I is replaced by a local �neither imported nor ex�
ported� procedure I � that re�nes I �

�

�In fact the third change cannot invalidate any of the earlier conditions� but is
mentioned for completeness� in that way a module can be decoupled from parts of
its context��

Note that Law ���	 says �if�� and not �only if�� we see in the next chapter that
there are other much more general ways of achieving M v M ��

c� Carroll Morgan ����� ����� ����

��� Modules and encapsulation

module M �
export P��
import P	�

procedure P� b� magic�
procedure P	 b� magic

end

module M 	
export P	�
import P��

procedure P	 b� magic�
procedure P� b� magic

end

Figure ���� Circular export�import

�	�� De�nition and implementation modules

In fact we do not need a technical meaning for �de�nition� and �implementation�
when applied to modules� They refer only to a discipline of module reuse�

When a module is �rst formulated� it is likely to be during the development of
some program� and will be abstract� Using an import list� it can be extracted from
the program� and left for later re�nement� That is a de�nition module�

Later� we can re�ne the de�nition module� The re�ned version can be inserted
back into the program� replacing the original� That is an implementation module�

If in the development of some other program the same �de�nition� module is
reached� it can immediately be replaced by its re�nement� the implementation
module� If the implementation module is code� as often will be the case� then that
replacement can be done by linking in machine code just before execution� Thus
the discipline we refer to is simply this�

If for modules D and I we have D v I � then we can call D a de�nition
module and I �one of� its implementation module�s��

De�nition�implementation pairs can be saved for future program developments�
The de�nition module is published� but the implementation module is supplied�
Since a module can have many re�nements� a de�nition module can have many
corresponding implementation modules�

�	�	 Circular export�import

Consider Figure ����� and its re�nement by re�ne module ���	 to Figure ���� Fig�
ure ���� is infeasible �it containsmagic�� but Figure ��� is code � remember that
the imported procedures �for example� P	 into M �� are there only for reasoning
�about M ��� Imported procedures need not be code�

Recall however from Chapter � that infeasible programs can never be re�ned to
code�

c� Carroll Morgan ����� ����� ����

Initialisation in code ���

module M �
export P��
import P	�

procedure P� b� P	�
procedure P	 b� magic

end

module M 	
export P	�
import P��

procedure P	 b� P��
procedure P� b� magic

end

Figure ��� Apparent re�nement of Figure ����

The contradiction is due to the circular export�import between M � and M 	�
and a simple way of avoiding that is to forgo such circularities between modules�
If more care is taken� that can be relaxed to banning only circularities between
procedures in separate modules� The most general solution involves variants� as
for recursion� but it is seldom needed in practice�

�	�
 Initialisation in code

We allow only certain initialisations in code� One is

initially true�

which allows any initial values of the variables consistent with their types� An
initialisation true can be omitted�

The other initialisation allowed in code is

initially w � E �

where the variables w are all local� and the code expressions E are consistent with
their types� The initialisation true is a special case of that� where w is empty�

�	�� Exercises

Ex� ���� The law re�ne initialisation ���� allows any initialisation to be re�ned
to false� Why isn�t that a good idea�

Ex� ���� � Is it possible to re�ne Tag so that it acquires only even numbers�
Is the result feasible�

Ex� ���� Modify Tag so that it can abort if �too many� numbers are acquired but
not returned� Is that a re�nement� Does the original version re�ne your modi�ed
version�

c� Carroll Morgan ����� ����� ����

��	 Modules and encapsulation

Ex� ���	 � Write a module for acquiring pseudo�random numbers� Does it
re�ne Tag�

Ex� ���
 � Recall Figure ����� In Module M �� can the imported procedure P	
be re�ned to abort� Can that be done in Figure ����

Ex� ���� � Suppose a module contained the declarations

var n � N �
import In�
export Out � n�

procedure In �result m � N� b� m� �m � � �m � �� �
procedure Out b� In �n� �

and that the actual procedure supplied for In� by the context� was

procedure In �result m � N� b� m � � � �

What value would a call of Out assign to n under those circumstances�
Suppose now a programmer re�ned Out to the assignment n � � �� Does that

re�ne the module� according to Law ���	� Is the new behaviour � of the module
and its actual procedure � a re�nement of the original behaviour�

Can you explain�

c� Carroll Morgan ����� ����� ����

Chapter �

State transformation and data
re�nement

In the last chapter� where we met modules for the �rst time� the notion of module
re�nement was introduced� it was argued that re�nement of a module�s individual
procedures re�ned the module overall�

We now consider a much more radical possibility� in which we can carry out quite
startling changes within the module while still being sure of its overall re�nement�
The technique is known as state transformation� or data re�nement�

�
�� What we cannot yet show

Consider the module Tag � of Figure ����� It is a re�nement of module Tag of
Figure ����� although we cannot yet show it to be � for suppose the contrary�
that Tag �v Tag �� then a client expecting Tag would have to be disappointed by
Tag �� That means in turn that there is some program whose behaviour would be
detectably di�erent if Tag were replaced by Tag � � otherwise� the client would
have no grounds for complaint" But there is no such program� using Tag �� any
series of Acquire and Return will produce successively higher values of t � starting
from some randomly chosen value� And using Tag � exactly the same could have
happened� �One might argue that it is unlikely� but still it is possible�� Thus
Tag �v Tag � is not true�

On the other hand� we can see easily that Tag � �v Tag is indeed the case� For Tag
can Acquire � then �� and that is something Tag � could never do� Thus Tag v Tag �

but Tag � �v Tag � and so Tag � Tag �� a strict re�nement� The former could be a
de�nition module� and the latter one of its implementation modules�

Although we have argued that Tag v Tag �� indeed we cannot show that rigor�
ously with our techniques so far� the individual procedures Tag � do not re�ne their
counterparts in Tag � moreover� the states of the two modules are completely di�er�
ent� Such di�erences� however� are of great importance in program development�
Module Tag contains a set of natural numbers� and few programming languages

���

��
 State transformation and data re�nement

module Tag �

var n � N �

procedure Acquire �result t � N�b� t � n � � n� n � ��

procedure Return �value t � N�b� skip

end

Figure ���� A re�nement of Figure ����

accept that as code� But Tag � contains only a single natural number� and that is
far more realistic�

We see shortly that it is precisely because the state of a module cannot be
accessed directly � its local variables � that we are free to change that state�
we can replace more abstract variables �like sets� by more concrete variables �like
simple numbers�� provided the di�erence cannot be detected by use of the exported
procedures�

Such a change of state is sometimes known as change of representation� if the
change tends from abstract to concrete �towards code� in other words�� it is known
as data re�nement�

�
�� State transformation

State transformation� carried out on the interior of a module� results in re�nement
of its external behaviour� We consider two speci�c transformations� one adds
variables to a module� the other removes variables from a module�

To add variables� a coupling invariant is chosen� relating the existing variables
to the new ones� it can be any formula over the local and exported variables of the
module� �It may not refer to imported variables�� Declarations of the new variables
are added� the initialisation is strengthened by conjoining the coupling invariant�
every guard may assume the coupling invariant� and every command is extended
by modi�cations to the new variables that maintain the coupling invariant� The
resulting module then re�nes the original�

To remove variables� they must be �rst made auxiliary by re�ning the procedures
of the module individually� A set of variables is auxiliary if its elements occur
only in assignments or speci�cations whose changing variables are in the same set�
so that other variables cannot depend on them� Then the declarations and all

c� Carroll Morgan ����� ����� ����

Coercions ���

occurrences of those variables are removed� Again� the resulting module re�nes
the original�

Often the two steps are carried out in succession � augmentation to add vari�
ables� then diminution to remove them � though in special cases we can bundle
them together in one step�

Before we look at augmentation however� the �rst of the two� we must take a
brief detour�

�
�� Coercions

We have already met assumptions� formulae fpreg between braces that act as
abort unless the formula holds as that point in the program� Complementary to
assumptions are coercions� which make a formula true at that point in the program�
Here is the abbreviation�

Abbreviation ���� coercion Provided post contains no initial variables�

�post � b� � �true � post � �

�

A coercion to post behaves like skip if post is true� and magic otherwise� As do
assumptions� coercions have an empty frame� and true as one of their constituent
formulae� For both� the explicit appearance of the sequential composition operator
is optional�

Here are two simple laws for coercions�

Law ���� absorb coercion A coercion following a speci�cation can be absorbed
into its postcondition�

w � �pre � post � � �post �� � w � �pre � post � post �� �
�

�Compare absorb assumption ����

Law ���� introduce coercion skip is re�ned by any coercion�

skip v �post � �

�

�Compare remove assumption ������
We should also mention the following law for absorbing an assumption following

�rather than preceding� a speci�cation� It is

c� Carroll Morgan ����� ����� ����

��� State transformation and data re�nement

Law ���	 establish assumption An assumption after a speci�cation can be re�
moved after suitable strengthening of the precondition�

w � �pre � post � � fpre �g
� w � �pre � �
w � post 	 pre �� �w�nw � � post � �

�

Law ���
 exploits the fact that we do not distinguish a program that can abort
later �because post can be true but pre � false� from one that aborts sooner �because
in its precondition �
w � post 	 pre �� �w�nw � is false��
Assumptions and coercions are together known as annotations� Coercions in

particular have many surprising � and useful � properties that are explored in
the exercises for this chapter� One speci�c use is in augmentation� to which we
now turn�

�
�� Adding variables� augmentation

Each of the following laws deals with an aspect of adding new variables� We assume
throughout that the new variables are c� and that the coupling invariant is CI �
Note that they are not re�nement laws� and so do not contain the symbol v�
Rather they are transformations� for which we use the word �becomes��

In our examples below� we suppose the module already contains a variable p�
and that the new variables are q and r � The coupling invariant is p � q � r � and
all three variables have type N �

���	�� Declarations

Declarations of the new variables are added to the module� For the example� we
would add var q � r � N �

���	�� Initialisation

The coupling invariant is conjoined to the initialisation�

Law ���
 augment initialisation The initialisation I becomes I � CI �
�

If the initialisation were p � �� it would become p � � � p � q � r �

���	�� Speci�cations

The coupling invariant is conjoined to both the pre� and postcondition of speci��
cations� and the frame is extended to allow the new variables to change�

c� Carroll Morgan ����� ����� ����

Adding variables� augmentation ���

Law ���� augment speci�cation The speci�cation w � �pre � post � becomes

w � c� �pre � CI � post � �

�

For example� the command p� �p � � � p � p�� becomes

p� q � r � �p � � � p � q � r � p � p�� �

���	�	 Assignments

Assignments are extended so that they can change the new concrete variable� but
they too must preserve the coupling invariant�

Law ���� augment assignment The assignment w � �E can be replaced by the
fragment

fCI g w � c � �E � � �CI � �

�

Note the similarity between Laws ���� and ����� in each� the frame is widened
to include c� and the coupling invariant appears before �in the precondition� or
assumption� and after �in the postcondition� or coercion�� As a special case of
augment assignment ����� however� we have

Law ��� augment assignment The assignment w � �E can be replaced by the
assignment w � c � �E �F provided that

CI V CI �w � cnE �F � �

�

Law ��� is easily obtained by re�ning the right�hand side of Law ����� �See
Exercise ����	��

As an example of augmenting assignments� the command p � � p � � can be
replaced by

fp � q � rg p� q � r � � p � �� �� � �p � q � r � �

which in turn can be re�ned to

p� q � � p � �� q � � �

for example� The e�ect of the coercion is to force the two open assignments ��� to
resolve to values that make the formula hold �the formula is p � q�r � in this case��
There may be many such values� and so there are of course other possibilities for
the augmentation� If the notion of coercion seems too surprising� remember that
the alternative� augment assignment ���� reaches p� q � � p � �� q � � in a single
step�

c� Carroll Morgan ����� ����� ����

�� State transformation and data re�nement

���	�
 Guards

Each guard can be replaced by another whose equivalence to the �rst follows from
the coupling invariant�

Law ���� augment guard The guard G may be replaced by G � provided that

CI V �G � G �� �

�

Note that CI �G is always a suitable G � above� as is CI 	 G � The guards p � �
and p � � could become p � � � p � q � r and p � � � p � q � r �

�
�� Removing auxiliary variables� diminution

Each of the following laws deals with an aspect of removing variables� In each
one we assume that the auxiliary variables are a and that their type is A� and we
continue with the example of the previous section� There is no coupling invariant
for diminutions�

���
�� Declarations

The declarations of auxiliary variables are simply deleted� In our example� the
declaration var p � N is removed�

���
�� Initialisation

Existential quanti�cation removes auxiliary variables from the initialisation�

Law ����� diminish initialisation The initialisation I becomes

�� a � A � I � �

�

The example initialisation� augmented in Section ���
�	� becomes q � r � � when
p is removed�

���
�� Speci�cations

The following laws remove variables from a speci�cation� In many practical cases�
however� these laws are not needed� often the variables can be removed by ordinary
re�nement� �See our more substantial example� in Section �����	��

The �rst law is used when the variable a� to be removed� is in the frame�

c� Carroll Morgan ����� ����� ����

Removing auxiliary variables� diminution ���

Law ����� diminish speci�cation The speci�cation w � a� �pre � post � becomes

w � ��� a � A � pre� � �
 a� � A � pre� 	 �� a � A � post��� �

where pre� is pre�w � anw�� a��� The frame beforehand must include a�
�

Law ����� may appear surprisingly complex �a good reason perhaps to use ordi�
nary re�nement where possible to eliminate the abstract variables� and to reserve
diminish speci�cation ����� as a last resort�� In fact it performs three operations�
�rst� since a is auxiliary� we can have no interest in its �nal value � we care only
that there is one� That explains the quanti�cation � a in the postcondition�

Second� we strengthen the postcondition so that it no longer depends on the
initial value of a� it must apply for all such values� That explains the quanti��
cation
 a� in the postcondition� The antecedent pre� is optional �and strengthen

postcondition ��� allows it in any case�� it makes the postcondition weaker� and
less likely to be infeasible�

Finally� we cannot refer in the precondition to the actual value of a� although
we can be sure it has some value� That explains the quanti�cation � a in the
precondition� which weakens it�

The example from Section ���
�� yields� after several applications of Predicate
law A����

q � r � �q � r � � � q� � r� � �	 q � r � q� � r�� �

And by strengthening the postcondition that re�nes to

q � r � �q � r � � � q � r � q� � r�� �

If a speci�cation does not contain a in the frame� we can still use Law �����
provided we use expand frame �� �rst� Or we can use this law� derived from those�

Law ����� diminish speci�cation The speci�cation w � �pre � post � becomes

w � ��� a � A � pre� � �
 a � A � pre� 	 post�� �

where pre� is pre�wnw��� The frame beforehand need not include a� and post must
not contain a��

Proof�

w � �pre � post �
v �expand frame ��

w � a� �pre � post � a � a��
becomes �diminish speci�cation �����

w � ��� a � A � pre� ��

 a� � A �

pre�w � anw�� a��
	 �� a � A � post � a � a��

�	

c� Carroll Morgan ����� ����� ����

��� State transformation and data re�nement

v �Predicate law A���

w � ��� a � A � pre� ��

 a� � A �

pre�w � anw�� a��
	 a� � A � post �ana��

�	
v �remove a� � A� rename bound variable

w � ��� a � A � pre� � �
 a � A � pre�wnw��	 post�� �

�

For example� n� �p � � � � � n � p� is taken by augment speci�cation ���� to

n� q � r � �p � � � p � q � r � � � n � p� �

and then by diminish speci�cation ����	� strengthen postcondition ���� and contract
frame ��
 to

n� �q � r � � � � � n � q � r � �

���
�	 Assignments

The auxiliary part of the assignment is removed�

Law ����� diminish assignment If E contains no variables a� then the assignment
w � a � �E �F can be replaced by the assignment w � �E �
�

The example yields q � � q � ��

���
�
 Guards

Guards must be rewritten so that they contain no auxiliary variables� Our ear�
lier law alternation guards
�� can be used for that� since it is applicable to the
re�nement of alternations generally� In the example� we get q�r � � and q�r � ��

�
�	 An example of data re�nement

As our �rst serious� example� consider the module of Figure ���	 for calculating
the mean of a sample of real numbers� We write

P
b and $b for the sum and size

respectively of bag b�
The module is operated by� �rst clearing� then entering the sample values� one

at a time� then �nally taking the mean of all those values�

�It is serious� the re�nement we calculate here is exactly the one used in pocket calculators	

c� Carroll Morgan ����� ����� ����

An example of data re�nement ���

module Calculator

var b � bag R�

procedure Clear b� b � �bbcc�

procedure Enter �value r � R�b� b � � b � bbrcc�

procedure Mean �result m � R�b� fb �� bbccg m � �
P
b�$b

end

Figure ���� The mean module

We transform the module� replacing the abstract bag b by a more concrete
representation s� n� a pair of numbers� Throughout� we refer to b as the abstract
variable� and to s� n as the concrete variables� First s and n are added� then b is
removed�

������ Adding concrete variables

We shall represent the bag by its sum s and size n�

abstract variable� b � bag R
concrete variables� s � R� n � N
coupling invariant� s �

P
b � n � $b �

The �rst step is to add the declarations of new variables s� n and
apply the augmentation techniques of Section ���
 to the initialisation and the
three procedures�

& For the initialisation� we have from augment initialisation ����

s �
X

b � n � $b �

& For Clear� we have from augment assignment ���

b� s� n � �bbcc� �� � �

& For Enter� we have from augment assignment ���

b� s� n � � b � bbrcc� s � r � n � � �

c� Carroll Morgan ����� ����� ����

��	 State transformation and data re�nement

& For Mean we have from augment speci�cation ���� �after rewriting�

m� s� n� �b �� bbcc � s �
P
b � n � $b � m �

P
b�$b� �

and we can carry on� making these re�nements immediately�

v m� s� n� �n �� � � s �
P
b � n � $b � m � s�n�

v m� �n �� � � s �
P
b � n � $b � m � s�n�

v �remove invariant ���

m� �n �� � � m � s�n� �

The result is shown in Figure �����
Remember that augmentation �or diminution� is not in itself a re�nement� the

assignment fb �� bbccg m � �
P
b�$b is not re�ned by fn �� �g m � � s�n� The

relation between them is augmentation �or diminution�� relative to the abstract
and concrete variables and the coupling invariant� That is why we write becomes
rather than v��

������ Removing abstract variables

The abstract variable is b� and its removal from Figure ���� is straightforward for
the assignment commands� because it is auxiliary �diminish assignment ������� Its
removal from Mean is unnecessary � it has been removed already" That leaves
only the initialisation� We use diminish initialisation ������ giving

n � �	 s � � �

Now the abstract b has been removed altogether� the result is given in Figure
���
� But the appearance of an explicit initialisation may be surprising� and it is
in circumstances like this that being careful pays o�� Suppose at some later stage
an alternative abstract de�nition of Clear were given� such as this one�

procedure Clearb� if b �� bbcc � b � �bbcc
�� b � bbcc � skip

� �

It is equal to the original� in Figure ���	� but it could be more e!cient if the
operation b � �bbcc were very expensive� to be avoided if at all possible� With our
augmentation and diminution it becomes

�Compare change of variable in an integral� faced with
R
b

a
dx�

p
�� x � we might consider the

substitution x � sin � �which is the analogue of the coupling invariant�	 But it would be wrong
to claim that dx�

p
�� x � and �cos �d��� cos � were equal� even though the two de�nite integrals

as a whole are equal	

c� Carroll Morgan ����� ����� ����

Abstraction functions ���

module Calculator

var b � bag R�
s � R� n � N �

procedure Clear b� b� s� n � �bbcc� �� ��

procedure Enter �value r � R�b� b� s� n � � b � bbrcc� s � r � n � ��

procedure Mean �result m � R�b� m� �n �� � � m � s�n� �

initially s �
P
b � n � $b

end

Figure ���� After addition of concrete variables

procedure Clearb� if n �� �� s� n � � �� �
�� n � �� skip

� �

and a subtle bug has crept in � suppose n and s were initially � and �� for example
�as they might be with no explicit initialisation�"

So our explicit concrete initialisation is necessary� after all� even though there
was no abstract initialisation �other than true�� and it is our good fortune that a
rigorous approach brings that naturally to our attention� Note however that by
re�ne initialisation ���� we could replace it by the simpler s � ��

�
�
 Abstraction functions

The laws of Section ���
 dealt with a very general case of data re�nement� in which
the coupling invariant linking the abstract and concrete states could be anything
whatever� In particular� several abstract variables could be collapsed onto a single
concrete representation� as shown in the example of Section �����

both b � bb�� 	� �cc
and b � bb	� 	� 	cc are represented by s � � � n � ��

That is actually a fairly rare occurrence in everyday program development how�
ever� it is much more common for the coupling invariant to be functional from

c� Carroll Morgan ����� ����� ����

��
 State transformation and data re�nement

module Calculator

var s � R� n � N �

procedure Clear b� s� n � � �� ��

procedure Enter �value r � R�b� s� n � � s � r � n � ��

procedure Mean �result m � R�b� m� �n �� � � m � s�n� �

initially n � �	 s � �
end

Figure ���	 The mean module� after transformation

concrete to abstract� �The above is not� but our earlier example p � q � r is��
An example is the representation of sets by sequences� in which many distinct se�
quences may represent a given set� the elements may appear in di�erent orders�
may be duplicated� or even both� But to each sequence there corresponds at most
one set� that is the functional nature of the abstraction� and what distinguishes it
from the calculator example at the beginning of Section �����

The general form for such coupling invariants� called functional abstractions is

a � af c � dti c � ������

where af is a function� called the abstraction function and dti is a predicate� in which
a does not appear� called the data�type invariant� In the case of sets and sequences�
for example� the abstraction function is set� the function that makes a set from a
sequence� Various data�type invariants may be included as well� for example that
the sequences are kept in order �in which case we would write a � set c � up c�� or
that the sequences contain no duplicated elements�

The reason for our interest in the special cases of data re�nement is that when
the augmentation and diminution laws are specialised to coupling invariants of the
form ������ they become very much simpler� and the augmentation and diminution
may be done together in one step�

������ Data�re�ning initialisations

Suppose that here �and in the following subsections� the coupling invariant is in
the form ������� whence we may speak of abstraction function af and a data�type

c� Carroll Morgan ����� ����� ����

Abstraction functions ���

invariant dti� Given abstract initialisation I we would with augment initialisation

���� calculate I � a � af c � dti c� then diminish initialisation ����� would produce

�� a � I � a � af c � dti c� �

But we can simplify that as follows�

� �Predicate law A��
�� a � I � a � af c� � dti c

� �Predicate law A���
I �an af c� � dti c �

Thus one merely replaces all occurrences of abstract variables a by their concrete
counterparts af c� conjoining the data�type invariant dti c to the result� That gives

Law ����	 data�re�ne initialisation Under abstraction function af and data�type
invariant dti� the initialisation I becomes

I �an af c� � dti c �

�

In our original example �Section ���
�	� that would take us in just one step from
abstract initialisation p � � to concrete initialisation q � r � �� �The data�type
invariant is just true��

As an example� let us represent a set as � setA by a sequence aq � seqA kept
in strictly ascending order �thus excluding duplicates� and making the assumption
that A is an ordered type�� By analogy with up� we de�ne

sup aq b� �
 i � j � ��$aq � i � j 	 aq �i � � aq �j �� �

and so take as our coupling invariant

as � set aq � sup aq � ����	�

If we now suppose that our abstract initialisation was as � fg� we calculate the
formula set aq � fg � sup aq for the concrete initialisation� and continue

� aq � hi � sup aq

� aq � hi �

Thus to implement an abstract initialisation to the empty set� we provide a concrete
initialisation to the empty sequence� whose strictly ascending order is trivial�

c� Carroll Morgan ����� ����� ����

��� State transformation and data re�nement

������ Data�re�ning speci�cations

Here as above we are going to carry out augmentation and diminution in succession�
since diminish speci�cation ����� will require an abstract a in the frame� we shall
start with one there in readiness� Thus we begin with w � a� �pre � post � and apply
augment speci�cation ���� to get

w � a� c� �pre � a � af c � dti c � post � �

Law diminish speci�cation ����	 then produces the �rather complicated�looking�

w � c� ��� a � pre � a � af c � dti c� ��

 a� �

pre� � a� � af c� � dti c�
	 �� a � post � a � af c � dti c�

�	
�

As before� however� the one�point laws A��� apply� and we can simplify as fol�
lows�

v �Predicate laws A��� A��� A���

w � c�

�
pre�an af c� � dti c �

pre��a�n af c�� � dti c�
	 post �a�� an af c�� af c� � dti c

	
�

v �strengthen postcondition ���

w � c� �pre�an af c� � dti c � post �a�� an af c�� af c�� �
The pattern is again substitution �abstraction function� and conjunction �data�
type invariant�� The law is thus

Law ����
 data�re�ne speci�cation Under abstraction function af and data�type
invariant dti� the speci�cation w � a� �pre � post � becomes

w � c� �pre�an af c� � dti c � post �a�� an af c�� af c�� �
�

Earlier that would have taken us from

p� �p � � � p � p��

directly to q � r � �q � r � � � q � r � q� � r�� in just a single step�
Continuing with our more recent example above� we consider now the speci�ca�

tion

as� �a � as � a �� as � fag � as � as��

that removes a given element a from our abstract set as �and which may abort if
the element is not there�� With the coupling invariant ����	� we proceed

becomes �data�re�ne speci�cation �����

aq � �a � set aq � sup aq � a �� set aq � fag � set aq � set aq�� �

c� Carroll Morgan ����� ����� ����

Abstraction functions ���

and are confronted immediately with one of the �facts of life� in such derivations�
after a calculated data re�nement there still may be considerable work to do at
the concrete level� In this case� we carry on as follows�

v var n � N�

n� �a � aq � aq �n� � a� � �i�
aq � n� �aq �n� � a � sup aq �

sup aq � a �� set aq � fag � set aq � set aq�� �ii�
�i� v �invariant a � aq�n

n � � ��
do aq �n� �� a � n � � n � � od

�ii� v n� aq � ��� aq�n �� aq��n � ��

v con AQ � seqA�

n� aq � �AQ � aq�n �� aq��n � �� � aq � AQ �

v I b� AQ � aq�n �� aq��n � ���

n� aq � �I � I � n $aq � �� � �
aq � � fr aq

v �invariant I

do n � $aq � ��
aq �n�� n � � aq �n � ��� n � �

od �

������ Data�re�nement of assignments

In this case by augment assignment ��� we can replace w � a � �E �F by the as�
signment w � a� c � �E �F �G provided

a � af c � dti c V F � af G � dtiG � ������

�Note that w � a here are together playing the role of w in augment assignment

�����
If we assume additionally that E �G contain no a� then diminish assignment

����� takes us immediately from w � a� c � �E �F �G to w � c � �E �G � The law is
thus� after simpli�cation of the proviso�

Law ����� data�re�ne assignment Under abstraction function af and data�type
invariant dti� the assignment w � a � �E �F can be replaced by the assignment
w � c � �E �an af c��G provided that G contains no a� and that

dti c V F �an af c� � af G

and dti c V dtiG �

�

c� Carroll Morgan ����� ����� ����

�� State transformation and data re�nement

That our earlier p � � p � � becomes q � � q � � follows immediately�
For our later example we take the abstract a � �f	� �g �with A as N�� and we

propose aq � �h�� 	i for the concrete assignment� The proviso is �the two taken
together�

sup aq V f	� �g � seth�� 	i � suph�� 	i �

and is easily veri�ed �even without its antecedent�� But note how the proviso would
not hold had we chosen aq � �h	� �i� where the sequence is not in order�

�����	 Data�re�nement of guards

Law augment guard ���� allows us to replace G by G �an af c� � dti c� where as
in augment guard ���� there is some #exibility� the conjunct dti c is optional�
Subsequent adjustments may be made by alternation guards
�� as before� We
have

Law ����� data�re�ne guard Under abstraction function af and data�type invari�
ant dti� the guard G may be replaced by G �an af c� � dti c� or if desired simply by
G �an af c� on its own�
�

Consider for example the alternation

if a � as � prog�
�� a �� as � prog	
� �

By data�re�ne guard ����� �and other laws� that becomes

if a � set aq � prog��

�� a �� set aq � prog	�

� �

where prog�� and prog	� data�re�ne prog� and prog	 respectively� We could con�
tinue

v var n � N�

n� �sup aq � a � set aq � a � aq �n�� � �
if a � aq �n�� prog��

�� a �� aq �n�� prog	�

�

v n� �sup aq � aq�n � a � aq�n�
v ��� �

c� Carroll Morgan ����� ����� ����

Exercises ���

�
�� Exercises

Ex� ���� Give other possible new assignment commands for the example p � � p�
� in Section ���
�
�

Ex� ���� Use diminish speci�cation ����	 to remove the variable a from the
following�

x � �x � a � x � a � �� �

Ex� ���� �See Exercise ���	�� Remove a from that speci�cation without using
diminish speci�cation ����	�

Ex� ���	 � Use diminish speci�cation ����� to remove a from

a� x � �x � a�� �

Now remove it from a� x � �x � a�� Comment on the di�erence� is a auxiliary in
both�

Ex� ���
 � Log�time multiplication The following program terminates in time
proportional to logN �

l �m� n � � �� ��N �
do n �� ��

if even n � m� n � � 	�m� n � 	
�� oddn � l � n � � l �m� n � �
�

od �

Propose an iteration invariant that could be used to show that the program re�nes

l �m� n� �l � N � �

given the declarations l �m� n�N � N �
Augment the program by variables l � and m �� coupled as follows�

l � � M � l

m � � M �m �

What is the resulting program� and what value is then found in l � on its termina�
tion�

Now go on to diminish the program by removing all variables not needed for the
calculation of l �� then rename variables to remove primes� What is the resulting
program�

c� Carroll Morgan ����� ����� ����

�� State transformation and data re�nement

Ex� ���� Log�time exponentiation Augment the program of Exercise ���� by
variables l � and m �� coupled as follows�

l � � M l

m � � Mm �

What is the resulting program� and what value is then found in l � on its termina�
tion�

Diminish the program by removing all variables not needed for the calculation
of l �� then rename variables to remove primes� What is the resulting program�

Ex� ���� Log�time transitive closure Let A be given� and de�ne

tc n b� ��i � N j i � n � Ai� �

�The function tc could be said to be forming the transitive closure of A� if A were
an incidence matrix for a graph� but that point of view is not necessary for this
exercise��

Augment the program of Exercise ���� by variables l � and m �� coupled as follows�

l � � tc l

m � � tcm �

What is the resulting program� and what value is then found in l � on its termina�
tion�

You will need an identity that gives tc�a � b� in terms of tc a� tc b and Ab � what
is it� How does that identity help you to decide what the �de�nition� of tc � should
be�

Your augmented program should not contain any occurrences of tc� but may
contain expressions Am �

Further augment the program � add another variable� suitably coupled � so
that the exponentiation can be removed� Note that the coupling invariant may be
assumed when simplifying expressions�

Now diminish the program so that� after suitable renaming� a program remains
that calculates tcN in logarithmic time�

Ex� ��� � Exercise ���� showed that AN can be calculated in time logarithmic
in N � and so the equality

tcN � �AN � ����A� ��

appears to extend that logarithmic e!ciency to the calculation of tcN itself� where
tc is as de�ned in Exercise �����

Under what circumstances might the program of Exercise ���� still be a better
way to proceed� �The case A � � is on its own not a su!cient answer"�

c� Carroll Morgan ����� ����� ����

Exercises ��

Ex� ���� � Suppose pre and post and w contain no a or a�� What e�ect does
diminish speci�cation ����	 have on the following�

w � �pre � post �

Ex� ����� � Use assumption ��� to formulate laws for adding and removing
variables from assumptions�

Ex� ����� � Use coercion ���� to formulate laws for adding and removing vari�
ables from coercions�

Ex� ����� Apply diminish speci�cation ����	 directly to

m� s� n�
h
b �� bbcc � s �

X
b � n � $b � m �

X
b�$b

i
�

without �rst doing the re�nements on p���	� Then simplify the result� Which is
easier� this exercise� or p���	�

Ex� ����� � Suppose the mean procedure were instead

procedure Mean �result m � R�b� if b �� bbcc � m � �
P
b�$b

�� b � bbcc � error

� �

where error is some de�nite error indication una�ected by data re�nement� Use
augment guard ���� and alternation guards
�� to calculate the concrete procedure�

Ex� ����	 � In Exercise ���	� Module Tag of Figure ���� was re�ned so that
Acquire acquired only even numbers� The result was infeasible� because the pre�
condition u �� N was not strong enough to ensure that N � u contained any even
numbers still to be acquired� Use augmentation with no concrete variables but still
a coupling invariant of u � �nsetN to show that Acquire can be transformed to

t � u� �u � �nsetN � t �� u� � u � u� � ftg� �
How does that help with Exercise ���	�

Ex� ����
 � Show that in the Tag module of Figure ����� the body of Return
can be replaced by skip� Hint � Remember that you cannot transform just part
of a module� Use new variable v and coupling invariant u � v � v � �nsetN

to transform all of it� The appearance of changing only Return is then gained by
renaming v back to u�

Ex� ����� �See Exercise ������� Why is v � �nsetN necessary in the coupling
invariant�

Ex� ����� Show that Tag v Tag � �Figures ���� and ������

c� Carroll Morgan ����� ����� ����

�	 State transformation and data re�nement

Ex� ���� � Explain the e�ect of a data re�nement with no concrete or abstract
variables� but still a coupling invariant� Hint � Recall Exercise ������

Ex� ����� Why isn�t false a good idea for a coupling invariant� Hint � See
Exercise �����

Ex� ����� � The example of Section �����	 on data�re�ning speci�cations con�
cerned removing an element a from a set as� What does the concrete version �in
terms of aq� do if a is not in aq� Is that reasonable�

Ex� ����� Use the functional abstraction laws to do the data re�nement of
Section ���� in reverse� that is� show that the module of Figure ���	 is a re�nement
of that in Figure ���
� Does that mean that the modules are equal� How does
equality di�er from re�nement�
Hint� Convert the assignments to speci�cations �rst�

Ex� ����� � In the example of Section �����	 the function fr is left in the code�
but considerable trouble was taken to remove �� � and ��� Why is fr acceptable
but the others not�

Ex� ����� Why is it acceptable to use linear search in the example of Section
�����	� instead of the more e!cient binary search�

Ex� ����	 � Let the abstract type be �again� a set as � setA and take the
concrete type to be a pair aq � seqN A� n � N with the functional abstraction being
as � set�aq�n�� �Thus the data�type invariant is true�� Calculate data re�nements
for the following�

�� a� �as �� fg � a � as� �
	� a� as� �as �� fg � a �� as � fag � as � as�� �
�� as � � as � fag� f$as � N g �

Hint� For the third� consider rewriting it as a speci�cation�

Ex� ����
 � Justify the last step of the derivation of Section �����
� What
might replace the ����� �

Ex� ����� � Use expand frame �� to derive a law analogous to data�re�ne

speci�cation ����� in which the abstract variable does not appear in the frame� Do
not assume that post contains no a��

Ex� ����� � Suggest an example where the abstract command does not include
a in the frame� but the concrete re�nement of it does nevertheless� �See Exercise
���	���

c� Carroll Morgan ����� ����� ����

Exercises ��

Ex� ���� � A more abstract database type than those we investigated in Sec�
tion ���� would be K !�D � a partial function from keys K to data D � Give a
speci�cation� at that level� of a lookup operation which can be data�re�ned to the
speci�cation you gave as your answer to Exercise ����� Write down the coupling
invariant and work through the data re�nement�

Ex� ����� � Section ����	 presented an iterative tree�summing program whose
code contained a sequence of trees� How might that be implemented in a more
conventional language that had only �xed�size arrays �for sequences� and records�
plus�pointers for trees� Would one have to change the speci�cation�

Ex� ����� Is it a re�nement to strengthen or to weaken coercions� �Recall
Exercise ������

Ex� ����� Prove this equality�

Law ���� merge coercions

�post � �post �� � �post � post �� �
�

Ex� ����� Show that augment assignment ��� indeed follows from augment

assignment �����

Ex� ����� Prove this law�

Law ����� introduce assumption

�post � v �post � fpostg�
�

Ex� ����	 Prove this law�

Law ����� remove coercion

fpreg �pre� v fpreg�
�

Ex� ����
 � Prove this re�nement�

x � � �
v if true� x � � �

�� true� x � ���
��
�x �� � �i�

If coercions were code� how would �i� above be executed� Hint� Consider back�
tracking�

c� Carroll Morgan ����� ����� ����

Chapter ��

Case study� Majority voting

Although our goal in program development is to reach code� there are reasons one
might want to go further� to increase e!ciency is one� and a second reason is to
translate from one programming language into another� In this chapter� an ex�
ample more extended than usual� we show two successive program developments�
both successful� But the �rst� too ine!cient �quadratic complexity�� provides the
motivation for extra trouble and ingenuity pursued in the second �linear complex�
ity��

From the second attempt� however� we go much further� a series of carefully cho�
sen transformations in the spirit of Chapter �� leads on to a program of unexpected
simplicity�

���� Re�nement of code

One of our early examples of alternation was the following program fragment�
illustrating both nondeterminism and nontermination�

if 	 j x � x � � x � 	
�� � j x � x � � x � �
� �

In spite of its being code� we may nevertheless need to re�ne it further� given the
demands of a particular programming language� As we saw in Exercise
��� one
possibility is

v �alternation guards
��

if 	 j x � x � � x � 	
�� ��	 j x �� x � � x � �
�

� �transliteration into C

if �x�� �� �	 x�x
�� else x�x
��

�

Winning an election ��

Note that the above is a proper re�nement� the �nal program does not equal the
original� If x � �� the original program sets it either to 	 or to �� but the re�ned
program sets it to 	� If x � �� the original program can abort� the re�ned program
must terminate� setting it to 	�

The �nal phase of this chapter will be concerned with replacing code by code�
sometimes by simple re�nement as above� sometimes by transformation �as within
modules�� To begin� however� we set out the problem and follow a straightforward
and innocent approach to its development�

���� Winning an election

The strict majority of a bag of values is that value occurring with frequency strictly
more than half the size of the bag� If the values represented votes� the strict
majority value would identify the candidate� if any� that had an absolute majority�

Not every bag has a strict majority �just as not every election has an absolute
winner�� For example� the strict majority in bbA�B �A�C �Acc is A� but neither the
empty bag nor bbA�B �B �Acc has a strict majority�

To be more speci�c� we de�ne three predicates� �rst sm for strict majority � then
em for exists majority � and �nally cm for conditional majority� It will be convenient
in the code to use a sequence rather than a bag� and so we suppose a sequence
as � seqT and value x � T � de�ning

sm x as b� as�x � $as�	
em as b� �� x � T � sm x as�

cm x as b� em as 	 sm x as �

�Recall from p�� that as�x is the number of occurrences of x in as� whether as is
a set or a bag��

The task of our program will be to �nd a strict majority if there is one� termi�
nating whether there is one or not� �Thus if as contains no strict majority� the
program may set x at random� but still must terminate�� Here is our abstract
program�

var as � seqN T � x � T �

x � �cm x as� �

���� A straightforward attempt yields quadratic code

����� A simple invariant

We begin with our usual strategy� to establish the postcondition over longer and
longer pre�xes�

c� Carroll Morgan ����� ����� ����

�� Case study� Majority voting

j� var i � N�

i � � ��
do i �� N �

if � em as�i � x � � as�i �
�� sm x as�i � skip

��
i � � i � �

od

�j

Figure ��� Summary of �rst re�nements

v �iterate up var i � N�

i � � ��
do i �� N �

x � �cm x as�i � cm x as��i � ��� � �
i � � i � �

od

v if � em as�i � x � �� em as�i � cm x as��i � ��� �i�
�� sm x as�i � x � �sm x as�i � cm x as��i � ��� �ii�
� �

Note how the alternation exploits the disjunction inherent in cm x as�i �
Now if there is no majority in as�i � then the only possible majority in as��i���

is as�i � itself� Hence

�i� v x � � as�i � �

On the other hand� if x is the majority in as�i � then either it is the majority in
as��i � �� as well �certainly if as�i � � x � or there is no majority in as��i � �� at
all �but only if as�i � �� x �� Hence

�ii� v skip �

The program so far is collected in Figure ���� Only the guards are left to do�

����� State transformation of local blocks

In Chapter ��� we showed how to transform the state of modules� The same
techniques apply to local blocks�

c� Carroll Morgan ����� ����� ����

A straightforward attempt yields quadratic code ��

j� var i � c � N �
initially c � as�i �x �

i � c � � �� ��
do i �� N �

if c � i�	� x � c � � as�i �� �as�i��as�i � �iii�
�� c � i�	� skip

��
if as�i � � x � i � c � � i � �� c � �
�� as�i � �� x � i � � i � �
�

od

�j

Figure ��� Introduction of count c

Recall Figures ���	 and ����� A local block can be made into a module� then
transformed� then made back into a local block again� An initialisation may sud�
denly appear in the transformed block� of course� To simplify that� we introduce
this abbreviation�

Abbreviation ��� local block initialisation

j� var l � T � initially inv � prog �jb� j� var l � T � l � �inv � � prog �j �
�

�Abbreviation ��� also simpli�es the translation between modules and local blocks��
All the transformation laws of Chapter �� carry over to local blocks� In fact�

even more is possible for local blocks� the coupling invariant can refer to global
variables as well �compare p���
 �any formula over the local and exported variables
of the module��� But we do not need that here�
Now we apply the above to Figure ���� We add a variable c � N which counts

the occurrences of x in the pre�x as�i examined so far� the coupling invariant
is c � as�i �x � That gives the program of Figure ��	� Though we include the
initialisation� Abbreviation ��� shows it to be unnecessary� it is subsumed by the
command i � c � � �� ��

The law alternation guards
�� has allowed the two guards to be simpli�ed dra�
matically� to c � i�	 and c � i�	� �See Exercise ����� That leaves only the
re�nement of �iii��

�iii� v x � � as�i ��
c � � as�i �x �

c� Carroll Morgan ����� ����� ����

� Case study� Majority voting

v �invariant c � as�j �x � j � i � var j � N�

j � c � � �� ��
do j �� i �

if x � as�j �� c� j � � c � �� j � �
�� x �� as�j �� j � � j � �
�

od�

We have reached code� But its time complexity is quadratic� due to the iteration
appearing as a the re�nement of �iii�� the entire pre�x as�i is re�examined to
compute c for the newly chosen x �

���� A second attempt is faster

��	�� How to do better

The troublesome �iii� occurs in a command guarded by � em as�i � which we did
not exploit� Can that reduce the time complexity� A crucial property of sm is that
for any sequences as� as � and value x �

sm x �as �� as �� V sm x as � sm x as � � �����

If x is a majority in a concatenation� then it must be a majority in one part or the
other� Hence if x is a majority in as overall �that is� if sm x as�� but as�i has no
majority �and � em as�i�� then x must be a majority in the remainder as�i �thus
sm x as�i�� Thus under the given conditions� we can forget the pre�x altogether"

A convenient consequence of the above is given in this lemma�

Lemma ��� For sequences as� as ��

� em as � cm x as � V cm x �as �� as �� �

Proof� Note that � em as V � sm x as� Now we consider the two cases in cm x as ��
First� if � em as �� then by Property ����� we have � em�as �� as ��� hence it

follows that cm x �as �� as ���
Second� if sm x as � then for all y �� x we have � sm y as �� Again by Property

������ for all y �� x that gives � sm y �as �� as ��� hence �nally cm x �as �� as ���
�

Lemma ��� leads us to this new development�

x � �cm x as�
v �Lemma ��� � var j � N�

x � j � �� em as���j � � cm x as�j�N � �

c� Carroll Morgan ����� ����� ����

A second attempt is faster ��

j� var i � j � c � N�

i � j � c � � �� �� ��
do i �� N �

if c � �i � j ��	� j � x � c � � i � as�i �� �
�� c � �i � j ��	� skip

��
if as�i � � x � i � c � � i � �� c � �
�� as�i � �� x � i � � i � �
�

od

�j

Figure ��� Second attempt� linear code

v
�
I b� � em as���j � � cm x as�j�i �
var i � N�

x � j � i � �I � i � N �

v �invariant I � j � i � N

i � j � � �� ��
do i �� N �

if � em as���j � � � em as�j�i ��
x � j � �� em as���j � � � em as�j�i � � I �ini � ��� �iv�

�� � em as���j � � sm x as�j�i ��
x � j � �� em as���j � � sm x as�j�i � � I �ini � ��� �v�

��
i � � i � �

od

�iv� v j � x � � i � as�i �

�v� v skip �

Again we introduce c� this time with the coupling invariant c � as�j�i ��x � the
result is Figure ���� Note that again alternation guards
�� is used to simplify the
guards� �See Exercise ����� Now the code has linear time complexity� but � as
we see below � it can be simpli�ed dramatically�

c� Carroll Morgan ����� ����� ����

��� Case study� Majority voting

j� var i � j � c � N � d � Z�

i � j � c� d � � �� �� �� ��
do i �� N �

if d � �� j � x � c� d � � i � as�i �� �� �
�� d � �� skip

��
if as�i � � x � i � c� d � � i � �� c � �� d � �
�� as�i � �� x � i � d � � i � �� d � �
�

od

�j

Figure ��	 Add variable d

���� Transformation of code

��
�� Representing two variables by one

The guards in Figure ��� can be further simpli�ed by a state transformation� We
introduce a single variable d � Z using the coupling invariant d � 	c � �i � j ��
then we remove c� j � First� the guards become d � � and d � �� and the resulting
program is Figure ��
� �The super#uous initialisation is omitted�� Then� removing
the auxiliary c� j gives Figure ����

��
�� Laws of distribution

Inspection of Figure ��� reveals that the two alternations are not independent�
the d � � branch of the �rst cannot be followed by the as�i � �� x branch of the
second� With the following distribution law we can exploit that�

Law ��� left�distribution of composition over alternation

if ��� i � Gi � branchi� �� prog

� if ��� i � Gi � branchi � prog� � �

�

First� we distribute i � � i � � out of the second alternation� then we distribute
the second alternation into the �rst� The result is Figure ����

In the �rst branch� we now have assignments before an alternation� We can use
the following law to simplify that�

c� Carroll Morgan ����� ����� ����

Transformation of code ���

j� var i � N � d � Z�

i � d � � �� ��
do i �� N �

if d � �� x � d � � as�i �� �
�� d � �� skip

��
if as�i � � x � i � d � � i � �� d � �
�� as�i � �� x � i � d � � i � �� d � �
�

od

�j

Figure ��
 Remove auxiliary c� j

���
if d � ��

x � d � � as�i �� ��
if as�i � � x � d � � d � �
�� as�i � �� x � d � � d � �
�

�� d � ��
if as�i � � x � d � � d � �
�� as�i � �� x � d � � d � �
�

��
i � � i � �
���

Figure ��� Merge alternations

Law ��� right�distribution of assignment over alternation

x � �E � if ��� i � Gi � branchi� �

� if ��� i � Gi �xnE �� x � �E � branchi� � �

�

The result is Figure ����

c� Carroll Morgan ����� ����� ����

��	 Case study� Majority voting

���
if d � ��

if true� x � d � � as�i �� �� d � � d � �
�� false� x � d � � as�i �� �� d � � d � �
�

�� d � ��
if as�i � � x � d � � d � �
�� as�i � �� x � d � � d � �
�

�
���

Figure ��� Distribute assignment over alternation

��
�� Laws of alternation

The true and false guards of Figure ��� are handled with these laws� the result is
Figure ��� in which we have merged the assignments as well�

Law ��	 remove false guard

if ��� i � Gi � branchi�
�� false� branch

�

� if ��� i � Gi � branchi� � �

�

Law ��
 remove alternation

if true� branch � � branch �

�

Now we #atten the alternations with the following law� The result is Figure ����

Law ��� #atten nested alternations

if ��� i � Gi � if ��� j � Hj � branchij � �� �
� if ��� i � j � Gi � Hj � branchij � � �

�

c� Carroll Morgan ����� ����� ����

Transformation of code ���

���
if d � �� x � d � � as�i �� �
�� d � ��

if as�i � � x � d � � d � �
�� as�i � �� x � d � � d � �
�

�
���

Figure �� Simplify alternation

���
if d � �� x � d � � as�i �� �
�� d � � � as�i � � x � d � � d � �
�� d � � � as�i � �� x � d � � d � �
�
���

Figure ��� Flatten nested alternations

��
�	 Introducing invariants

Inspection of Figure ���� recalling its surrounding text� suggests that d � is
invariant� It is true initially� and is maintained by every assignment in the program�
That takes us to Figure ����� Note that the type of d is now N �

���
if d � �� x � d � � as�i �� �
�� d �� � � as�i � � x � d � � d � �
�� d �� � � as�i � �� x � d � � d � �
�
���

Figure ���� Introduce invariant d �

c� Carroll Morgan ����� ����� ����

��
 Case study� Majority voting

���
if d � �� x � d � � as�i �� d � �
�� d �� � � as�i � � x � x � d � � as�i �� d � �
�� d �� � � as�i � �� x � d � � d � �
�
���

Figure ���� Exploit guards

���
if d � � � as�i � � x � x � d � � as�i �� d � �
�� d �� � � as�i � �� x � d � � d � �
�
���

Figure ���� Collapse branches

In fact� invariant introduction is a special case of the add variable transforma�
tion� we introduce no variables� but have a coupling invariant nevertheless� The
law augment assignment ��� reduces to checking that assignments preserve the
invariant �the list c is empty�� the law augment guard ���� allows the invariant to
simplify the guards�

If we exploit the guards� we can reach Figure ����� in which we have made two
branches identical� The following law then takes Figure ���� to Figure ���	�

Law ��� collapse identical branches

if ��� i � Gi � branchi�
�� G � branch

�� G � � branch

�

� if ��� i � Gi � branchi�
�� G �G � � branch

� �

�

c� Carroll Morgan ����� ����� ����

Simpli�ed code ���

j� var i � d � N�

i � d � � �� ��
do i �� N �

if d � � � as�i � � x

then x � d � � as�i �� d � �
else d � � d � �

��
i � � i � �

od

�j

Figure ���� Simpli�ed code

���	 Simpli�ed code

With Figure ���	 we reach the end of the development� The code is collected in
Figure ����� where we use the conventional if � � � then � � �else � � �end�

Curiously� we have iterative code but have �lost� the invariant� Where has it
gone�

The last invariant quoted was on p����

j � i � N

� em as���j �
cm x as�j�i � �

Introducing c adds a conjunct to that� introducing d adds another�

j � i � N

� em as���j �
cm x as�j�i �
c � as�j�i ��x

d � 	c � �i � j � �

Removing c� j removes them from the invariant� leaving this��BBBBBB�� c� j � N �

j � i � N

� em as���j �
cm x as�j�i �
c � as�j�i ��x
d � 	c � �i � j �

�CCCCCCA � ���	�

Since an invariant is una�ected by re�nements to the iteration body� formula ���	�
is the invariant for the �nal program� �See Exercise �����

c� Carroll Morgan ����� ����� ����

��� Case study� Majority voting

���
 Exercises

Ex� ��� � �From p���� Prove that

� em as�i V cm as�i � as��i � �� �

Ex� ��� �From p���� Prove that

sm x as�i V cm x as��i � �� �

Ex� ��� Why isn�t initially false a good idea in a local block� Hint � Recall
local block initialisation ����

Ex� ��	 � �From p���� Work through the details of showing that transforma�
tion is valid for local blocks� Hint � Introduce a module with a single parameterless
procedure� called once�

Ex� ��
 � Check the claims made about simplifying guards �pp� �� and ����

Ex� ��� Show that the monstrous formula ���	� entails

i � N

as���i ��x � �i � d��	
for all y �� x as���i ��y � �i � d��	 �

Using that as an invariant� develop the code of Figure ���� directly�

Ex� ��� Use alternation guards
��� remove false guard ��
� and remove alter�

nation ��� to prove this law�

Law �� select true guard

if ��� i � Gi � branchi�
�� true� branch

�

v branch �

�

c� Carroll Morgan ����� ����� ����

Chapter ��

Origins and conclusions

The idea of our re�nement calculus originated with Ralph Back �Bac��� and was
reinvented by Joseph Morris �Mor�� and by me �Mord�� In each case the context
was E�W� Dijkstra�s weakest precondition calculus �Dij���� Similar ideas were put
forward by Dershowitz �Der���

Much work has been done since the crucial �rst step of considering both speci��
cations and code to be programs� The e�ect has been to simplify� and make more
regular� much of the detail of constructing programs� and there are signi�cant
implications for the practice of software engineering generally�

For example� none of the programs developed in this book has comments in its
code� Indeed� many of the developments never present the complete code at all�
and the result would probably be unreadable if they did�

Proper commenting and laying out of code is important when there is no rigorous
development history of the program� then� the code is all we have� If the source
code of a compiled program were discarded after its development� then certainly
commenting and layout of the machine code would be important�

Now we know� though� that code is not meant to be read� it is meant to be
executed by computer� And we have rigorous development histories� they can
be found� for example� in the case study chapters� In each of those there is a
sequence of re�nement steps� every one justi�ed by a re�nement law� whose validity
is independent of the surrounding English text� The histories have the initial�
abstract� program at their beginning� and the �nal executable code is easily �even
mechanically� recoverable from them� at the end� They reveal the structure of the
program as well� logically related sections of code are identi�ed simply by �nding
a common ancestor� Furthermore� the development histories allow those programs
to be modi�ed safely�

Return for example to the square root case study of Chapter �� whose code is
collected in Figure ����� The comment suggests a possible modi�cation� could we
choose some other p� The development history� collected in Figure ���	� gives the
answer� the commented command in the code can be replaced by p � � r�� without

���

�� Origins and conclusions

j� var q � N�

q � r � � s � �� ��
do r � � �� q �

j� var p � N�

p � ��q � r�� 	� �' Choose p between r and q � '�
if s � p� � q � � p

�� s p� � r � � p

�

�j
od

�j

Figure ���� Square root code �Chapter ��

a�ecting the program�s correctness� The validity of the following re�nement step
is all that is needed� and the rest of the program can be completely ignored�

p� �r � � � q � r � p � q � v p � � r � � �

No comment could ever have that credibility�
There are still good reasons for collecting code� One is that certain optimisations

are not possible until logically separate fragments are found to be executed close
together� That is like a peephole optimiser�s removing redundant loads to registers
from compiler�generated machine code� the opportunity is noticed only when the
machine code is assembled together� And those activities have more in common�
for both are carried out without any knowledge of the program�s purpose� It is
genuine post�processing�

For us� the documentation is the English text accompanying the development
history �including the quoted decorations on individual re�nement steps�� Because
it plays no role in the correctness of the re�nements� we are free to tailor it to
speci�c needs� For teaching� it reveals the strategies used� for production programs�
it might contain hints for later modi�cation ��Binary chop���

What of testing and debugging� They are still necessary� Three larger case
studies� in the remaining chapters� are presented after these conclusions because
they are signi�cantly harder than the case studies earlier� The code of the �rst
was collected� transliterated by hand�� and then tested�

There was an error in the transliteration� a multiple assignment x � y � �E �F was
translated in error to x � �E � y � �F �the expression F contained x �� However�
such errors are easily detected� and even avoided� by incorporating the checks in
an automated transliterator�

�The programming language was Modula�	

c� Carroll Morgan ����� ����� ����

Origins and conclusions ���

var r � s � N�

r � �bpsc
� r � �r � � s � �r � ����
v var q � N�

q � r � �r � � s � q� � r � � � q �
v I b� r � � s � q��

q � r � �I � r � � � q �
v q � r � �I � � �iii�

q � r � �I � I � r � � � q � �

v do r � � �� q �
q � r � �r � � �� q � I � q � r � q� � r�� �

od
v var p � N�

p� �r � � � q � r � p � q � � �iv�
q � r � �r � p � q � I � q � r � q� � r�� �

v if s � p� � q � �s � p� � p � q � I � q � q�� �v�
�� s p� � r � �s p� � r � p � I � r� � r � �vi�
�

�iii� v q � r � � s � �� �
�iv� v p � ��q � r�� 	 �Binary chop��
�v� v q � � p

�vi� v r � � p �

Figure ���� Square root development history

A second error was due to a single mistake in the development� and that was
found by checking the re�nement steps in detail without reading the English text�
Thus it is the development that is debugged� the thought of checking the code
itself was shockingly unpleasant � and in any case it was not at all clear how it
worked�

Those were the only errors� and �it ran third time�� But the point had been
made� mathematical rigour cannot eliminate mistakes entirely�

Nevertheless it does reduce their likelihood dramatically�

c� Carroll Morgan ����� ����� ����

Chapter ��

Case study� A paragraph problem

��� Even paragraphs

This case study� the �rst of three major studies with which we conclude� is based
on �Bir��� like the two to follow� it is quite a lot more ambitious than our earlier
examples�

The problem itself seems simple� it is just the laying out of words into lines
and paragraphs� Compare the paragraphs of Figures 	��� and 	��	� In simple

paragraphs� like Figure 	���� each line is �lled as much as possible before moving
on to the next� As a consequence� the minimum number of lines is used� but a
long word arriving near the end of a line can cause a large gap there�

In even paragraphs� like Figure 	��	� such gaps are reduced� space is distributed
over earlier lines in order to increase the length of a later line which would otherwise
be very short� We will develop a program that produces even paragraphs�

To start� we forget the actual words and just consider their lengths� Let the
sequence of word lengths to be laid out be ws� of type seqN N � We have a maximum
line width of M �characters�� and we assume that all �word� lengths are non�zero
and no more than M �

�
w � ws � � � w � M � �

A paragraph of ws is a sequence of lines� and each line is a sequence of words� For
paragraph pss � seq seqN �remember we are considering only lengths� not actual
words�� we have these conditions�

�� The paragraph pss contains exactly the lengths in ws� in their original order�
� pss � ws� The function �� �atten� is de�ned as follows�

� pss b� ���ls � pss� �

	� Each line of the paragraph contains at least one but no more than M char�
acters� �
 ls � pss � � �

P
ls � M �� We abbreviate that ok pss� The function

	��

Even paragraphs 	��

aCompare the paragraphs of Figure ��� and (
aFigure ����� In simple paragraphs� like Figure(
a���� each line is filled as much as possible (
abefore moving on to the next� As a (
aconsequence� the minimum number of lines is (
aused� but a long word arriving near the end of(
aa line can cause a large gap there� (

Figure ���� Simple paragraph

aCompare the paragraphs of Figure ��� and (
aFigure ����� In simple paragraphs� like (
aFigure ���� each line is filled as much as (
apossible before moving on to the next� As a (
aconsequence� the minimum number of lines is (
aused� but a long word arriving near the end of(
aa line can cause a large gap there� (

Figure ���� Even paragraph

P
is de�ned as follows�X

ls b� ��w � ls� �

Suppose for example that ws � h	� �� �� �i� and M � �� Here are three para�
graphs of ws�

hh	� �i� h�i� h�ii �simple�
hh	i� h�� �i� h�ii �even�

hh	i� h�i� h�i� h�ii �neither simple nor even��

Figures 	��� and 	��	 are paragraphs of the same words� But Figure 	��	 min�
imises the waste of the paragraph� where the waste is the size of the largest gap
left in any of its lines except the last�

wt pss b� �tls � fr pss � M �X
ls� �

�Recall that fr takes the front of a sequence�� Now the minimum waste mw of a
sequence of word lengths is the least waste found in any of its paragraphs�

mwws b� �upss j � pss � ws � ok pss � wt pss� �

The paragraph of Figure 	��� has waste �	� the waste of Figure 	��	 is only ��
which is minimal in that width for those words�

Our �rst step is to derive a program that calculates mwws�

c� Carroll Morgan ����� ����� ����

	�	 Case study� A paragraph problem

��� The minimum waste

Here is the abstract program that calculates the waste that an even paragraph
would have�

var ws � seqN N �
mw �M � N �

and ws �� hi � �
w � ws � � � w � M � �

mw � �mwws �

The invariant expresses the conditions on ws and M � that ws is non�empty� no
word length in ws is �� and no word length in ws exceeds M �
Rather than consider larger and larger pre�xes of ws� we consider su!xes� That

is because the last line is treated specially� it does not contribute to the waste� So
we introduce a sequence sf �su�xes� to contain the minimum wastes of all su!xes
of ws� the needed value will be sf ��� �nally�

v var sf � seqN N�

sf � ��
 i j � � i � N � sf �i � � mw�ws�i��� � �
mw � � sf ��� �

The next few steps are the usual ones for developing a iteration� Note however
that the initialisation is j � �N � �� that is because mw hi is not de�ned�

v I b� �
 i j j � i � N � sf �i � � mw�ws�i�� � j � N �

sf � �I �jn���
v var j � N�

j � sf �N � �� � �N � �� ��
j � sf � �j � N � � � I � j � �� �

v �iterate down

do j �� ��
j � � j � ��
sf � �I �jnj � �� � I � �i�

od �

Now we must change sf � but it is clear that we need change it only at index j �
So we introduce a new variable x to be �nally assigned to sf �j �� That allows the
�rst command below to leave sf out of the frame�

�i� v var x � N�

x � �I �jnj � �� � x � mw�ws�j �� � �ii�
sf �j � �� x �

c� Carroll Morgan ����� ����� ����

The minimum waste 	��

To make progress now� we must look more closely at mw�ws�j �� From the
precondition we have j � � � N � and we proceed

mw�ws�j �
� �upss j � pss � ws�j � ok pss � wt pss�
� �because j � N � and so ws�j cannot be empty

�uls� pss � j ��hlsi�� pss �� � ws�j � ok�hlsi�� pss ��
� wt�hlsi�� pss ��� �

In the last step� we replaced the bound variable pss by a concatenation hlsi��pss ��
using as justi�cation that pss was not empty� The step is valid because the non�
empty lists pss and the pairs ls� pss � can be put into ��to�� correspondence�

To avoid proliferating names� we now rename pss � to pss again� and continue�

� �uls� pss j ��hlsi�� pss� � ws�j � ok�hlsi�� pss�
� wt�hlsi�� pss��

� �by de�nition of � and ok

�uls� pss j
�����

ls �� � pss � ws�j
ok pss

� �
P
ls � M

� wt�hlsi�� pss�� �

Now we replace ls by its length k � Again� there is a ��to�� correspondence� since
for any k � there is only one ls of length k satisfying ls��� pss � ws�j � That gives

� �replacing ls by its length k

�uk � pss j

���������
� � k � N � j

� pss � ws��j � k�
ok pssP
ws�j�k � M

� wt�hws�j�ki�� pss�� �

Now we will use the de�nition of wt� but it is de�ned only for non�empty se�
quences" That means the case k � N �j � which makes pss empty� must be handled
carefully�

If
P
ws�j � M � then k can take the value N � j in the distributed minimum

above�
P
ws�j�k � M will be true even when k � N � j � But then pss will be

empty� and the waste wt�hws�j�ki �� pss� will be �� Since all wastes are at least
�� the whole expression simpli�es to that value�

� Case
P
ws�j � M

� �

In the other case� we can of course exclude k � N � j since it is dealt with in the
�rst case� We have then� by de�nition of wt�

� Case
P
ws�j � M

�uk � pss j

���������
� � k � N � j

� pss � ws��j � k�
ok pssP
ws�j�k � M

�

�
M �P

ws�j�k
t wt pss

�

c� Carroll Morgan ����� ����� ����

	�
 Case study� A paragraph problem

� �nesting the minima

�uk j � � k � N � j �Pws�j�k � M �

�upss j � pss � ws��j � k� � ok pss�

�M �P
ws�j�k� t wt pss��

� �distributing t out of u
�uk j � � k � N � j �Pws�j�k � M �

M �P
ws�j�k

t �tpss j � pss � ws��j � k� � ok pss � wt pss�

�
� �de�nition of mw

�uk j � � k � N � j �Pws�j�k � M �

�M �P
ws�j�k� tmwws��j � k��

� �replace k by k � j

�uk j j � k � N �Pws�j�k � � M �

�M �P
ws�j�k �� tmw�ws�k�� �

With the above� we have de�ned mw�ws�j � in terms of the minimum waste
mw�ws�k� of shorter su!xes� we can now return to the development of the program�
Since the range condition

P
ws�j�k � � M is less likely to be true for greater values

of k � we start k at j � � and increase it� In our invariant also will be the sum s of
the segment ws�j�k � considered so far�

The case distinction will be made after we have calculated the minimum above�
since then the sum

P
ws�j will be available in s� So we continue

�ii� v var n� s � N�

x � n� s� �I �jnj � �� � x � mw�ws�j ��
v X b��uk j � j � k � nP

ws�j�k � � M
�

�
M �P

ws�j�k �
t mw�ws�k�

�
J b�I �jnj � �� � x � X � s �

P
ws�j�n� � j � � � n � N �

n� s� x � � j � ��ws�j ��M �
n� s� x � �J � J � �n � N � s � M �� � �
if s � M � x � � �
�� s � M � skip

�

v �invariant J � variant N � n

do n �� N � s � M �
s� x � �n �� N � s � M � J � J �nnn � ��� � �
n � � n � �

od

v s� x � � s � ws�n�� x u ��M � s� t sf �n�� �

That completes the development of this section� In the next section we �nish
the job� �nding not only the minimum waste but a paragraph that produces it�

c� Carroll Morgan ����� ����� ����

Producing the even paragraph 	��

��� Producing the even paragraph

Let the predicate ep� even paragraph� be de�ned as follows�

epws pss b� ws � pss � hi �
�����

� pss � ws

ok pss

wt pss � mwws �

We then have an abstract program for producing a minimum�waste paragraph
of a sequence of lengths ws�

var ws � seqN N �
M � N �
pss � seq seq N�

and ws �� hi � �
w � ws � � � w � M � �

pss� �epws pss� �

This time we consider pre�xes of ws� the even paragraph will be produced as
we go� The invariant is �if pss were extended by an even paragraph qss of the
remaining text ws�i � the result pss��qss would be an even paragraph of the whole
text ws�� Here is the �rst step�

v
�����
var i � N

I b� �
�
 qss � ep�ws�i� qss 	 epws �pss �� qss��
i � N

�

i � pss � � �� hi�
i � pss� �I � I � i � N � �

v �invariant I � variant N � i

do i �� N �
i � pss� �i �� N � I � i� � i � �

od �

Unusually� increasing i above will not necessarily just be a matter of adding ��
the next line of pss could be longer than that� Instead� we introduce a variable j
to �nd the new value of i � the next line of pss is then ws�i�j ��

v var j � N�

j � �i �� N � I ��

 qss �

�
ep�ws�j � qss

	 epws �pss �� hws�i�j �i�� qss�

�
i � j � N

�� � �iii�

i � pss � � j � pss �� hws�i�j �i �

c� Carroll Morgan ����� ����� ����

	�� Case study� A paragraph problem

�iii� v �Exercise 	���

j � �i � N ��

 qss �

�
ep�ws�j � qss

	 ep�ws�i� �hws�i�j �i�� qss�

�
i � j � N

�� �

The program above �nds a �rst line in a paragraph of ws�i �which the develop�
ment has shown to be the next line in a paragraph of ws�� If we know the minimum
waste of ws�i � and all its su!xes� then that line is easily found� its sum is less
than M � and we must have either j � N or

mw�ws�i� �M �X
ws�i�j �� tmw�ws�j � �

That leads to

v E �j � b� �M �P
ws�i�j �� tmw�ws�j ��

j �

��i � N �
i � j � NP
ws�i�j � � M

j � N �mw�ws�i� E �j �

�� �

There may be several choices for the next line � but if we take the shortest�
we know its length can be no greater than M � Thus we strengthen the postcondi�
tion�

v j �

��i � N �
i � j � N

�
 k � i � k � j 	 mw�ws�i� � E �k��
j � N �mw�ws�i� E �j �

�� �

Introducing a variable s to hold the length of the developing line �used in E �j ���
we continue

v

���������
var s � N

J b�
�����

i � j � N

�
 k � i � k � j 	 mw�ws�i� � E �k��
s �

P
ws�i�j �

�

j � s� �i � N � J � �j � N �mw�ws�i� E �j ���
v j � s � � i � ��ws�i ��

j � s� �J � J � �j � N �mw�ws�i� E �j ��� �
v �invariant J � variant N � j

do j �� N �mw�ws�i� � E �j ��
j � s � � j � �� s � ws�j �

od �

And that completes the development � nearly� We still have the expressions
mw�ws�i� and mw�ws�j � �in E �j �� in the guard of the iteration� But the program
of Section 	��	 establishes

�
 i j � � i � N � mw�ws�i� � sf �i �� �

c� Carroll Morgan ����� ����� ����

Exercises 	��

and so by sequentially composing the two programs we can replace the guard with

j �� N � sf �i � � �M � s� t sf �j � �

And that does complete the development�

��� Exercises

Ex� ���� � Recall Speci�cation �iii� �p�	���� Its postcondition says

If the paragraph so far pss is extended by the line ws�i�j �� and then
by any even paragraph qss of what remains ws�j � the result is an even
paragraph of the entire input ws�

The postcondition of its following re�nement says

The line ws�i�j �� if extended by an even paragraph qss of what re�
mains� is an even paragraph of the remaining input ws�i �

Explain informally why the re�nement is valid� then check it rigorously using
strengthen postcondition and weaken precondition�

Ex� ���� Collect the code developed in this chapter� Determine its time com�
plexity in terms of M and N � Is it linear� Quadratic� Worse�
Hint� The sum s must increase on each inner iteration�

Ex� ���� � Although there may be several even paragraphs of a single sequence
of words� the code we developed is deterministic� Where� in the development� was
the nondeterminism removed�

Ex� ���	 � Modify the code of Exercise 	��	 so that� using the module of Figure
	���� it actually reads and writes words from input and output� Your �nal program
should not contain any variables of type seq seq � � � �except css within the module
Words��
Hint� Don�t forget to account for spaces between words�

c� Carroll Morgan ����� ����� ����

	� Case study� A paragraph problem

module Words�
var css � seq seqCHAR�

procedure GetWord �result w � N� b�
j� var cs � seqCHAR�

if eof � w � � �
�� �eof �

input cs�
css � � css �� hcsi�
w �� $cs

�

�j�

procedure PutWordb� output hd css�
css � � tl css�

procedure PutLineb� output nl

end

The character nl takes output to a new line�

Figure ���� Input�output module for words

c� Carroll Morgan ����� ����� ����

Chapter ��

Case study� The largest rectangle
under a histogram

The case study of this chapter is a notoriously tricky development� and the several
approaches to it include using auxiliary sequences or intermediate tree structures�
Here however we use proper �not tail�� recursion� for which simple variables su!ce��

The problem is to �nd the area of the largest rectangle under a given histogram�
as illustrated in Figures 	��� and 	��	� The straightforward complexity of the
problem is given by the number of possible bases for the rectangle �$ N �� times
the cost of examining each to determine its height �$ N � � a cubic algorithm� in
other words�

A divide�and�conquer approach� in which we split the problem into smaller
pieces� will lead us �rst to N logN complexity� But� with some e�ort� we shall
do even better than that�

���� Laying the groundwork

Assume we have a sequence of non�negative integers hs � seqN N that represents a
histogram� as in Figure 	���� under which we are to �nd the largest rectangular area�
as in Figure 	��	� Since the base of a largest rectangle is su!cient to determine
it completely �since it should be as high as the histogram will allow�� we consider
the problem to be the �nding of that base� represented below as a pair of indices
l and h denoting its start and end�

�tl � h � N j l � h � N � �h � l�� uhs�l�h�� �

In fact� we will need to be more general� looking for largest rectangular areas under
subsegments hs�i�j � of the histogram� thus we de�ne natural number lr�i � j � to
be the largest rectangular area under the histogram hs�i�j � �

lr�i � j � b� �tl � h j i � l � h � j � �h � l�� uhs�l�h��

�Naturally the solutions are related� since each approach more or less encodes the structures
found in the others	

	��

	�� Case study� The largest rectangle under a histogram

hs � h	� ��
� �� �� �� �i

Figure ���� Example histogram

��

�
�
�

�
�
�
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��

�
�
�

��

��

�
�
�

�
�

�
��

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
��

�
�
�

��

Rectangle under h	� ��
� �� �� �� �i

Figure ���� Largest rectangle

� and with that specify our program

a � � lr���N � � �i�

in which the variable a � N will contain the result�

c� Carroll Morgan ����� ����� ����

Divide and conquer 	��

���� Divide and conquer

A divide�and�conquer approach to this problem suggests �nding a division of hs
into two pieces such that solutions to the pieces can be combined into a solution
for the whole� In fact we shall be especially interested in splitting at minimum
values of hs� because of the following property of lr�

If hs�min� is a minimum value in hs� then the largest area of a rectangle
under hs is the maximum of

�� the largest under hs���min��

	� the largest under hs�min � ��N � and

�� the area given by base N and height hs�min��

Thus we need only �nd a minimum element hs�min� of hs� and then solve recursively
the subproblems hs���min� and hs�min���N � on either side� The property above
then gives us the solution for the whole�

A rough estimate for the average time required by the above approach� in terms
of N the size of hs� gives the recurrence

timeN � N � 	� time�N �	� �

which leads to timeN � N logN � �Think of the fact that the sequence can be
halved approximately logN times� and the time taken altogether on each level is
still proportional to the original N ��

With some iteration as well we can do even better than N logN � however� We
begin by seeking to maintain a �running maximum� as longer and longer initial
segments of hs are considered� Our �rst step is therefore the usual

�i� v var i � N�

a� i � � �� ��
do i �� N �

a� i � �i �� N � i � N � a � lr��� i� � i� � i � �ii�
od �

But now we become more adventurous� bearing the property above in mind� we
might be interested in increasing i in the iteration body by more than just �� If
hs�i � becomes a minimum value for the longer segment � that is� if i is increased
to some j perhaps greater than i � �� and we have that hs�i � is a minimum value
of the segment hs���j � � then it is particularly easy to re�establish a � lr��� j ��
provided we can calculate lr�i � �� j � as required by Item 	 of the property� Thus
we proceed

�ii� v var b� j � N�

c� Carroll Morgan ����� ����� ����

	�	 Case study� The largest rectangle under a histogram

�������
b� j

i � N

i � j � N

hs�i � � hs���j �
b � lr�i � �� j �

������� �
a� i � � a t b t j � hs�i �� j �

We have of necessity adopted an alternative layout for speci�cations in which the
components appear in the same order� but vertically instead of horizontally� and
new line is interpreted as conjunction��

The �rst command sets j as suggested� and the second re�establishes the invari�
ant�

The conjunct b � lr�i � �� j � in the �rst command is where we foreshadow
a recursion� since it is e�ectively solving our original problem but on a smaller
segment� Given that a � lr��� i� �which was Item ��� that b � lr�i � �� j � �given in
Item 	� and the explicit calculation j � hs�i �� it can be seen that the assignment
command does re�establish the invariant a � lr��� i� for the now�larger i �

But it is not as simple as that� unfortunately� we do have a problem� The �rst
command above is infeasible� because its postcondition implies hs�i � � hs���i ��
something which assignments only to b and j cannot a�ect�

���� Strengthening invariants to restore feasibility

The dead end is only apparent� If hs�i � � hs���j � is in the postcondition� but
cannot necessarily be established by changing only b and j � then the �missing
conjunct� hs�i � � hs���i � must come from the precondition� How do we put it
there� �Strengthening the precondition is not an example of re�nement"�

A similar problem occurs in proofs by mathematical induction� when the proof
that the inductive hypothesis holds at i��� given its truth at i � does not go through�
If the truth at i does imply truth at i��� but the proof cannot be found� then either
the approach is unnecessarily di!cult or the mathematician insu!ciently skilled�
For us that would correspond to a feasible iteration body that we nevertheless could
not see how to develop further� If on the other hand the truth at i does not imply
truth at i � �� then the inductive hypothesis may be too weak� strengthening it
makes its assumption at i more powerful� but the obligation to re�prove it at i ��
becomes accordingly more di!cult� That corresponds to an iteration body that
is infeasible� strengthening the invariant then strengthens the precondition �as we
wanted� and makes development easier�� but also strengthens the postcondition
�making development more di!cult��

In both cases� induction and iteration� the necessary strengthening is usually not
apparent until the �rst attempt at proof or development has already failed� and

�That is rather like a Z schema� but with a frame	

c� Carroll Morgan ����� ����� ����

Strengthening invariants to restore feasibility 	��

thus excursions like the above in Section 	��	 are not fruitless� In our case we have
discovered that we need the extra conjunct hs�i � � hs���i � in the precondition�
and so we simply place it in the invariant and try again� our iteration body �ii�
becomes �ii�� below� and we resume from there� performing the same �rst steps as
before�

v

���������

a� i
i �� N

i � N

a � lr��� i�
hs�i � � hs���i �

i� � i

���������
�ii��

v var b� j � N�
�����������������

b� j
i � N

a � lr��� i�
hs�i � � hs���i �

i � j � N

a � lr��� i�
hs�j � � hs���j �
hs�i � � hs���j �
b � lr�i � �� j �

�����������������
� �

a� i � � a t b t j � hs�i �� j

v

���������

b� j
i � N

i � j � N

hs�i � � hs�i � ��j �
hs�j � � hs�i �
b � lr�i � �� j �

���������
� �iii�

The only non�immediate reasoning above relies on the implication

hs�i � � hs���i � � hs�i � � hs�i � ��j � � hs�j � � hs�i �
V hs�j � � hs���j � � hs�i � � hs���j � �

Remember that hs�j � lies just beyond the segment hs���j �� and that the �rst
conjunct hs�i � � hs���i � of the antecedent comes from the precondition�

The interesting thing about the last step is that a possible recursion has popped
up� our original problem is an instance of �iii�� provided we de�ne �formally� that
hs���� and hs�N � are both �� �any negative number would do�� That is because
setting i to �� initially will force �iii� to establish j � N � the postcondition
contains hs�j � � hs�i �� and we know that hs���N � �� and j cannot be ��� �It
must be strictly greater than i �� That is� the postcondition then implies

b � lr���N � �

making b the value we are looking for�
That is all the excuse we need for a recursive procedure�

c� Carroll Morgan ����� ����� ����

	�
 Case study� The largest rectangle under a histogram

���� Introducing recursion

Because our original problem has reappeared in �iii�� we now aim explicitly for
recursion by making it a procedure� With some foresight�
 we provide three pa�
rameters�

procedure Hist �value i � Z� result b� j � Z�b� �iii� �

Since our problem is now more general than before� however� we will need a gen�
eralisation of the property we exploited earlier� it is

lr�l � h� � �� if l � h� and
lr�l � h� � lr�l � i� t lr�i � �� h� t hs�i �� �h � l� �

provided l � i � h � hs�i � � hs�l�h��

Our original version of this simply had l � � and h � N �
Carrying on� the variant is i � and it is already �in the precondition of �iii� above�

strictly bounded above by N �

�iii� v variant I is i �
���������

b� j
i � I � N

i � j � N

hs�i � � hs�i � ��j �
hs�j � � hs�i �

b � lr�i � �� j � �

���������
And� forewarned by our having had to strengthen the invariant above� we choose
here an invariant �stronger than the obvious� in that it includes the conjunct hs�j � �
hs�i � ��j �� The iteration will establish �the negation of its guard� that hs�j � �
hs�i �� giving

v �invariant is middle formula of iteration body

b� j � � �� i � ��
do hs�j � � hs�i ��
������������

b� j
hs�j � � hs�i �
I � j � N

hs�i � � hs�i � ��j �
hs�j � � hs�i � ��j �

b � lr�i � �� j �
j� � j

������������
�

od

�The prophesy is only apparent� since we would later discover in any case what the parameters
should be	

c� Carroll Morgan ����� ����� ����

Wrapping up 	��

v var c� k � N�
���������

c� k
I � j � N

j � k � N

hs�j � � hs�j � ��k �
hs�k � � hs�j �
c � lr�j � �� k�

���������
� �

b� j � � b t c t �k � i � ��� hs�j �� k �

It has to be admitted that the second step above conceals a certain amount of
detailed working out of implications� But it was not altogether necessary to see
beforehand that they would work out� since the �rst stage of our development had
already suggested that we proceed that way� with the following assignment given
just a transliteration of the one we met before�

One genuinely obscure step� however� is the apparent strengthening of the pre�
condition� from j � N to j � N � That is necessary to match the o�ered recursion�
where i � N occurs in the precondition� and it is justi�ed by the fact that if
hs�j � � hs�i �� then j cannot be N �

And that�s it� we �nish o� with

v Hist �j � c� k� �

���� Wrapping up

We have now reached code� if by a slightly circuitous route� The �rst stage of the
development produced an iteration body which generalised the original problem�
with that encouragement� we were able to continue the development by introducing
a recursion� Rather than calling the procedure within the iteration� however� we
now exploit the generalisation by discarding the outer iteration� replacing the whole
thing by a procedure call� In other words� we redo the �rst part of our development
in a stroke�

a � � lr���N �

v
�

assume hs���� � hs�N � � ��
var j � N

�

Speci�cation �iii� above

v Hist ���� a� j � �
The declaration of j is necessary only to supply the third parameter of the proce�
dure call� the result returned there is not used�

That concludes the development� and the code is shown in Figure 	���� Exercise
	��� investigates whether all this e�ort has improved the execution time over the
straightforward N logN �

c� Carroll Morgan ����� ����� ����

	�� Case study� The largest rectangle under a histogram

procedure Hist �value i � Z� result b� j � Z� b�
j� var c� k � N�

b� j � � �� i � ��
do hs�j � � hs�i ��

Hist �j � c� k��
b� j � � b t c t �k � i � ��� hs�j �� k

od

�j
with �main program� j� var j � Z � Hist ���� a� j � �j �

Figure ���� Collected code�

���	 Exercises

Ex� ���� � What is the running time of the algorithm� in terms of the size of
hs� Count calls of Hist � Hint� What values of i are passed successively to Hist as
the algorithm executes�

Ex� ���� � Specify and develop a program that �nds �the largest true rectangle�
in a two�dimensional array of Boolean values� the largest area of any rectangle�
within the array� that contains only true values�

Ex� ���� � Specify and develop a program that �nds �the largest true square� in
a two�dimensional array of Boolean values� the largest area of any square� within
the array� that contains only true values� Hint� There may be a much simpler
approach than was required for the largest true rectangle� What is the essential
property of a square that prevents that simpler approach working for rectangles as
well�

c� Carroll Morgan ����� ����� ����

Chapter ��

Case study� A mail system

This �nal case study contains little in the way of intricate algorithm development�
and not a single iterative invariant� it is a case study in speci�cation itself�

In our earlier examples we did not have to worry about the construction of the
speci�cation� it was given at the outset� usually of a program fragment or a single
procedure� In this chapter however we concern ourselves with the speci�cation of
a whole �system�� which in our terms is a module encapsulating a state and all
operations on it� The increased size and possible complexity means that we cannot
take even our starting point for granted�

Electronic mail systems� our subject� have their main features in common but
vary a lot in the detail� Thus our initial speci�cation� in Figure 		��� is more or
less just the bare minimum that electronic mail could be said to comprise� But the
immediately following two sections nevertheless discuss de�ciencies apparent even
at that level of abstraction� and propose design changes to avoid them�

Design changes are seldom without hazard� and several �opportunities� arise on
our way to Figure 		���� the ��nal� speci�cation� for changes that if implemented
would sooner or later prove disastrous� The dangers are revealed by exhaustive
� and sometimes exhausting � application of the rigorous techniques now at our
disposal� assumptions� coercions� re�nement and above all data re�nement�

The message of those sections is twofold� that even the apparently simple Figure
		��� is too complex a speci�cation to accept without some degree of rigorous
analysis� and that one way of producing even a simple speci�cation is to develop
it in small steps from one that is simpler still�

The second part of the chapter makes the �rst few development steps� from
Figure 		��� towards a conventional implementation of electronic mail in terms of
asynchronous delivery of message packets� The concurrency involved is limited� but
still enough to capture the notion of system actions carried out �in the background�
without the participation of the users�

The result of the development� delivered in Figure 		���� is laden with the details
of headers� unique identi�ers� packets and transmission delay � a very long way

	��

	� Case study� A mail system

from the simple beginnings to which shortly we turn�
A warning is appropriate before we start� much of the low�level working is de�

tailed enough to skip at �rst reading� and just the beginning and end of �re�nement
chains� may be su!cient in many cases to maintain the continuity of the narrative�

���� A �rst speci�cation

The system will provide just three procedures for passing messages�

& Send � A message and set of intended recipients are supplied� a �unique�
identi�er is returned for that transmission� The identi�er is used to refer to
the message while it remains in the system�

& Receive� The set of identi�ers is returned for mail that has been received by
a given user� but not yet read�

& Read � The message text corresponding to a given identi�er is presented to
its recipient� and the message is removed from the system�

Generally the system works as follows� A userme sends a messagemsg to a group
tos of other users using Procedure Send � its result parameter id provides a unique
reference to that transmission� which could be used by the sender� for example� to
enquire after the status of a message or even to cancel it� �See Exercises 		�� and
		�	��

Procedure Receive is called by potential recipients who wish to know whether
mail has been sent to them� Its result is a set ids of transmission identi�ers that
refer to messages sent to them that they have not yet read�

Supplying an identi�er to Procedure Read will return the message text associated
with the identi�er� and delete that message from the system�

Naturally the above brief description leaves a lot unsaid� Can a user send a
message to himself� What happens for example if an invalid identi�er is supplied
to Read� Can a message be read by a user to whom it was not sent� Does
the deleting of a message� once read in Read � remove copies of it sent to other
recipients�

It is extremely unlikely that an informal speci�cation like the one above� no
matter how extensive� could ever answer all such questions� Even rigorous speci��
cations� like the one we shall see shortly� are limited� But they do have a signi�cant
advantage� their terms of reference are unambiguous� and within their declared
terms their answers are unambiguous� as well�
To construct an abstract module consistent with the informal description above

� our version of �rigorous speci�cation� here � we begin by choosing types� Let
users come from a type Usr � messages from Msg and identi�ers from Id � The state
of the system could then be given by the two variables

�We regard nondeterminism in a speci�cation as an unambiguous indication of freedom in the
design	

c� Carroll Morgan ����� ����� ����

A �rst speci�cation 	��

msgs � Id !�Msg and sent � Usr " Id �

in which the partial function msgs associates message identi�ers with the corre�
sponding message text� and the relation sent records the �identi�ers of� messages
sent but not yet read� By making sent a proper relation we allow many users
�many possible recipients� to be associated with a single identi�er� that is how we
shall deal with �broadcasts�� in which the same message is sent to many di�erent
users�

For the procedure Send we have the following parameters� which user is sending
the message� the message itself� to which users it is being sent� and �as a result
parameter� the identi�er that subsequently can be used to refer to it� Here is the
procedure heading�

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id� �

Within the procedure we �rst have a new identi�er selected� which then will be
associated both with the message and with the set of recipients� We use simply
i � �i �� dommsgs� for the selection� on the understanding that Id must be an in�
�nite set so that the supply of unused identi�ers can never �run out�� That does
raise several problems � but its simplicity is so appealing that we shall do it
nevertheless�

The �rst problem is that the above speci�cation is infeasible� if executed in a
state in which dommsgs � Id �meaning �all identi�ers in use��� its postcondition is
false� Informally we note however that if Id is in�nite the module can never reach
such a state �provided msgs is initially empty�� more rigorously� we could argue as
in Exercise ����
� showing that dommsgs � �nset Id is invariant for the module�
and by data re�nement therefore being able to introduce dommsgs � Id into the
precondition�

The second problem� however� is that we cannot after all provide an in�nite type
Id � the identi�ers may have to be recovered�� But we will see much about that
later� and so for now leave things as they are�

Once the identi�er is selected it is a straightforward matter to construct the nec�
cessary links to the recipients and the message text� and the body of the procedure
is as a whole

id � �id �� dommsgs� �
msgs�id � � �msg �
sent � � sent � �tos � fidg� �

Note that the assignment msgs�id � � �msg is just an abbreviation for the lengthier
msg � �msg �id � �msg �� and in particular that id need not be in the domain of

�It is not altogether certain that they must� since for example using ���bit unique identi�ers
would be su�cient to support a tra�c of one message per millisecond for more than
�� million
years	 But other resource implications may make recovery of identi�ers appropriate nevertheless	

c� Carroll Morgan ����� ����� ����

		� Case study� A mail system

msgs for that to be meaningful� �See Exercise ���
� in fact the previous command
ensures that id is not in the domain of msgs��

Note also that in this simple system we are not bothering to record the sender
of the message�

For the procedure Receive we need only return for user me the set of identi�ers of
messages waiting in sent to be read� and for that we use ids � � sent �me�� �Ignoring
for now the warning in Section ����	� that unlikely�looking application sent �me� of
a relation to an element we take as an abbreviation for fi � Id j �me� i� � sentg��

Finally� procedure Read must retrieve a message� given its identi�er� and here we
deal with some of the questions raised earlier� Suppose user me supplies identi�er
id legitimately � that is� that �me� id� is an element of sent � meaning that me is
one of its intended recipients� then the message to be returned is found in msgs�
and msg � �msgs�id � will retrieve it� But if the identi�er id is not legitimate for
me� what then� Making �legitimacy� a precondition of the procedure �we need
only include the assumption f�me� id� � sentg as its �rst command� would relieve
the implementor of the obligation to deal with such matters� the procedure would
simply abort if the request were not legitimate�
A more forgiving design would insist on termination in any case �not aborting�

therefore�� but it would allow any message whatsoever to be returned for illegiti�
mate requests� That ranges from the helpful �Identi�er does not refer to a message
that has been received�� through the cryptic �MSGERR BAD ID�� �nally to the mis�
chievous option of returning likely�looking but wholly invented messages that were
never sent� �That last could be useful if one user is suspected of trying to read
messages intended for others�� Thus we use the speci�cation

msg � ��me� id� � sent 	 msg � msgs�id �� �

leaving as the last detail the removal of the message from the system� The com�
mand sent � � sent�f�me� id�g does that� with the set subtraction as usual having
no e�ect on sent if the pair f�me� id�g is not there�

Straightforward initialisation to �the system is empty� gives us �nally the module
of Figure 		���

���� Reuse of identi�ers

We considered brie#y above the possible implementation problems caused by our
use of id � �id �� dommsgs� in Send � that an unending supply of identi�ers is re�
quired� Looking at Read in Figure 		��� however� we can see that once a message
has been read by all of its intended recipients� the antecedent �me� id� � sent 	 � � �
of the �rst command will never again be true� and so subsequent calls for the same
identi�er need not refer to msgs � the message texts can simply be invented�
Thus� provided that at the end of Read we have id �� ran sent �because the last
�me� id� pair has just been removed�� we can remove �id �msg� from msgs� That is

c� Carroll Morgan ����� ����� ����

Reuse of identi�ers 		�

module MailSys

var msgs � Id !�Msg �
sent � Usr " Id �

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id�b� id � �id �� dommsgs� �

msgs�id � � �msg �
sent � � sent � �tos � fidg��

procedure Receive �value me � Usr � result ids � set Id�b� ids � � sent �me��

procedure Read �value me � Usr � id � Id � result msg � Msg�b� msg � ��me� id� � sent 	 msg � msgs�id �� �
sent � � sent � f�me� id�g�

initially msgs � sent � fg
end

Figure ���� Initial speci�cation of mail system

procedure Read �value me � Usr � id � Id � result msg � Msg�b� msg � ��me� id� � sent 	 msg � msgs�id �� �
sent � � sent � f�me� id�g�
msgs � ��ran sent�Cmsgs �

Figure ���� Attempted recovery of Id �s

done with the ��marked command in the revised Read shown in Figure 		�	� which
removes all such pairs at once�

But on what basis have we been saying �should� and �can�� Are we changing the
speci�cation� or are we merely re�ning the original module of Figure 		��� How
do we �nd out�

The e�ect of the change is to make the state component msgs a smaller function
than before� taking care however never to delete identi�ers still in ran sent � We are
therefore led to consider a data re�nement in which the abstract variable is msgs�

c� Carroll Morgan ����� ����� ����

			 Case study� A mail system

the concrete is msgs �� say� and the coupling invariant is

msgs � � �ran sent�Cmsgs � �		���

�In all of the data re�nements of this chapter we shall use �primed� names for
concrete variables� when the result of the data re�nement is presented �and thus
the abstract variables are gone�� we simply remove the primes� That will help
prevent a proliferation of names��

We begin our data re�nement with the last command of Read �

sent � � sent � f�me� id�g
becomes �augment assignment ���

fmsgs � � �ran sent�Cmsgsg�
sent �msgs � � � sent � f�me� id�g� ��
�msgs � � �ran sent�Cmsgs�

v �see below

fmsgs � � �ran sent�Cmsgsg�
sent � � sent � f�me� id�g�
��ran sent�Cmsgs � � �ran sent�Cmsgs� �
msgs � � ��ran sent�Cmsgs �

v �see below

fmsgs � � �ran sent�Cmsgsg��
�ran�sent � f�me� id�g��Cmsgs �

� �ran�sent � f�me� id�g��Cmsgs

	
�

sent � � sent � f�me� id�g�
msgs � � ��ran sent�Cmsgs �

v �remove coercion ���	� mainly

sent � � sent � f�me� id�g�
msgs � � ��ran sent�Cmsgs � �

Thus msgs � � ��ran sent�Cmsgs � has appeared� as desired�
The comments �see below� refer to the �rst of the following two laws� used for

moving coercions �forward� through a program�

Law ���� advance coercion

w � �E �post � � �post �wnE �� w � �E �

�

Law ���� advance assumption

w � �E fpreg � fpre�wnE �g w � �E �

�

c� Carroll Morgan ����� ����� ����

Reuse of identi�ers 		�

Law 		�� is often used to move a coercion forward through a program until it is
�cancelled� by an earlier� and weaker� assumption �as in remove coercion ���	��
given that it is a re�nement to weaken an assumption��

For the rest of the module� things are straightforward until �nally we reach the
�rst command of Send � There� we have

id � �id �� dommsgs�

becomes �augment speci�cation ����
����
id �msgs �

msgs � � �ran sent�Cmsgs

msgs � � �ran sent�Cmsgs

id �� dommsgs

����
� �msgs� sent not in frame� thus msgs � cannot change

id � �msgs � � �ran sent�Cmsgs � id �� dommsgs�

becomes �diminish speci�cation ����	
�� id

��msgs � msgs � � �ran sent�Cmsgs�
�
msgs� � msgs � � �ran sent�Cmsgs� 	 id �� dommsgs��

��
� �simplify precondition
�� id

dommsgs � � ran sent

�
msgs� � msgs � � �ran sent�Cmsgs� 	 id �� dommsgs��

��
� �simplify postcondition

id � �dommsgs � � ran sent � id � ran sent � dommsgs �� �

We have been reasoning with equality rather than re�nement v� because we want
to be sure of �nding a concrete command if there is one� �Using v we might
accidentally introduce infeasible behaviour and thus miss a data re�nement that
would actually have been acceptable��

In the last step� re�nement v is not di!cult to show� �The antecedent gives
dommsgs � � ran sent�dommsgs�� and thus that ran sent�dommsgs � and dommsgs�
are disjoint�� But for the equality we need also the reverse re�nement w� for that
we choose an arbitrary m � Msg and de�ne large b� Id�fmg� whose domain is all
of Id � Taking msgs� to be msgs � � �ran sent� �C large satis�es the antecedent� and
the consequent is then equivalent to id � ran sent � dommsgs ��

But alas it has all in any case been for nothing� since our conclusion is not

feasible� the precondition allows dommsgs � � ran sent � making the postcondition
false� Not having shown re�nement with this particular coupling invariant does
not of course mean that no other would work� but it does encourage us to look
more closely at whether we are after all performing re�nement�

�Some of these comments conceal quite a lot of non�trivial predicate calculation� in this case
discussed below	 Similarly� �routine� steps in engineering design sometimes generate quite tough
integrals to be calculated	 But the principles remain simple	

c� Carroll Morgan ����� ����� ����

		
 Case study� A mail system

Persistent problems with
electronic funds transfer led
to chaos recently in the ��
nancial markets� The cause
was traced to code in which
the ordinary electronic mail
system had been used to
generate the unique identi�
�ers needed for funds trans�
fers�
Noticing that the speci��
cation of the mail system
guaranteed never to repeat
an identi�er� a program�
mer had obtained them
as needed by broadcasting
null messages to no�one�
�Such �empty broadcasts�
were� not surprisingly� par�
ticularly e!cient and gener�
ated no network tra!c��
The mail system originally
was implemented with such
a large set of possible iden�
ti�ers it was thought they
would never run out� Use

grew so rapidly� however�
that recently the system
was upgraded to recover old
identi�ers � yet it was not
veri�ed that the new system
was a re�nement of the orig�
inal� and in fact it was not�
Had the absence of re�ne�
ment been noticed� the well�
established principles of the
Institute of Systems and
Software Engineering would
then have required a routine
check to be made for depen�
dencies on the original be�
haviour�
The institutions a�ected are
suing for damages� mean�
while the �nancial com�
munity waits anxiously for
other e�ects to come to
light�

Figure ����

In fact we are not proposing a re�nement� the concrete module can return the
same id from Send on separate occasions� which is something the abstract module
cannot do� But does it really matter� See Figure 		�� �and Exercise 		����

c� Carroll Morgan ����� ����� ����

A second speci�cation� reuse 		�

module MailSys

var msgs � Id !�Msg �
sent � Usr " Id �

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id�b� id � �id �� ran sent � � �

msgs�id � � �msg �
sent � � sent � �tos � fidg��

procedure Receive �value me � Usr � result ids � set Id�b� ids � � sent �me��

procedure Read �value me � Usr � id � Id � result msg � Msg�b� msg � ��me� id� � sent 	 msg � msgs�id �� �
sent � � sent � f�me� id�g�

initially msgs � sent � fg
end

Figure ���	 Reuse of identi�ers

���� A second speci�cation� reuse

We are forced to admit that reusing identi�ers requires a change in the speci�cation
that is not a re�nement of it� Having to accept therefore that we are still in the
�design stage�� we consider a simpler change with the same e�ect� we leave Read
in its original state� changing Send instead so that �new� identi�ers are chosen in
fact simply outside the range of sent �since it is precisely the identi�ers in sent

that refer to messages not yet read by all recipients�� The result is shown in Figure
		�
� with the altered command marked�

A slightly unhelpful aspect of this new speci�cation� and of the earlier attempt�
now comes to light� it is that the reuse of identi�ers is enabled by Read as soon
as �me� id� is removed from sent � In an eventual implementation that would prob�
ably require communication� in some form� from the receiver back to the sender�
Our �rst speci�cation did not require that� since the generation of identi�ers was
managed locally in Send � an essentially self�contained activity�

A second unrealistic aspect of this speci�cation is that messages arrive instantly
at the destination� a Receive no matter how quickly after a Send will return the
identi�er of the newly sent message� and this too is unlikely to be implementable
in practice�

c� Carroll Morgan ����� ����� ����

		� Case study� A mail system

procedure Receive �value me � Usr � result ids � set Id�b� ids� �ids � sent �me�� �

Figure ���
 Attempt at specifying delayed receipt

Thus we are led to consider a third version of our speci�cation�

���� A third speci�cation� delay

In order to allow delay between sending a message and receiving it� one might
think of altering Receive as shown in Figure 		��� only some� not necessarily all� of
the identi�ers of sent messages are returned by Receive� The rest are �in transit��
But if the subset returned is chosen afresh on each occasion� then messages

could be received only later to be �unreceived� again� In order to specify that once
a message is received it stays received� we must introduce an extra variable recd
that records which messages have been received already� That would be necessary
in any case to make Read sensitive to whether a message has been received or not�

Thus while Send will use sent as before� in Read we �nd the new variable recd
instead� The transfer of messages between sent and recd occurs in Receive� as
shown in Figure 		��� Note that in Read both sent and recd must have �me� id�
removed� if left in recd the message could be read again� if removed from recd but
left in sent it could be received again� and if left in both its identi�er would never
be recovered�

The e�ect of the marked command in Receive is to allow recd to increase arbi�
trarily up to and including sent � �That includes not increasing at all�� As written�
however� the command is infeasible� one cannot achieve recd� � recd � sent while
changing only recd � unless recd � sent already� Fortunately recd � sent is an
invariant of the module� as before� a data re�nement could introduce it explicitly�
allowing the command to be replaced by

recd � �recd � sent � recd� � recd � sent � �

In the interests of brevity� however� we leave it as it is�
We will not attempt to show that Figure 		�� re�nes our earlier Figure 		�
�

indeed it cannot� because with our new module the program fragment

Send �me�msg � fyoug� id�� Receive �you� ids�

can terminate with id �� ids �because id is still in transit�� and in our earlier
module that is not possible� Nevertheless we should investigate carefully what we
have done� is delay the only change we have made�

c� Carroll Morgan ����� ����� ����

A third speci�cation� delay 		�

module MailSys

var msgs � Id !�Msg �
sent � recd � Usr " Id �

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id�b� id � �id �� ran sent � �

msgs�id � � �msg �
sent � � sent � �tos � fidg��

procedure Receive �value me � Usr � result ids � set Id�b� recd � �recd� � recd � sent � � �
ids � � recd �me��

procedure Read �value me � Usr � id � Id � result msg � Msg�b� msg � ��me� id� � recd 	 msg � msgs�id �� �
sent � recd � � sent � f�me� id�g� recd � f�me� id�g�

initially msgs � sent � recd � fg
end

Figure ���� Delayed receipt of messages

For our investigation� we go back and alter �but do not necessarily re�ne� our
�prompt� module of Figure 		�
 to express our minimum expectations of introducing
delay� First� we must accept that Receive will not return all identi�ers of messages
sent� and so we use in this �mock�up� the alternative procedure in Figure 		���
Second� we split Read into two procedures� one for reading received messages� and
the other for reading �or attempting to read� not�yet�received ones� The former
should behave as Read does in Figure 		�
� the latter should return a randomly
chosen message� but change nothing else� The result is shown in Figure 		���

We should be quite clear about the role of Figure 		��� it is not a re�nement
of Figure 		�
 �a customer having speci�ed a prompt mail system will not accept
an implementation containing delay�� nor is it even a satisfactory speci�cation of
a system with delay �it is too weak�� It is only the most we can say about delay
while retaining the state of Figure 		�
�

Because we constructed our system with delay �Figure 		��� essentially by guess�
work� we are now double�checking against Figure 		�� to see whether it has those
�reasonable� properties at least�

To compare Figure 		�� with Figure 		��� we must make the same distinction
in Figure 		�� between reading received messages and attempting to read not�yet�

c� Carroll Morgan ����� ����� ����

		 Case study� A mail system

module MailSys

var msgs � Id !�Msg �
sent � Usr " Id �

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id�b� id � �id �� ran sent � �

msgs�id � � �msg �
sent � � sent � �tos � fidg��

procedure Receive �value me � Usr � result ids � set Id�b� ids� �ids � sent �me�� �

procedure ReadReceived �value me � Usr � id � Id �
result msg � Msg�b� msg � ��me� id� � sent 	 msg � msgs�id �� �

sent � � sent � f�me� id�g�

procedure ReadNotReceived �value me � Usr � id � Id �
result msg � Msg�b� choose msg �

initially msgs � sent � fg
end

Figure ���� Delay �mock�up� � compare Figure 		�

received ones� We can do that with a pair of coercions�
Recall that a coercion �post � behaves like skip if post holds� and like magic

otherwise� if post does not hold then �post � is essentially �unexecutable�� We make
our procedures ReadReceived and ReadNotReceived from Figure 		�� by exploiting
that unexecutability� The body of ReadReceived will be as for Read but with an
initial coercion expressing �the message has been received��

��me� id� � recd � �
msg � ��me� id� � recd 	 msg � msgs�id �� �
sent � recd � � sent � f�me� id�g� recd � f�me� id�g �

Naturally� we can use the coercion to simplify the rest of the procedure� we continue
from immediately above�

� �introduce assumption �����

c� Carroll Morgan ����� ����� ����

A third speci�cation� delay 		�

��me� id� � recd � �
f�me� id� � recdg�
msg � ��me� id� � recd 	 msg � msgs�id �� �
sent � recd � � sent � f�me� id�g� recd � f�me� id�g

� �absorb assumption ��

��me� id� � recd � �
msg � ��me� id� � recd � �me� id� � recd 	 msg � msgs�id �� �
sent � recd � � sent � f�me� id�g� recd � f�me� id�g

� �Note this is equality �

��me� id� � recd � �
msg � �msgs�id ��
sent � recd � � sent � f�me� id�g� recd � f�me� id�g �

If disinclined to work through the above� one could simply note that the coercion
�me� id� � recd simpli�es the following postcondition to msg � msgs�id ��

The body of ReadNotReceived will have the opposite coercion added� and we are
able to simplify it as follows� the coercion can by introduce assumption ����� spawn
an assumption which can then be distributed throughout the procedure body�
exploiting the fact that almost all commands there change none of its variables�
We have

��me� id� �� recd � �
msg � ��me� id� � recd 	 msg � msgs�id �� �
sent � recd � � sent � f�me� id�g� recd � f�me� id�g

� ��me� id� �� recd � �
f�me� id� �� recdg�
msg � ��me� id� � recd 	 msg � msgs�id �� �
f�me� id� �� recdg�
sent � recd � � sent � f�me� id�g� recd � f�me� id�g

� �

�����
remove assumption ����
absorb assumption ��
leading assignment ��

��me� id� �� recd � �
msg � ��me� id� �� recd � �me� id� � recd 	 msg � msgs�id �� �
sent � � sent � f�me� id�g�
recd � ��me� id� �� recd � recd � recd� � f�me� id�g�

v ��me� id� �� recd � �
msg � �true� �
sent � � sent � f�me� id�g�
skip

v ��me� id� �� recd � �
choose msg �
sent � � sent � f�me� id�g �

�For simple re�nement� rather than equality� the precondition would not have been necessary	

c� Carroll Morgan ����� ����� ����

	�� Case study� A mail system

module MailSys

var msgs � Id !�Msg �
sent � recd � Usr " Id �

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id�b� id � �id �� ran sent � �

msgs�id � � �msg �
sent � � sent � �tos � fidg��

procedure Receive �value me � Usr � result ids � set Id�b� recd � �recd� � recd � sent � �
ids � � recd �me��

procedure ReadReceived �value me � Usr � id � Id �
result msg � Msg�b� ��me� id� � recd � �

msg � �msgs�id ��
sent � recd � � sent � f�me� id�g� recd � f�me� id�g�

procedure ReadNotReceived �value me � Usr � id � Id �
result msg � Msg�b� ��me� id� �� recd � �

choose msg �
sent � � sent � f�me� id�g�

initially msgs � sent � recd � fg
end

Figure ��� Delayed receipt of messages� with �split� Read

The result of all of these changes is shown in Figure 		�� and we now � �nally �
investigate whether Figure 		�� is re�ned by Figure 		�� We choose as coupling
invariant recd � sent � with recd being our concrete variable� we have no abstract
variable�

Procedure Send we can look at informally� imagine that abstract and concrete
states are coupled as above� and that we execute the abstract Send on the abstract
state and the concrete Send on the concrete state� Of the variables appearing in
the coupling invariant� only sent is modi�ed� having tos�fidg added to it in both
cases� As sent is therefore not made smaller �actually it is made strictly bigger� but
that follows from earlier statements and we do not need it�� the coupling invariant

c� Carroll Morgan ����� ����� ����

A third speci�cation� delay 	��

is maintained� We need also check that if the concrete Send can abort then so can
the abstract �but neither can�� and that all concrete results �id in this case� are
possible also for the abstract� they are� as the choice of id depends only on sent �
una�ected by the data re�nement�

For procedure Receive we reason

ids� �ids � sent �me��
becomes

ids� recd � �recd � sent � recd � sent � ids � sent �me��
v �following assignment ���

recd � �recd � sent � recd � sent � recd �me� � sent �me�� � �
ids � � recd �me�

v recd � �recd� � recd � sent � �

Procedure ReadReceived has two commands� for the �rst we proceed

msg � ��me� id� � sent 	 msg � msgs�id ��
becomes
����

msg � recd
recd � sent

recd � sent

�me� id� � sent 	 msg � msgs�id �

����
v �assignment ��	

msg � �msgs�id �
v �introduce coercion ����

��me� id� � recd � �
msg � �msgs�id � �

and for the second command we have

sent � � sent � f�me� id�g
becomes �augment assignment ����

frecd � sentg�
sent � recd � � sent � f�me� id�g� ��
�recd � sent �

v �advance coercion 		��

frecd � sentg�
�recd � f�me� id�g � sent � f�me� id�g� �
sent � recd � � sent � f�me� id�g� recd � f�me� id�g

v �

�����
weaken assumption
remove coercion ���	�
remove assumption ����

sent � recd � � sent � f�me� id�g� recd � f�me� id�g �
Finally we deal with ReadNotReceived �

c� Carroll Morgan ����� ����� ����

	�	 Case study� A mail system

choose msg

becomes

frecd � sentg�
msg � recd � ��� ��
�recd � sent � �

And here we have a problem� Our target code� in ReadNotReceived of Figure 		��
appears to alter sent � the above code does not� Doing our best to aim for the code
we want� we introduce the beginnings of our assignment to sent and continue�

� �sent � �sent � sent�� � skip

frecd � sentg�
msg � recd � ��� ��
sent � �sent � sent�� �
�recd � sent �

� �following assignment ���

frecd � sentg�
msg � recd � ��� ��
�sent � f�me� id�g � sent � �
sent � � sent � f�me� id�g�
�recd � sent �

� �advance coercion 		��

frecd � sentg�
��me� id� �� sent � �
msg � recd � ��� ��
�recd � sent � f�me� id�g� �
sent � � sent � f�me� id�g

v �because recd � �� v skip

frecd � sentg�
��me� id� �� sent � �
�recd � sent � f�me� id�g� �
choose msg �
sent � � sent � f�me� id�g

v ��me� id� �� sent � �
choose msg �
sent � � sent � f�me� id�g �

The last step of removing the assertion loses us no generality� since recd no longer
appears in the following code� The earlier re�nement of recd � �� to skip was forced
by the fact that recd is unchanged by the code of Figure 		��

The coercion ��me� id� �� sent �� however� is not the one we want� It is too strong�
and we can do nothing about it� stronger coercions cannot be re�ned into weaker
ones� Thus our actual behaviour di�ers from our desired behaviour precisely when
those two coercions di�er� when �me� id� �� recd �from Figure 		�� but �me� id� �
sent �negating the above��

c� Carroll Morgan ����� ����� ����

A third speci�cation� delay 	��

The appellants withdrew
today in the CMSK �Com�
mon Mail�System Kernel�
case� after it was shown that
the speci�cation of the sys�
tem indeed allowed acciden�
tal deletion of messages be�
fore they had been read�
Unexplained message loss
had been widely reported
and documented in the user
community� and in a joint
action by users of CMSK it
was claimed that since the
speci�cation guaranteed no
loss� the manufacturer was
liable for damages�
In a rare move in such cases�
the manufacturer showed
that its own speci�cation

did after all allow such un�
desirable behaviour� in par�
ticular when message iden�
ti�ers were used for reading
before they had been reg�
istered as received� a ran�
domly chosen message was
in that case returned to
the user� and the legitimate
message was deleted from
the system�
Users generally are now
looking more closely at the
published speci�cation of
CMSK� the future of which
has been thrown into in
doubt�

Figure ����

Thus we have not been able to show that Figure 		� re�nes 		��� and must
conclude therefore that our introduction of delay� in Figure 		��� may have brought
with it some unexpected consequences� Does that matter� Consider Figure 		��
�and Exercise 		�
��

Now it is clear that the problem was essentially a coding trick that came back
to haunt us� in the original speci�cation of Read we allowed the command

sent � � sent � f�me� id�g
to be executed even when �me� id� is not an element of sent � Later that became�
without our noticing it� �executing sent � � sent � f�me� id�g even when �me� id�
is not an element of recd � altogether di�erent� quite dangerous� and hard to
detect without some kind of formal analysis�

We remedy matters by using more straightforward coding in Read � as shown
in Figure 		���� If we now performed the above analysis� the concrete procedure

c� Carroll Morgan ����� ����� ����

	�
 Case study� A mail system

module MailSys

var msgs � Id !�Msg �
sent � recd � Usr " Id �

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id�b� id � �id �� ran sent � �

msgs�id � � �msg �
sent � � sent � �tos � fidg��

procedure Receive �value me � Usr � result ids � set Id�b� recd � �recd� � recd � sent � �
ids � � recd �me��

procedure Read �value me � Usr � id � Id � result msg � Msg�b� if �me� id� � recd �
msg � �msgs�id ��
sent � recd � � sent � f�me� id�g� recd � f�me� id�g

�� �me� id� �� recd � choose msg

��

initially msgs � sent � recd � fg
end

Figure ����� The ��nal� speci�cation

ReadNotReceived would simply be

��me� id� �� recd � �
choose msg �

which we could reach without di!culty by direct re�nement from Figure 		���

���� A �rst development� asynchronous delivery

With Figure 		��� we have � �nally � a speci�cation that describes a reasonably
realistic system in which messages may take some time to be delivered� We take
it as our ��nal� speci�cation� �Why the quotes� Very few speci�cations are never
changed� �nal or not��

Our �rst move towards implementation will be concerned with the �delay� built
in to Procedure Receive of Figure 		���� That describes the user�s�eye view of it�

c� Carroll Morgan ����� ����� ����

A �rst development� asynchronous delivery 	��

procedure Deliver b� recd � �recd� � recd � sent �

procedure Receive �value me � Usr � result ids � set Id�b� ids � � recd �me�

Figure ����� Asynchronous delivery� modifying Figure 		���

but of course the delay does not necessarily happen in Receive itself� that is only
where it is noticed�

Through the implementor�s eyes instead� we would see messages moving towards
their destination even while no user�accessible procedures are called� The subset
relation in recd � sent merely re#ects the e�ect of calling Receive before they have
arrived�

Our �rst development step is to introduce asynchronous message delivery� �in
the background�� Not having re�nement rules for concurrency� however� we pro�
ceed informally� the actual delivery recd � �recd� � recd � sent � is relocated from
Procedure Receive into a new procedure Deliver which� it is understood� is called
�by the operating system� to move messages about� �Calls of Deliver are not even
seen by the users�� The result is shown in Figure 		���� note that Deliver needs
no parameters�

With such a modest excursion into concurrency as this new module represents�
we need only require that in an actual implementation there never be destructive
interference between apparently concurrent calls on the procedures� a simple way
of doing that is to introduce mutual exclusion so that at any time at most one
procedure is active within it� In fact we would need to do that in any case �
even without asynchronous delivery � if we were to share the mail system module
between concurrently executing users�

Although we admit we are not strictly speaking implementing a re�nement� we
still should strive for as much con�dence as possible in justifying the new behaviour�
having learned our lessons in the scenarios of Figures 		�� and 		�� above� The key
change� the new procedure� is not visible to users at all� it is called� �in between�
users� access to the module� by the operating system� Can we isolate that change�
bringing the rest within the reach of our rigorous techniques�

If we were to add an �asynchronous� procedure Deliver to our speci�cation�
Figure 		���� we would only have to make its body skip to be sure that the change
would not a�ect the users� perception of the module�s behaviour� �We would have
to ignore however the possibility that Deliver could be called �so often� that users�
access toMailSys is forever delayed� just as we have already ignored such starvation
of one user by another�� Thus to justify the step we have just taken� we go back
and add

c� Carroll Morgan ����� ����� ����

	�� Case study� A mail system

procedure Deliver b� skip

to Figure 		���� and attempt to show that Figure 		��� is a re�nement of that� To
�nd a coupling invariant� imagine executions of the abstract and concrete Deliver
together� we can see that even if recd and recd � were equal beforehand� afterwards
the concrete recd � could have grown� Thus we choose recd as abstract variable�
introduce concrete variable recd �� and couple the two with

recd � recd � � sent �

We look at the procedures in turn� taking a slightly informal view where matters
seem clear enough�

As earlier� we can look at Send informally� since sent is only increased� the
coupling invariant cannot be broken� For Deliver we must introduce a statement
allowing recd � to grow� and we reason as follows�

skip

becomes �augment speci�cation ����

recd �� �recd � recd � � sent � recd � recd � � sent �
v recd �� �recd �� � recd � � sent � �

In Receive we must on the other hand remove the statement a�ecting recd � We
have �rst

recd � �recd� � recd � sent �
becomes �augment speci�cation ����
����

recd � recd �

recd � recd � � sent

recd � recd � � sent

recd� � recd � sent

����
v skip �

Note that it is in that last step that we need recd � � sent in the coupling invariant�
The second command is ids � � recd �me� and here� apparently� we have a prob�

lem� Naturally� we want for its concrete equivalent ids � � recd ��me�� but with our
coupling invariant recd � recd � � sent we cannot show that the ids returned by
the concrete Receive could have been returned also by the abstract� If recd and
recd � di�er initially � and they may � then the concrete and abstract ids will
di�er also�

On the other hand� we see that if the coupling invariant holds at the beginning
of the whole procedure� then any concrete choice of ids can be mimicked by the ab�
stract� the �rst abstract command could after all establish that recd � recd �� Thus
we can sidestep this di!culty by going back and data�re�ning the two commands
together� as follows�

recd � �recd� � recd � sent � �
ids � � recd �me�

c� Carroll Morgan ����� ����� ����

A �rst development� asynchronous delivery 	��

� recd � ids� �recd� � recd � sent � ids � recd �me��
becomes �augment speci�cation ����
�������

recd � ids� recd �

recd � recd � � sent

recd � recd � � sent

recd� � recd � sent

ids � recd �me�

�������
v �again using recd � � sent

recd � ids � � recd �� recd ��me�
becomes �diminish assignment �����

ids � � recd ��me� �

In Read � however� we have a problem we cannot sidestep� The guards of the
alternation make essential use of recd � we cannot replace them by guards involving
recd � only� as recd � is essentially an arbitrary superset of recd � We are stuck�

The di�erence between that and our earlier problem� with Receive� is that the
abstract Receive allowed a nondeterministic alteration of recd � deliveries could
occur there� But deliveries cannot occur in our abstract Read � Does it really
matter� See Figure 		��	 �and Exercise 		����

Thus our Figure 		��� is not a re�nement of Figure 		��� with its extra

procedure Deliver b� skip �

We are forced instead to add a third variable deld for �delivered�� independent of
sent and recd � Our proposed concrete module is shown in Figure 		����

To show re�nement between the extended Figure 		��� and Figure 		���� our
coupling invariant is read � deld � � sent � there are no abstract variables� Arguing
informally� we can see that Send is successfully data�re�ned� since sent is only
increased� Similarly in Read � variables sent � deld � and recd are decreased �in step��
For Procedure Deliver we have

skip

becomes �augment speci�cation ����

deld �� �recd � deld � � sent � recd � deld � � sent �
v deld �� �deld �� � deld � � sent � �

Note that even though the last command appears miraculous� we can as in Sec�
tion 		�
 introduce a module invariant� in this case deld � � sent �direct from the
coupling invariant in fact�� that would allow us to write

deld �� �deld � � sent � deld �� � deld � � sent �

if we wished to�
Finally� for Receive we have

recd � �recd� � recd � sent �

c� Carroll Morgan ����� ����� ����

	� Case study� A mail system

A large�scale com�
puter fraud was discovered
today� involving an account�
ing loophole in the national
electronic mail system�
It had been noticed that
messages could be read be�
fore their delivery was re�
ported� Believing their own
speci�cation� however� the
mail authority had installed
accounting software only at
the actual point of reporting
delivery� Thus �unreported�
messages could be read free
of charge�
The loophole was exploited
by a company that o�ered
greatly reduced rates on
bulk electronic mail� Its
customers� messages would
be collected and sent all
at once as a single very
long message� The iden�
ti�er returned would then

be sent as the body of an
immediately following very
short message� Since the
mail system tended to allow
short messages to overtake
long ones� the second mes�
sage was often delivered be�
fore the �rst� the identi�er
it contained would then be
used to read the �rst� by�
passing report of delivery �
and bypassing charging as
well� The occasional fail�
ure of the second message
to overtake the �rst was eas�
ily covered by the enormous
pro�t made overall�

Figure �����

becomes �augment speci�cation ����
����
recd � deld �

recd � deld � � sent

recd � deld � � sent

recd� � recd � sent

����
v recd � � deld � �

and our data�re�nement is proved� We therefore accept Figure 		��� as our �rst
development step� introducing asynchronous delivery of messages�

c� Carroll Morgan ����� ����� ����

A second development� acknowledgements 	��

module MailSys

var msgs � Id !�Msg �
sent � deld � recd � Usr " Id �

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id�b� id � �id �� ran sent � �

msgs�id � � �msg �
sent � � sent � �tos � fidg��

procedure Deliverb� deld � �deld� � deld � sent �

procedure Receive �value me � Usr � result ids � set Id�b� recd � � deld �
ids � � recd �me��

procedure Read �value me � Usr � id � Id � result msg � Msg�b� if �me� id� � recd �
msg � �msgs�id ��
sent � deld � recd � �sent � f�me� id�g�

deld � f�me� id�g�
recd � f�me� id�g

�� �me� id� �� recd � choose msg

��

initially msgs � sent � deld � recd � fg
end

Figure ����� Asynchronous delivery � corrected

���	 A second development� acknowledgements

In spite of our having introduced asynchronous delivery� the system is still cen�
tralised� variables sent � deld and recd each represent information that in a running
system would probably be physically distributed� In particular� the execution of
sent � � sent�f�me� id�g in Read can make an identi�er available �instantaneously�
for reallocation by id � �id �� ran sent � in Send �

We remedy those implementation problems as follows� A new variable used will
be introduced to record which identi�ers may not yet be �re��allocated� That frees
sent to represent� not all of the Usr�Id pairs in use� but now only those that have

c� Carroll Morgan ����� ����� ����

	
� Case study� A mail system

been sent but not yet delivered� Similarly deld will now represent those delivered
but not yet read� Finally� a new variable ackd will contain pairs that have been
read but are not yet available for reuse� �In e�ect they are acknowledgements �on
the way back��� That last breaks the �instantaneous� link referred to above�

The abstract variables are sent and deld �leaving recd as it is�� the concrete are
used �� sent �� deld � and ackd �� and the coupling invariant is

sent � sent � � deld � � recd
deld � deld � � recd
used � � sent � ackd �

disjoint sent � deld � recd ackd � �

We have thus a functional coupling invariant� with a data�type invariant showing
that the four sets listed are disjoint� The third conjunct can be seen as part of the
data�type invariant by taking the �rst conjunct into account� �Replace sent in the
third conjunct by sent � � deld � � recd ��

We begin the data re�nement with Send �of Figure 		����� In its �rst command
we can replace sent by used �� since the coupling invariant gives us that sent � used ��
The second command is una�ected� For the third we recall in an assumption that
id �� ran used � is established by the new �rst command� and then we reason

fid �� ran used �g�
sent � � sent � �tos � fidg�

becomes �

�
simple speci�cation ��
data�re�ne speci�cation �����

��������������

used �� sent �� deld �� ackd �

id �� ran used �

used � � sent � � deld � � recd � ackd �

disjoint sent � deld � recd ackd �

used � � sent � � deld � � recd � ackd �

disjoint sent � deld � recd ackd �

sent � � deld � � recd � sent �� � deld �� � recd � �tos � fidg�
deld � � recd � deld �� � recd

��������������
v
���������

used �� sent �

id �� ran�deld � � recd � ackd ��
disjoint sent � deld � recd ackd �

used � � used �� � �tos � fidg�
disjoint sent � deld � recd ackd �

sent � � sent �� � �tos � fidg�

���������
v sent �� used � � � sent � �tos � fidg�� used � � �tos � fidg� �

In Deliver we have

deld � �deld� � deld � sent �

c� Carroll Morgan ����� ����� ����

A second development� acknowledgements 	
�

becomes �data�re�ne speci�cation �����
������������

used �� deld �� sent �� ackd �

used � � sent � � deld � � recd � ackd �

disjoint sent � deld � recd ackd �

used � � sent � � deld � � recd � ackd �

disjoint sent � deld � recd ackd �

sent � � deld � � sent �� � deld ��
deld �� � deld �

������������
v var muis� auis � Usr " Id �

muis� auis� �muis � sent � � auis � ackd �� �
sent �� ackd � � � sent � �muis� ackd � � auis�
deld �� used � � � deld � �muis� used � � auis

The local variables muis and auis represent the arrival of new messages and ac�
knowledgements respectively� the former are added to deld �� and the latter deleted
from used ��

In Receive we have

recd � � deld

becomes
�������
recd � deld �

disjoint deld � recd

deld �� � recd� � deld � � recd

disjoint deld � recd

recd � deld �� � recd�

�������
v deld �� recd � �fg� recd � deld � �

and the second command is unchanged�
Finally� in Read we need be concerned only with the assignments to the three

sets� and we will need that �me� id� � recd �which we have from the guard�� thus
we proceed

f�me� id� � recdg�
sent � deld � recd � �sent � f�me� id�g�

deld � f�me� id�g�
recd � f�me� id�g

becomes
���������

recd � ackd �

�me� id� � recd

disjoint recd ackd �

recd� � ackd �� � recd � ackd �

disjoint recd ackd �

recd � recd� � f�me� id�g

���������
v recd � ackd � � � recd � f�me� id�g� ackd � � f�me� id�g �

The result is Figure 		��
�

c� Carroll Morgan ����� ����� ����

	
	 Case study� A mail system

module MailSys

var msgs � Id !�Msg �
used � sent � deld � recd � ackd � Usr " Id �

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id�b� id � �id �� ran used � �

msgs�id � � �msg �
sent � used � � sent � �tos � fidg�� used � �tos � fidg��

procedure Deliverb� j� var muis� auis � Usr " Id �

muis� auis� �muis � sent � auis � ackd � �
sent � ackd � � sent �muis� ackd � auis�
deld � used � � deld �muis� used � auis

�j�

procedure Receive �value me � Usr � result ids � set Id�b� deld � recd � �fg� recd � deld �
ids � � recd �me��

procedure Read �value me � Usr � id � Id � result msg � Msg�b� if �me� id� � recd �
msg � �msgs�id ��
recd � ackd � � recd � f�me� id�g� ackd � f�me� id�g

�� �me� id� �� recd � choose msg

��

initially msgs � used � sent � deld � recd � ackd � fg
end

Figure ����	 Acknowledgements and distribution

���
 The �nal development� packets

In a real mail system it would be the messages themselves that moved from place to
place� not just their identi�ers� and it �nally is time to develop our speci�cation in
that direction� We introduce a type Pkt to represent both messages and acknow�
ledgements� the new concrete variables will be sets of those and the procedures
will� after data re�nement� move packets between them�

c� Carroll Morgan ����� ����� ����

The �nal development� packets 	
�

type From b� Usr �
To b� Usr �
Pkt b� msg Id From To Msg j ack Id From To �

The type synonyms From and To are introduced to make the use of the two Usr

�elds clear�
To express our coupling invariant � to recover the abstract variables from the

new concrete sets � we must de�ne several projection functions that extract sets
of Usr � Id pairs from sets of packets�

mui� aui� ui � setPkt��Usr " Id�

mui pp b� fi � Id � f � From� t � To� m � Msg j msg i f t m � pp � �t � i�g
aui pp b� fi � Id � f � From� t � To j ack i f t � pp � �t � i�g
ui pp b� mui pp � aui pp �

We will need to express also that any given Usr � Id pair is represented uniquely
in a set of packets � that is� that there are never two distinct packets with the
same pair�

ui� pp b� �
 p� p � � pp � uifpg � uifp �g 	 p � p �� �

And �nally� we need a projection function to extract the message texts from our
packets�

im � setPkt��Id " Msg�

im pp b� fi � Id � f � From� t � To� m � Msg j msg i f t m � pp � �i �m�g �

Our abstract sent and ackd will be represented by the single concrete sent �� rep�
resenting the packets of either kind in transit� with the tags msg and ack available
to separate them� the coupling invariant is straightforward� if a bit lengthy�

sent � mui sent �

deld � mui deld �

recd � mui recd �

ackd � aui sent �

ui��sent � � deld � � recd ��

msgs) im�sent � � deld � � recd �� �

The last conjunct states that our sets of packets do contain message bodies con�
sistent with msgs � and our aim is to remove msgs�

Data re�nement of Send � Receive and Read is straightforward� and since the
coupling invariant allows msgs�id � in Read to be recovered from recd � we �nd that
msgs has become auxiliary and that we can remove it� It can be removed from
Send in any case�

For Deliver we �rst rewrite our abstract program slightly� anticipating that sent
and ackd will be collected together�

c� Carroll Morgan ����� ����� ����

	

 Case study� A mail system

j� var muis� auis � Usr " Id �

muis� auis� �muis � sent � � auis � ackd � �
sent � ackd � � sent �muis� ackd � auis�
deld � used � � deld �muis� used � auis

�j
� j� var uis�muis� auis � Usr " Id �

uis� �uis � sent � �
muis� auis � � uis � sent � uis � ackd �
sent � ackd � � sent � uis� ackd � auis�
deld � used � � deld �muis� used � auis �

�j
For the data re�nement we introduce concrete local variables pp� mpp and app to
replace the abstract local variables uis� muis and auis� with coupling invariant

ui pp � uis �muimpp � muis � aui app � auis �

The assignment sent � ackd � � � � � will be data�re�ned to a single assignment to
sent �� because it e�ectively represents the union of sent and ackd �

The result � our �nal module � is in Figure 		����

���� Exercises

Ex� ���� � Modify the original speci�cation of Figure 		�� to include a proce�
dure Cancel that can be used to remove all unreceived copies of a message from
the system� Does the speci�cation contain enough detail to prevent �unauthorised�
removal�

Ex� ���� Modify the original speci�cation of Figure 		�� to include a procedure
Unread that can be used to determine which users have not yet read a given
message�

Ex� ���� � Explain precisely how the speci�cation of Figure 		��� as amended
in Figure 		�	� could have led to the scenario described in Figure 		���

Ex� ���	 Explain precisely how the module of Figure 		�� could have behaved
as suggested in the scenario described in Figure 		���

Ex� ���
 Explain precisely how the module of Figure 		���� as amended in
Figure 		���� could have behaved as suggested in the scenario described in Figure
		��	�

Ex� ���� Imagine a building with one lift serving several #oors� Outside the lift
door� on each #oor� is a panel of buttons and lights with one button�light pair for
each #oor� Inside the lift are no buttons or lights at all�

c� Carroll Morgan ����� ����� ����

Exercises 	
�

module MailSys

type From b� Usr �
To b� Usr �
Pkt b� msg Id From To Msg j ackFrom To Id �

var used � Usr " Id �
sent � deld � recd � setPkt�

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id�b� id � �id �� ran used � �

used � � used � �tos � fidg��
sent � � sent � ft � tos j msg id me t msgg �

procedure Deliverb� j� var pp�mpp� app � setPkt�
pp� �pp � sent � �
sent � � sent � pp�
mpp� app � � pp � ranmsg� pp � ran ack�
deld � used � � deld �mpp� used � ui app

�j�

procedure Receive �value me � Usr � result ids � set Id�b� deld � recd � �fg� recd � deld �
ids � ��ui recd��me��

procedure Read �value me � Usr � id � Id � result msg � Msg�b� j� var p � Pkt � u � Usr � �

if �me� id� � ui recd �
p� f �msg � �p � msg id f me msg � p � recd � �
recd � sent � � recd � fpg� sent � fack id f meg

�� �me� id� �� ui recd � choose msg

�

�j�

initially used � sent � deld � recd � fg
end

Figure ����
 A re�nement of Figure 		���

c� Carroll Morgan ����� ����� ����

	
� Case study� A mail system

To use the lift one presses the button� next to the doors� for the desired desti�
nation� the corresponding light should light if it is not lit already� When the doors
open� one enters the lift in the hope that it will eventually visit that destination
�whose light should be lit��

Design a module based on the type

Floor b� ��F

that contains these procedures with the meanings informally indicated�

& Press �value f � b � Floor� � Press button b outside the lift doors on #oor
f � �Called by lift user��

& Check �value f � l � Floor � result b � Boolean� � Check whether the light
l on #oor f is lit� �Called by lift user��

& Visit �result f � Floor� � Close the doors� select a #oor f �randomly�
which it would be useful to visit� go there� and open the doors� �Called by
lift operator��

Hint� There are probably unanswered questions about the informal speci�cation
above� answer them yourself� Consider using set�valued variables inside the module�

Ex� ���� Let T be a set of telephones connected to an exchange that supports
conference calls� so that collections of �people using� telephones can hold group
conversations�

Declare a variable xns of appropriate type that could represent the set of con�
versations in progress at any moment� write then� in English and in mathematics�
an invariant that ensures there is no telephone in more than one conversation�

Now suppose rqs is to represent the set of conversations requested but not in
progress �thus �pending��� Specify and justify an operation �with the default pre�
condition� true�

xns� rqs� �����

that connects as many new conversations as is possible without disturbing existing
conversations� Note that the invariant over xns must be respected� Hint� The set
xns should be made locally maximal in some sense�

Then use the structures above to supply �abstract� program text for the infor�
mally described module in Figure 		���� �You need not �ll in Connect� already
speci�ed in the text above��

Finally� give a sensible de�nition of a new procedure Chat �value t � T � that
causes t immediately to join a single �chat line�� able then to converse with all
others that have not executed HangUp since they last executed Chat � Modify your
other de�nitions if necessary �but the less� the better��

Ex� ��� � Show that Figure 		���� the ��nal� speci�cation� is re�ned by Figure
		���� Is that a problem�

c� Carroll Morgan ����� ����� ����

Exercises 	
�

module TelephoneExchange

var xns � ���
rqs � ����

procedure Request �value tt � ����b� �Request a conversation tt �

procedure Connect b� �described in the text �

procedure Converse �value t � T �
result tt � ����b� �Identify all participants in any conversation involving t �

procedure HangUp �value t � T �b� �Withdraw t from any conversation in which it is involved �

initially �no conversations
end

Note that

& A single telephone may be part of many requests �but of at most one con�
versation��

& Connect may be thought of as being executed at suitable moments by the
exchange itself�

& HangUp should allow other participants in a conversation to continue�

Figure ����� Telephone module

c� Carroll Morgan ����� ����� ����

	
 Case study� A mail system

module MailSys

var used � set Id �

procedure Send �value me � Usr � msg � Msg � tos � setUsr �
result id � Id�b� id � �� used �

used � � used � fidg�

procedure Receive �value me � Usr � result ids � set Id�b� ids � �fg�

procedure Read �value me � Usr � id � Id � result msg � Msg�b� choose msg

end

Figure ����� An unexpected implementation

c� Carroll Morgan ����� ����� ����

Chapter ��

Semantics

���� Introduction

�Semantics� means meaning� In this �nal chapter we look back and examine the
mathematical meaning of our program development method�

There are several reasons for taking an interest in foundations� The �rst� for the
new reader in this subject� is to provide references to the research from which this
style of program development has arisen�

The second reason is to address the nervous reader� Why are these dozens of
laws necessarily consistent� Where have they come from� Why do they� or indeed
does re�nement itself� have any connection with real programming�

Questions like those should not be asked during program development� for there
it is already too late� those who only apply the method need not read this chapter�
But those who select a program development method regard such questions as
crucial� they have to be sure that it works�

The answers are usually given by deciding �rst of all on a reasonable way of
viewing programs � in fact� a mathematical model for them� That model should
correspond closely with the way that computers operate� so that there is no doubt
about its appropriateness� �Otherwise the questions will only have been moved�
not answered�� Then the laws are checked� one by one� against the model� If the
check is passed� and one has accepted the model� then by that very fact one has
accepted the law also� As an example� we check assignment ��	 in Section 	�����
below�

Our mathematical model is the predicate transformer� popularised by E�W� Di�
jkstra �Dij���� The treatment of it below is brief� even condensed� for the novice�
pursuit of the introductory references is probably essential� Any of �Dij��� Gri��
Heh
� Bac�� DF� is a good starting point�

	
�

	�� Semantics

���� Predicate transformers

In Section ��
�� the operation of a speci�cation was described as follows�

If the initial state satis�es the precondition then change only the vari�
ables listed in the frame so that the resulting �nal state satis�es the
postcondition�

In fact� that description could apply to the behaviour of any command� if for any
postcondition we know which preconditions will guarantee termination in a �nal
state satisfying the postcondition� then we say that we know the meaning of the
command�

For command prog and postcondition A� let
wp�prog �A�

be the weakest precondition su!cient to ensure termination in a state described by
A� In that way we can see prog as a predicate transformer� because it transforms
the postcondition A into the weakest precondition wp�prog �A�� And with it we
know the meaning of prog � a precondition B will guarantee that prog terminates
in a state described by A precisely when

B V wp�prog �A� �
For example� the meaning of x � � x �� is a predicate transformer that takes the

postcondition x � � to the precondition x �� because that precondition is the
weakest one whose truth initially guarantees termination of x � � x � � and truth
of x � � �nally� Thus x � is the weakest precondition of x � � x �� with respect
to x � �� and we write

wp�x � � x � �� x � �� � x � � �	����

The next section gives the meaning of our program development method in terms
of predicate transformers�

���� Semantic de�nitions

������ Guarded commands

Semantics for the ordinary guarded commands are introduced in �Dij��� and re�
peated in �Heh
� Gri��� In �Bac��� similar de�nitions are given for Pascal� Here
for example we give the semantics of assignment�

De�nition ���� assignment For any postcondition A�
wp�w � �E �A� b� A�wnE � �

�

c� Carroll Morgan ����� ����� ����

Semantic de�nitions 	��

wp�skip�A� b� A
wp�abort�A� b� false

wp�x � �E �A� b� A�xnE �
wp�P � Q �A� b� wp�P �wp�Q �A��

wp�if ���i � Gi � Pi� ��A�b� ��i � Gi�
� ��i � Gi 	 wp�Pi �A��

Iteration do � � �od is a special case of recursion� dealt with in Section
	������

Figure ���� Predicate transformers for guarded commands

With De�nition 	��� we verify the claim �	���� above�

wp�x � � x � �� x � ��

� �assignment 	���
�x � ���xnx � ��

� x � � � �
� x � �

Figure 	��� gives predicate transformers for all the basic guarded commands
except iteration�

������ Speci�cations

Our most signi�cant extension to the ordinary guarded commands is the speci�ca�
tion� and this is its meaning�

De�nition ���� speci�cation

wp�w � �pre � post � �A� b� pre � �
w � post 	 A� �v�nv � �
where the substitution �v�nv � replaces all initial variables by corresponding �nal
variables�
�

Note that initial variables v� never occur in postconditions A�
As an example of the above� suppose we use x � � x * � to abbreviate

x � �x � x� � � � x � x� � �� �

Then we have

c� Carroll Morgan ����� ����� ����

	�	 Semantics

wp�x � � x * ��A�
� wp�x � �x � x� � � � x � x� � �� �A�
� true � �
 x � �x � x� � � � x � x� � ��	 A� �x�nx �
� �Predicate laws A��
� A���

�
 x � x � x� � �	A� �x�nx � � �
 x � x � x� � �	 A� �x�nx �
� �Predicate law A���

A�xnx� � ���x�nx � � A�xnx� � ���x�nx �
� �A contains no x�

A�xnx � �� � A�xnx � �� �

�Speci�cations� were �rst added to the guarded command language in �Bac��
Bac��� though not in our form� in particular� miracles were not allowed �see Section
	����� below�� Later they appeared in �Mee���� most recently they appear in
�Mor�� MR�� Mord� Bac�� References �MR�� Mord� are closest to this
book�

������ Re�nement

Re�nement v is a relation between commands �just as � is a relation between
numbers�� for any commands prog� and prog	� either prog� v prog	 holds or it
does not� This is the de�nition�

De�nition ���� re�nement For any commands prog� and prog	� we say that prog�
is re�ned by prog	� writing prog� v prog	� exactly when for all postconditions A
we have

wp�prog��A� V wp�prog	�A� �

�

De�nition 	��� is used in all approaches to the re�nement calculus �for example
�Bac�� MR�� Mor�� Mord��� and in other places as well �Heh
� Abr��� It
seems to be the only reasonable de�nition for sequential program development
based on weakest preconditions�

With our de�nitions so far� we can see re�nement in action� For example� it is
easy to verify both of these�

x � � x * � v x � � x � �
x � � x * � v x � � x � � �

More interesting� however� is showing the proof of one of our laws� Suppose we
have w � w� � pre V post �wnE �� the proviso of assignment ��	� then we reason

c� Carroll Morgan ����� ����� ����

Semantic de�nitions 	��

wp�w � �pre � post � �A�
� �speci�cation 	��	

pre � �
w � post 	A� �v�nv �
� �Predicate law A���� pre contains no v�

�
 v� � v� � v 	 pre � �
w � post 	A��
V �assumed proviso� v� includes w�

�
 v� � v� � v 	 post �wnE � � �
w � post 	 A��
V �Predicate law A��

�
 v� � v � v� 	 post �wnE � � �post �wnE �	A�wnE ���
V �
 v� � v � v� 	A�wnE ��

� �A� E contain no v�
A�wnE �

� �assignment 	���
wp�w � �E �A� �

With that� and re�nement 	���� we have proved assignment ��	�
But we have done more� we have shown how to prove a law which formerly we

had to take on faith� Such proofs have been used to establish the consistency of
all the laws in this book� ensuring that no contradictions can occur� And new laws
can be added� supported by similar proofs�

�����	 Local variables

Local variable declarations are code� and their meaning is this�

De�nition ���	 local variable

wp�j� var x � prog �j�A� b� �
 x � wp�prog �A�� �
provided A contains no free x �
�

De�nition 	��
 is well known but not often quoted� The proviso� similar to others
below� is easily circumvented by renaming x in prog to some other fresh variable�

Typed local variables are discussed in Section 	�������

�����
 Logical constants

Logical constant declarations are not code� but they have meaning nevertheless�

De�nition ���
 logical constant

wp�j� con x � prog �j�A� b� �� x � wp�prog �A�� �

c� Carroll Morgan ����� ����� ����

	�
 Semantics

provided A contains no free x �
�

De�nition 	��� is not so well known� it appears in �MG���� In �Mor� it is in�
troduced speci�cally for procedures� Our use of it is independent of procedures�
we make precise the long�established use of logical constants for referring in the
postcondition to initial values� Other uses have been discovered� in data re�nement
�MG��� for example�

As noted in �MG���� logical constants do not satisfy E�W� Dijkstra�s Property �
�Dij��� p���� that is� they do not distribute conjunction�

������ Feasibility

A command is feasible if it obeys the Law of the Excluded Miracle �Dij��� p����
That gives the following de�nition�

De�nition ���� feasibility Command prog is feasible exactly when

wp�prog � false� � false �

Otherwise it is infeasible�
�

Infeasible commands� because they break the law� are calledmiracles� They were
introduced in �Mor�� Mord�� and in �Nel�� �but not for re�nement�� Miracles
are used also in �Abr��� and in �Morb� for data re�nement�

It is easy to show that miracles re�ne only to miracles �just apply the de�nitions
above�� and hence never to code� E�W� Dijkstra�s law paraphrased reads �all code
is feasible��

������ Annotations

These de�nitions follow from the above� given assumption ��� and coercion �����
Assumptions are de�ned independently in �Mor�� Bac� MV��� coercions are
de�ned in �MV���

De�nition ���� assumption

wp�fpreg�A� b� pre � A �

�

De�nition ��� coercion Provided post contains no initial variables�

wp��post ��A� b� post 	A �

�

All assertions are feasible� no coercion is feasible except �true��

c� Carroll Morgan ����� ����� ����

Semantic de�nitions 	��

����� Substitutions

The following de�nitions come from �Morc��

De�nition ���� substitution by value

wp�prog �value f nE ��A� b� wp�prog �A��f nE � �

provided f does not occur free in A�
�

De�nition ����� substitution by result

wp�prog �result f na��A� b� �
 f � wp�prog �A�anf ��� �
provided f does not occur free in A�
�

De�nition ����� substitution by value�result

wp�prog �value result f na��A� b� wp�prog �A�anf ���f na��
provided f does not occur free in A�
�

Those three de�nitions account for all the simple substitution laws of Chapter
��� Procedures and parameters are treated in �Bac�� Mor� also�

������ Recursion

This is the standard de�nition�

De�nition ����� recursion Let C�p� be a program fragment in which the name p
appears� Then

re p � C�p� er
is the least�re�ned program �x such that C��x � � �x �
�

Take re p �p er� for example� Since prog � prog holds for all programs prog � the
�x in De�nition 	���	 is in this case the least�re�ned of all programs� it is abort�
De�nition 	���	 gives indirectly the meaning of iteration� since iteration can be

viewed as a certain kind of recursion�

do G � prog od � re P �

if G then prog � P �

er �

The meaning above generalises the standard meaning of iteration �Dij��� Gri��
in a way �rst explored in �Boo	�� Recursion is treated in �Nel��� and recursive
procedures in �Bac�� Mor�� Recursion is much used in �Heh
��

c� Carroll Morgan ����� ����� ����

	�� Semantics

������� Data re�nement

Data re�nement is abundantly de�ned� our de�nition appears in �GM��� Mora�
Mor�� MG��� CU���

De�nition ����� data re�nement Let a be a list of variables called abstract� let
c be a list of variables called concrete� and let I be a formula called the coupling
invariant� Then command progA is data�re�ned to progC by a� c� I exactly when
for all postconditions A not containing c we have

�� a � I � wp�progA�A�� V wp�progC � �� a � I � A�� �
�

The approach of Chapter �� is based mainly on �Mora� MG����

������� Types

A precise treatment of types� and invariants� appears in �MV��� where the semantic
function wp is extended to take them into account� The e�ect is roughly as follows�

Typed local variable and logical constant declarations are a combination of an
untyped declaration and the imposition of a local invariant in which the type
information appears� For example� the typed declaration n � N appears as n � N

in the local invariant� At any point in a program� the surrounding local invariants
are conjoined and called the context� and the semantic function wp takes that
context as an extra argument�

In a context C � commands behave as if C were assumed initially �aborting
otherwise�� and they are guaranteed to establish C if they terminate� For speci��
cations� that e�ect is gained by imagining the context conjoined to both pre� and
postcondition� Thus in the context x � we have

x � � x * �
� x � �x � x� � � � x � x� � ��
� �impose invariant in pre� and postcondition

x � �x � � x � � �x � x� � � � x � x� � ���
� if x � �� x � � x � �

�� x �� x � � x � �
� �

�The last equality can be shown using weakest preconditions directly� our laws
would show only re�nement��
Note that the alternation above can abort when x � � initially� and when x � �

initially the possibility x � � x � � is automatically avoided�
Commands that cannot avoid breaking the invariant go ahead and break it� but

establish it too� thus they are miracles� For example� in the same context we have

c� Carroll Morgan ����� ����� ����

Semantic de�nitions 	��

x � ���
� x � �x � ���
� �impose invariant in pre� and postcondition

x � �x � � x � � x � ���
� x � �x � � false� �

Thus x � ���� normally called ill�typed� is just a miracle when the declaration
x � N is in e�ect� type checking is just feasibility checking�

Local invariants resulting from type declarations are called implicit� those in�
troduced by and are called explicit� Explicit local invariants are not code� they
are removed by laws that distribute them through compound programs towards
atomic components� Removing a local invariant immediately surrounding� say� an
assignment amounts only to checking that the assignment preserves it�

c� Carroll Morgan ����� ����� ����

Appendix A

Some laws for predicate
calculation

This collection of laws is drawn from �MS���

A�� Some propositional laws

Throughout this sectionA� B are C denote formulae of predicate calculus� The laws
are propositional because they do not deal with the quanti�cation or substitution
of variables�

A���� Conjunction and disjunction

The propositional connectives for conjunction� �� and disjunction� �� are idempo�
tent� commutative� associative and absorptive� and they distribute through each
other�

Idempotence of � and �
Conjunction and disjunction are idempotent connectives�

A �A � A � A � A � �A���

Commutativity of � and �
Conjunction and disjunction are commutative connectives�

A � B � B � A �A�	�

A � B � B � A � �A���

Associativity of � and �
Conjunction and disjunction are associative connectives�

A � �B � C� � �A � B� � C �A�
�

	�

Some propositional laws 	��

A � �B � C� � �A � B� � C � �A���

Laws A�� to A�� mean that we can ignore duplication� order and bracketing in
conjunctions A � B � � � � � C and disjunctions A � B � � � � � C�

Absorption laws

Sometimes terms can be removed immediately from expressions involving both
conjunctions and disjunctions� This is absorption�

A � �A � B� � A � A � �A� B� � �A���

Distributive laws

The distribution of � through � is similar to the distribution of multiplication over
addition in arithmetic� But in logic distribution goes both ways� so that � also
distributes through ��

A � �B � C� � �A � B� � �A � C� �A���

A � �B � C� � �A � B� � �A � C� � �A��

A���� Constants and negation

Units and zeroes

In ordinary multiplication� a � � � a and a � � � �� We say therefore that � is
a unit and � a zero of multiplication� Similarly� the predicate constant true is the
unit of � and the zero of ��

A � true � A �A���

A � true � true � �A����

The constant false is the unit of � and the zero of ��
A � false � false �A����

A � false � A � �A��	�

Negation as complement

Negation � acts as a complement�

�true � false �A����

�false � true �A��
�

A � �A � false �A����

A � �A � true � �A����

Furthermore it is an involution�

��A � A � �A����

c� Carroll Morgan ����� ����� ����

	�� Some laws for predicate calculation

And it satis�es de Morgan�s laws�

��A � B� � �A � �B �A���

��A � B� � �A � �B � �A����

Further absorptive laws

With negation� we have two more absorptive laws�

A � ��A � B� � A � B �A�	��

A � ��A � B� � A � B � �A�	��

A���� Normal forms

A formula is in disjunctive normal form if it is a �nite disjunction of other formulae
each of which is� in turn� a conjunction of simple formulae� Conjunctive normal

form is de�ned complementarily�
Laws A��� A�� A�� and A��� allow us to convert any proposition to either

disjunctive or conjunctive normal form� as we choose� and laws A��� and A���
serve to remove adjacent complementary formulae� For example�

A � ��B � C � A�
� �Predicate law A��

A � ��B � �C � �A�
� �Predicate law A��

�A � �B� � �A� �C� � �A � �A�
� �Predicate law A���

�A � �B� � �A� �C� � false

� �Predicate law A��	
�A � �B� � �A� �C� �

The second formula above is in conjunctive normal form and the third� fourth� and
�fth are in disjunctive normal form�

A���	 Implication

Implication 	 satis�es the law

A	 B � �A � B � �A�		�

and that leads on to these laws�

A 	 A � true �A�	��

A 	 B � ��A � �B� �A�	
�

��A 	 B� � A � �B �A�	��

A 	 B � �B 	 �A � �A�	��

c� Carroll Morgan ����� ����� ����

Some propositional laws 	��

The last above is called the contrapositive law� Useful special cases of those are

A	 true � true �A�	��

true	A � A �A�	�

A	 false � �A �A�	��

false	A � true �A����

A 	 �A � �A �A����

�A 	 A � A � �A��	�

These next two laws distribute implication	 through conjunction and disjunc�
tion�

C 	 �A � B� � �C 	 A� � �C 	 B� �A����

�A � B�	 C � �A 	 C� � �B 	 C� �A��
�

C 	 �A � B� � �C 	 A� � �C 	 B� �A����

�A � B�	 C � �A 	 C� � �B 	 C� � �A����

Extra laws of implication

The following laws are useful in showing that successive hypotheses may be con�
joined or even reversed�

A	 �B 	 C� � �A � B�	 C � B 	 �A 	 C� � �A����

And the next law is the basis of de�nition by cases�

�A	 B� � ��A 	 C� � �A� B� � ��A � C� � �A���

A���
 Equivalence

Equivalence satis�es this law�

A� B � �A	 B� � �B 	 A� �A����

� �A� B� � ��A � B� �A�
��

� �A � �B � �A�
��

Also we have these�

A� A � true �A�
	�

A � �A � false �A�
��

A� true � A �A�

�

A� false � �A �A�
��

A	 B � A � �A � B� �A�
��

B 	 A � A � �A � B� �A�
��

A � �B � C� � �A � B�� �A � C� � �A�
�

c� Carroll Morgan ����� ����� ����

	�	 Some laws for predicate calculation

Equivalence is commutative and associative

A� B � B � A �A�
��

A� �B � C� � �A� B�� C � �A����

and� from Laws A�
� and A�
�� it satis�es E�W� Dijkstra�s Golden Rule�

V A � B � A� B � A� B � �A����

A�� Some predicate laws

In this section we consider laws concerning the universal and existential quanti�ers�

 and �� Although for most practical purposes we wish the quanti�cation to be
typed

�
 x � T �A�
�� x � T �A� �

where T denotes a type and A is a formula� for simplicity we state our laws using
untyped quanti�cations�

�
 x �A�
�� x �A� �

Each can be converted to a law for typed quanti�cation by uniform addition of
type information� provided the type is non�empty� These laws enable us to convert
between the two styles�

�
 x � T �A� � �
 x � x � T 	A� �A��	�

�� x � T �A� � �� x � x � T � A� � �A����

where the simple formula x � T means �x is in the set T ��

For more general constraints than typing� we have these abbreviations as well�
which include a range formula R�

�
 x � T j R �A� � �
 x � x � T �R 	 A� �A��
�

�� x � T j R �A� � �� x � x � T �R �A� � �A����

Note that A��	 and A��
 introduce implication� but A��� and A��� introduce
conjunction�

c� Carroll Morgan ����� ����� ����

Some predicate laws 	��

A���� Substitution

Recall �p�� that we write substitution of a term E for a variable x in a formula A
as

A�xnE � �

and we write the multiple substitution of terms E and F for variables x and y

respectively as

A�x � ynE �F � �

In simple cases� such substitutions just replace the variable by the term� In
more complex cases� however� we must take account of whether variables are free
or bound� Suppose� for example� that A is the formula �� x � x �� y� � x � y � then

A�xny � is �� x � x �� y� � y � y �
but A�ynx � is �� z � z �� x � � x � x �

The variable z is fresh� not appearing in A� In the �rst case� x �� y is una�ected
because that occurrence of x is bound by � x � Indeed� since we could have used
any other letter �except y� without a�ecting the meaning of the formula � and
it would not have been replaced in that case � we do not replace it in this case
either� The occurrence of x in x � y is free� however� and the substitution occurs�

In the second case� since both occurrences of y are free� both are replaced by x �
But on the left we must not �accidentally� quantify over the newly introduced x �
�� x � x �� x � would be wrong � so we change �before the substitution� the bound
x to a fresh variable z �

Finally� note that multiple substitution can di�er from successive substitution�

A�ynx ��xny � is �� z � z �� y� � y � y

but A�y � xnx � y � is �� z � z �� x � � y � x �

A���� The one�point laws

These laws allow quanti�ers to be eliminated in many cases� They are called �one�
point� because the bound variable is constrained to take one value exactly� If x
does not occur �free� in the term E � then

�
 x � x � E 	A� � A�xnE � � �� x � x � E � A� � �A����

If the type T in Laws A��	 and A��� is �nite� say fa� bg� we have the similar

�
 x � fa� bg �A� � A�xna� � A�xnb� �A����

�� x � fa� bg �A� � A�xna� � A�xnb� � �A���

c� Carroll Morgan ����� ����� ����

	�
 Some laws for predicate calculation

Those can be extended to larger �but still �nite� types fa� b� � � � � zg� We are led to
think� informally� of universal and existential quanti�cation as in�nite conjunction
and disjunction respectively over all the constants of our logic�

�
 x � N �A� represents A��� � A��� � � �
�� x � N �A� represents A��� � A��� � � �

A���� Quanti�ers alone

Quanti�cation is idempotent�

�
 x � �
 x �A�� � �
 x �A� �A����

�� x � �� x �A�� � �� x �A� � �A����

Extending de Morgan�s laws A�� and A���� we have

� �
 x �A� � �� x � �A� �A����

� �� x �A� � �
 x � �A� � �A��	�

A���	 Extending the commutative laws

These laws extend the commutativity of � and ��
�
 x � �
 y �A�� � �
 x � y �A� � �
 y � �
 x �A�� �A����

�� x � �� y �A�� � �� x � y �A� � �� y � �� x �A�� � �A��
�

A���
 Quanti�ers accompanied

Extending the associative and previous laws�

�
 x �A � B� � �
 x �A� � �
 x � B� �A����

�� x �A � B� � �� x �A� � �� x � B� �A����

�� x �A	 B� � �
 x �A�	 �� x � B� � �A����

Here are weaker laws �using V rather than �� which are nonetheless useful�

�
 x �A� V �� x �A� �A���

�
 x �A� � �
 x � B� V �
 x �A � B� �A����

�
 x �A	 B� V �
 x �A�	 �
 x � B� �A����

�� x �A � B� V �� x �A� � �� x � B� �A����

�� x �A�	 �� x � B� V �� x �A	 B� �A��	�

�� y � �
 x �A�� V �
 x � �� y �A�� � �A����

c� Carroll Morgan ����� ����� ����

Some predicate laws 	��

A���� Manipulation of quanti�ers

If a variable has no free occurrences� its quanti�cation is super#uous�

�
 x �A� � A if x is not free in A �A��
�

�� x �A� � A if x is not free in A � �A����

Other useful laws of this kind are the following� many of which are specialisations
of laws A��� to A���� In each case� x must not be free in the formula N �

�
 x �N � B� � N � �
 x � B� �A����

�
 x �N � B� � N � �
 x � B� �A����

�
 x �N 	 B� � N 	 �
 x � B� �A���

�
 x �A	 N � � �� x �A�	N �A����

�� x �N � B� � N � �� x � B� �A���

�� x �N � B� � N � �� x � B� �A���

�� x �N 	 B� � N 	 �� x � B� �A�	�

�� x �A	 N � � �
 x �A�	N � �A���

Bound variables can be renamed� as long as the new name does not con#ict with
existing names�

�
 x �A� � �
 y �A�xny �� if y is not free in A �A�
�

�� x �A� � �� y �A�xny �� if y is not free in A � �A���

Finally� we have for any term E �

�
 x �A� V A�xnE � �A���

A�xnE � V �� x �A� � �A���

If A is true for all x � then it is true for E in particular� and if A is true for E � then
certainly it is true for some x �

c� Carroll Morgan ����� ����� ����

Appendix B

Answers to some exercises

Those adopting the book for teaching may obtain a complete set of answers from
the author�

Chapter �

Answer ��� �p���� The number of re�nement steps has nothing to do with close�
ness to code� Re�nement is a relation between the meanings of programs� code is
a description of the way in which programs can be written� Here is a re�nement
�from code��

abort v y �
h
� � x � � � y� � x

i
�

Answer ��� �p���� The new speci�cation is the following�

y �
h
x � � � �x � �	 y � �� � �x �	 y� � x �

i
�

Note that the original could abort if x � � initially�

Answer ��	 �p���� The valid ones are ��
� � and �� �But you need strengthen

postcondition ��� to show number ���

Answer ��� �p��
� On the left� the client cannot assume that x will not change�
on the right� he can� But what is wrong with the following counter argument�

On the right� the client cannot assume that x will change� on the left�
he can�

Answer �� �p��
�

	��

Answers for Chapter � 	��

x � �	 �� y � R � �x � �	 y � �� � �x �	 y� � x ��

W �Exercise 	��
�� y � R � �x � �	 y � �� � �x �	 y� � x ��

W �Exercise 	���
�x � �	 �� y � R � y � ��� � �x �	 �� y � R � y� � x ��

� true � �x �	 �� y � R � y� � x ��

� �property of R
true �

Answer ���� �p��
� From feasibility ��
� we must prove that

x � V

�
� y � R � y� � x � y � �

�
�

But that is not true� since the right�hand side is equivalent to x � ��
Informally� the program� when x � �� must establish y � � �because �� � ��

and y � � �in the postcondition� simultaneously�

Answer ���� �p��
� It is feasible �false implies anything�� it is never guaranteed
to terminate� Hence it is abort� That it can change w is suggested by the remark
on p��	 concerning the behaviour of abort� See also Exercise ��

Answer ���� �p��
� Executing a false assumption causes the program to abort�
and that does change the program �unless it would have aborted anyway�� But a
false assumption can be placed at a point which is never executed� there� it has no
e�ect �and little value��

Answer ���� �p��
� Assumptions may be weakened� the program is re�ned be�
cause it assumes less�

Answer ���	 �p��
�

fpre �g fpreg
� �assumption ���

fpre �g� � �pre � true�
� �absorb assumption ��

� �pre � � pre � true�
� �assumption ���

fpre � � preg �

Answer ���� �p���� Remember that anything is re�ned �trivially� by itself�

Answer ��� �p���� The law strengthen postcondition ��� requires post V true�
the law weaken precondition ��	 requires falseV pre� Both hold�

c� Carroll Morgan ����� ����� ����

	� Answers for Chapter �

Chapter �

Answer ��� �p�	�� The propositional formulae are � and �� Number 	 is a
variable� number � is an English word� Number � is a statement about two simple
formulae�

Answer ��
 �p�	��

�� �
 i � Z � even i � odd i�
	� �
m � N � oddm 	 �� n � N � even n �m � n � ���
�� �� i � Z � even i � � �� n � N � oddn � i � n � ���

� �
 n � N � � � n�
�� � �� i � Z � �
 j � Z � i � j ��
�� �
 r � R � r � �	 �� s � R � � � s � r��

Answer ��� �p�	�� �� y � �
 x �A	 x � y���

Answer �� �p�	�� We have for the �rst formula

A B A 	 �B 	 A�
true true true true true true true
true false true true false true true
false true false true true false false
false false false true false true false

�
The indicated column is all true�

The other formulae are done similarly�

Answer ��� �p�	�� Exercise 	� showed that A 	 �B 	 A� is true in all states�
that�s what AV B 	 A means�

Answer ���� �p�	��

�� x � �A	 B� � ��A 	 C��
� �Predicate law A��

�� x �A � B � �A � C�
� �Predicate law A���

�� x �A � B� � �� x � �A � C� �

Answer ���� �p�	��

�� a � �
 b �A��
� �Predicate law A��

�
 b � �� a � �
 b �A���

c� Carroll Morgan ����� ����� ����

Answers for Chapter � 	��

V �Predicate law A��
�
 b � �� a �A�� �

The converse is not true� �Try it��

Chapter �

Answer ��� �p��
�

x � �x � X � x � X ��
v �sequential composition ���

x � �x � X � x � X �� � �i�
x � �x � X � � x � X �� �ii�

�i� v x � � x �

�ii� v x � � x � �

Answer ��� �p��
�

x � y � t � �x � X � y � Y � x � Y � y � X �
v �sequential composition ���

x � y � t � �x � X � y � Y � t � Y � y � X � �
x � y � t � �t � Y � y � X � x � Y � y � X �

v �assignment ���

x � y � t � �x � X � y � Y � t � Y � y � X � � �
x � � t

v �sequential composition ���

x � y � t � �x � X � y � Y � x � X � t � Y � �
x � y � t � �x � X � t � Y � t � Y � y � X �

v �assignment ���

t � � y �
y � � x �

Answer ��� �p����

x � y � t � � y � x � �
v �open assignment ���

x � y � t � � y � x � y
� �aim for leading t � � y

x � y � t � � t �tny �� x � y
� �leading assignment ���

t � � y �
x � y � � t � x

c� Carroll Morgan ����� ����� ����

	�� Answers for Chapter

� �special case of Law ���� t contains no y

t � � y �
y � � x �
x � � t �

Answer �� �p����

w � x � �pre � post �
v �sequential composition ���

w � x � �pre � post �xnE �� �
w � x � �post �xnE � � post � �

v x � �E �

Chapter �

Answer 	�� �p����

x � � abs y

v if y �� x � �y � � x � abs y � �i�
�� y � �� x � �y � � � x � abs y � �ii�
�

�i� v x � � y

�ii� v x � ��y �

Answer 	�	 �p���� Write prog as w � �pre � post �� and use absorb assumption ��
everywhere� Then use weaken precondition ��	 and the fact that A V B implies
AV A� B�

Chapter �

Answer
�� �p�
�� Let I abbreviate the invariant n �� � � �ptN � pt n�� The
development then continues

v n� �I � I � ��	 j n��
v �invariant I � variant n

do 	 j n �
n� �	 j n � n �� � � �ptN � pt n� � � � n � n�� �

od

c� Carroll Morgan ����� ����� ����

Answers for Chapter
 	��

v n � �n � 	 �

It is the same code as before�

Answer
�� �p�
�� The laws used are sequential composition ��� and strengthen

postcondition ���� Continuing�

�i� v �assignment ���

f � � �
�ii� v �invariant f � n" � F � variant n

do n �� ��
n� f � �n �� � � f � n" � F � � � n � n�� �

od
v �following assignment ���

n� f � �n �� � � f � n" � F �
f � �n � ��" � F � � � n � � � n�� � �

n � �n � �
v �contract frame ��

f � �n �� � � f � n" � F � f � �n � ��" � F �
v �weaken precondition ��	

f � �f � n � �n � ��" � F � f � �n � ��" � F �
v �assignment ���

f � � f � n �

Answer
�	 �p�
� First we strengthen the postcondition� then we weaken the
precondition� The conditions of strengthen postcondition ��� require

�� � x � ���yny�� � �� � x 	 y� � x �
V y� � x �

The law weaken precondition ��	 requires the trivial � � x � � V true� Together
they give the derivation

y � �� � x � � � y� � x �
v �strengthen postcondition ���

y � �� � x � � � � � x 	 y� � x �
v �weaken precondition ��	

y � �y� � x � �

Why is the order of the laws ���� before ��	� important�

Answer
�
 �p�
�

�� Use assignment ��	� the condition is y � x� V y � x��
	� Use assignment ��	� the condition is x� � �V �x� � x��

c� Carroll Morgan ����� ����� ����

	�	 Answers for Chapter

�� Use assignment ��	� the condition is trueV y� � y� � x� � x��

� Use assignment ��	� the condition is x� � X � �V x� � � � X � 	�
�� x � �x � X � � � x � X � 	�

v �strengthen postcondition ��� � x� � X ���x � x��� V x � X �	

x � �x � X � � � x � x� � ��

v �weaken precondition ��	

x � �x � x� � �� �
�� x � �x � x� � 	�

v con X �

x � �x � x� � �� �
x � �x � X � � � x � X � 	� �

v �as in � above

x � �x � x� � �� �
This required the more advanced sequential composition �
� What did you
use�

Answer
�� �p�
� The law would be as follows�

Law B�� initialised iteration Provided inv contains no initial variables�

w � �pre � inv � �G �

v w � �pre � inv � �
do G � w � �G � inv � inv � �� � V � V��� od �

�

The expression V is the variant�

Answer
� �p�
�� Conjuncts ���� and ����� of the invariant are su!cient to en�
sure requirement ����� of a fair handing�out� taking into account that the iteration
body is executed exactly C times�

For requirement ����� it would be enough to know that s � � on termination�
since conjunct ������ of the invariant then su!ces� Unfortunately� the negated
guard gives us c � �� not s � ��

We choose a slightly di�erent invariant therefore� to get around that problem�
Since by the quoted properties of b c we have

bS�C c � bs�cc � bS�C c � s�c �

and similarly for ������ we replace ���� and ����� by the single

c � bS�C c � s � c � dS�C e � �B���

Then c � � �from termination of the iteration� together with �B���� gives us s � ��
which is what we needed�

c� Carroll Morgan ����� ����� ����

Answers for Chapter
 	��

Now we must consider maintenance of the invariant� Conjunct ������ is main�
tained by the combination of �hand out t � and s � � s� t in the body� For �B��� we
must show that the iteration body re�nes

c� s� t � ��B ��� � �B ���� � �i�

Following assignment gives us

�i� v t � ��B ��� � �c � ��� bS�C c � s � t � �c � ��� dS�C e � �ii�
c� s � � c � �� s � t

and� leaving aside the �hand out�� we could strengthen the postcondition to reach

�ii� v t � � bs�cc � t � ds�ce �
provided

bs�cc � t � ds�ce
� c � bS�C c � s � c � dS�C e

V �c � ��� bS�C c � s � t � �c � ��� dS�C e �
�B�	�

Claim �B�	� is really the core of the problem� it is the key mathematical fact�
�nally extracted from the details of programming� To �nish o�� consider the fol�
lowing�

�c � ��� bS�C c � s � t

W �t � ds�ce in antecedent
�c � ��� bS�C c � s � ds�ce

� ds�ce � s � �c � ��� bS�C c
� �property of d e

s�c � s � �c � ��� bS�C c
� �iteration guard ensures c �� �

�c � ��� bS�C c � �c � ��� s�c

W �even when c � �"
bS�C c � s�c

� �c �� � again
c � bS�C c � s �

which is given to us in the antecedent of Claim �B�	�� it is part of the invariant�
The other inequality is handled similarly�

This has been a simple problem� but not an easy one� and that is often the case�
Finding an invariant� and then discovering an inexorable proof that it is the correct
invariant� can take a very long time� In spite of that� one should aim to make the
resulting reasoning so clear and polished that its checking is very short� Then �
and only then � is the correctness of the program �nally �obvious��

c� Carroll Morgan ����� ����� ����

	�
 Answers for Chapter

Chapter 	

Answer ��� �p���� It follows from n � N � z � n V z ��

Answer ��
 �p���� We would use var c � N � and c � �� The remaining di�erence
is that we can assign to such constants� and that is feasible as long as the value
assigned is the value it already has� That cannot be checked automatically by
a compiler� so conventional languages allow const declarations in code only by
prohibiting assignments to them altogether�

Answer ��� �p���� Yes� Use of the law assignment ��� requires true � n � N V

����� � �� The assignment is infeasible� however� and in Section ��� that was
called ill�typed�

Answer ��� �p����

�� Infeasible� z might be negative�
	� Feasible� N � Z�

�� Feasible�

� Infeasible� even if positive� an integer need not have an integral square root�
�� Feasible� If c is a complex root of unity� then c and ��c are conjugates�

Answer ���� �p��	� Unfold the iteration twice� as shown on p�
	� The �rst
execution of the body establishes E � e� the second requires E � e� and so can
abort �which it shouldn�t��

Chapter

Answer ��� �p���� See Figure �����

Answer ��	 �p���� The formula p � q is implied by the previous precondition�
The �increasing variant� was originally �q � r� � �q� � r��� contracting the frame
gave �q � r� � �q � r��� then strengthening the postcondition gave r� � r �

Chapter �

Answer �� �p��	� It is unnecessary because if x is not in the frame� its initial
and �nal values are equal� Here is the proof of equality�

w � �pre � post �

c� Carroll Morgan ����� ����� ����

Answers for Chapter 	��

� �expand frame ��

w � x � �pre � post � x � x��
� w � x � �pre � post �x�nx � � x � x��

� �expand frame ��

w � �pre � post �x�nx �� �

Answer �	 �p���� Note �rst that pre�wnw�� V ��w � pre�� from Predicate law
A��� Then we have

w � �pre � post �

v �strengthen postcondition ���

w � �pre � ��w � pre�	 post �
v �strengthen postcondition ���

w � �pre � ��w � pre� � post �

v �strengthen postcondition ���

w � �pre � post � �

Answer �
 �p���� The result is this law�

Law B�� sequential composition

w � x � �pre � post �

v x � �pre � mid � �
w � x � �mid � post � �

The formula mid must not contain initial variables� and post must not
contain x��
�

Law B�	 allows initial variables w� in post� since the �rst command x � �pre � mid �
in the composition does not change them� In contrast� sequential composition ���
allows no initial variables at all�

Answer �� �p����

w � �true � false�

v �contract frame ��

� �true � false� �magic

v �expand frame ��

w � �true � false � w � w��

v w � �true � false� �

c� Carroll Morgan ����� ����� ����

	�� Answers for Chapter �

Chapter �

Answer ��� �p����

�� fn � N � n�g
	�

n
i � j � k � N � 	i�j
k

o
�� N		 � fi � j � N		

� i � jg� where N		 b� fk � N j k 	g

� fc � C j cn � �g

Answer ��� �p���� Using the alternative de�nition� the promoted relation is
transitive if the original relation is� But this law� for example� no longer holds�

s�� s	 � s�� � s� � s	� � s	 V s�� � s	� �

We retain the original de�nition� therefore�

Answer ��� �p����

fj true � xg � fxg
fj false � xg � fg
hi � ��n � x i � hx � x � � � � � x i� �z �

n times

�

Answer ��� �p���� The de�nition is
Q
q b� ��x � q�� The empty product

Qhi is
�� because � is the identity of multiplication�

Answer ���� �p���� It gives the size of the set� The same applies to bags and
sequences�

Answer ���� �p��	� The placement of the well�de�nedness assumption allows
abortion explicitly in any case in which as�i � is �unde�ned�� and there are two
cases� when the iteration is encountered for the �rst time� and when the guard is
re�evaluated after an execution of the iteration body�

For the re�nement� we have

i � �a � as � a � as�i ��
v �I b� a � as�i

i � �a � as � I � � �i�
i � �I � I � a � as�i �� �ii�

�i� v �w � �pre � post � v w � �pre � post � � fpostg
i � � ��
fI g �

v �weaken precondition ��	

fi � N g

c� Carroll Morgan ����� ����� ����

Answers for Chapter �� 	��

�ii� v do a �� as�i ��
i � �a �� as�i � � I � i� � i � N � �

od

v �as above

i � �a �� as�i � � I � i� � i � N � �iii�
fI g �

v fi � N g
�iii� v i � � i � � �

Although some of the above manipulations of assumptions do not follow eas�
ily from the laws we have so far� they should be intuitively plausible� since
w � �pre � post � establishes post � one can sequentially compose on the right with
fpostg� which behaves like skip in those circumstances� A �nice� formal derivation
of that step would be

i � �a � as � a � as�i �
v fa � as��g i � � �
v �advance assumption 		�	 backwards

i � � ��
fa � as�ig �

using a law postponed until Chapter 		 �though not a very complicated one��
Evaluation of as�i � when i � N is �now� acceptable because the assumptions fi �

N g abort in that case anyway� and so it matters not at all what the implementation
might do with as�N ��
The general rule relation between invariants and possibly �unde�ned� iteration

guards is that the invariant should imply the well�de�nedness condition of the
guard� Requiring those conditions explicitly as assumptions in the code has the
e�ect of forcing the developer to use just such an invariant�

Answer ���� �p���� The speci�cation terminates unconditionally� but the pro�
gram aborts at the �rst assumption when �for example� N � �� The re�nement
by that fact alone is invalid� �Look for simple counter examples��

Operationally� the code of Exercise ���� under the conditions of Exercise ����
is inappropriate because evaluation of the iteration guard could fail �and cause
abortion� when i � N � See Exercise ���� for one of the well�known ways around
that problem�

Chapter �

Answer ���� �p����� The main step is leading assignment ��� after writing true as
�k � ���kn��� But the re�nement is operationally obvious anyway� after assigning
� to k � the precondition k � � may be assumed�

c� Carroll Morgan ����� ����� ����

	� Answers for Chapter ��

Answer ���� �p�����

�� If P�l �� P �l �� then P�l cannot be empty� hence l cannot be �� Thus the
greatest element P �l � �� of P�l �which is sorted� must exceed P �l ��

The converse is immediate�

	� For any sequence q such that up q � we have x � q i� x � q ���� Apply that
to P�l � noting that upPnfl � �g implies upP�l �

�� From the other conjuncts� we have P �l � � P �l � �� � P��l � ���

Answer ���	 �p����� The guard �J is P�l �� P �l �� and that was simpli�ed in
Answer ���	 to l �� ��P �l � �� � P �l �� We can perform that simpli�cation here as
well� because the invariant was in the precondition at the point the iteration was
developed�

Answer ���
 �p����� It is L�asnas�l � � t ��� that is� it is as before if we imagine
as with its l th element replaced by t �

Since the changed program does not maintain the local invariant� it must be
removed �rst�

Answer ���� �p����� If the sequence contains repeated elements initially� no
amount of sorting is going to make them go away� a strictly ascending sequence
cannot result� no matter what code we use�

The step in error is the re�nement of �iv� to a swap� Conjuncts J and K will
have been modi�ed to be strict �

J b� P�l � P �l �
K b� P �l � � P��l � ��

� and the K part of the invariant is not maintained by the swap� �Check it"�

Answer ����� �p����� There�s no good reason why not� But one should avoid
the impression that a strategy must be o!cially a �law� in order to be valid� or
useful�

Answer ����� �p����� The meaning of the program is una�ected by the di�erence
between k � � and k � �� since the assignment is executed only when k � �� and
there the two alternatives are equal� The only disadvantage in using k � � is that
if variable k is typed as a natural number �instead of� say� as an integer�� and
automatic type checking is performed �the kind that can�t �notice� that k � � in
the iteration body�� then the statement will be rejected as ill�typed� a conservative�
but at least a safe� judgement�

The disadvantage of using k � � is that it would have distracted attention from
the main issue� down iteration itself�

c� Carroll Morgan ����� ����� ����

Answers for Chapter �� 	��

Chapter ��

Answer ���� �p�����

�� �a � � f � ���value f na�
� j� var l �

l � � a�
a � � l � �

�j
� a � � a � � �

	� �f � � a � ���result f na�
� j� var l �

l � � a � ��
a � � l

�j
� a � � a � � �

�� �f � � a � ���value result f na�
� j� var l �

l � � a�
l � � a � ��
a � � l

�j
� a � � a � � �

� �f � � f � ���value result f na�
� j� var l �

l � � a�
l � � l � ��
a � � l

�j
� a � � a � � �

Answer ���� �p�����

�� n � ��n � ��"

� j� var a� f �
a � � f �
f � � a"�
n � � f

�j
v �f � � a"��value a� result f nn � �� n� �

c� Carroll Morgan ����� ����� ����

	� Answers for Chapter ��

	� a�� a

� j� var l �

l � � a�
a�� l

�j
v a� �a � b� �value bna� �

�� x � �x �� � � x � ��x��

v x � ��p �� ���pnx � � �x � ��p���p�nx���
v j� var p� q�

p � � x �
q � �p �� � � q � p � �� �
x � � q

�j
v q � �p �� � � q � p � �� �value p� result qnx � x � �

Answer ���� �p�����

x � �� � x � x � � x��
v j� var a� b � R�

a� b� x � �� � x � x � � x��
�j

v �following assignment ���

j� var a� b � R�

a� b� x � �� � x � b� � x�� �
x � � b

�j
v �leading assignment ��� contract frame ��

j� var a� b � R�

a � � x �
b� �� � a � b� � a�� �
x � � b

�j
v Sqrts �x � x � �

Answer ���	 �p����� Variable a has been captured� Here is the correct use of
the Copy Rule�

j� procedure One b� a � � � � j� var a �One �j �j
v j� procedure One b� a � � � � j� var b � One �j �j
v j� var b � a � � � �j
v a � � � �

c� Carroll Morgan ����� ����� ����

Answers for Chapter �� 	�

Answer ���� �p����� Using a local invariant makes this easier� otherwise� just
carry the bag�condition through� We have

p� q � r �

�
p � q � r

bbp� q � rcc � bbp�� q�� r�cc
	

v con B � and B � bbp� q � rcc�
p� q � r � �p � q � r �

v �sequential composition ���

p� q � r � �p � q � � �i�
p� q � r � �p � q � p � r � q � r � � �ii�
p� q � r � �p � r � q � r � p � q � r � �iii�

�i� v p� q � � p u q � p t q

�ii� v q � r � � q u r � q t r
�iii� v p� q � � p u q � p t q �

The three commands are just an unfolded insertion sort� the invariant is maintained
trivially�

Answer ���� �p����� It is given in Section ��	���

Answer ��� �p����� The proof is straightforward�
The law as given is useful when developing a procedure for the �rst time� it

generates the speci�cation of the procedure body� which then may be further de�
veloped� The alternative suggested in this exercise is useful when one seeks to use
an existing procedure whose speci�cation is known already�

Chapter ��

Answer ���� �p��		�

� hi k

� �� j � l�k � k � j � as�k � � as�j �� �

From J � however� we have ph�l�h � fkg�� so the j whose existence is asserted
above must be either 	k � � or 	k � 	� Thus we continue

�
�

	k � � � h � as�k � � as�	k � ��
� 	k � 	 � h � as�k � � as�	k � 	� �

Answer ���	 �p��		� We assume that all variables range over strictly positive
values� From the de�nition of limN��� we have

�
 c � ��M � �
N � N M 	 f N � gN � c��� �

c� Carroll Morgan ����� ����� ����

		 Answers for Chapter ��

By Predicate law A�� we conclude that

�� c�M � �
N �N M 	 f N � c � gN �� �

which is just f � g� It remains to show that f �# g� and we proceed

� �� c�M � �
N � N M 	 gN � c � f N ��

� �Predicate laws A���� A��	
�
 c�M � ��N �N M � f N � ��c � gN ��

W �take d � ��	c
�
 d �M � ��N � N M � f N � d � gN ��

W �Lemma B�� below
�
 d � ��M � �
N � N M 	 f N � d � g N ���

� the formula above�

In fact� Lemma B�� is the interesting part of this exercise�

Lemma B�� If A does not contain free M � then

��M � �
N � N M 	A��V �
M � ��N � N M � A�� �
Proof�

��M � �
N � N M 	A��
� �L fresh� Predicate law A��

�
L � ��M � �
N � N M 	A���
V �Predicate law A��

�
L � ��M � L tM M 	A�N nL tM ���

� �L tM M is identically true
�
L � ��M �A�N nL tM ���

� �L tM L is identically true
�
L � ��M � L tM L � A�N nL tM ���

V �Predicate law A��
�
L � ��M �N � N L � A��

� �Predicate laws A���� A�
� L�M not free in A
�
M � ��N � N M � A�� �

�

Answer ��� �p��	�� They do not obey the usual rules for equality� we can have
f � O�h� and g � O�h�� but f � g does not follow� The intended meaning is
f � O�h�� where O�h� b� ff j f � hg�

Answer ����� �p��	�� Time complexity N is �faster than� 	N � though both are
linear� Similarly� Quick Sort is faster than Heap Sort by some constant factor� on
average� Incidentally� Quick Sort has worst�case complexity N �� but in the worst
case Heap Sort is still N logN �

c� Carroll Morgan ����� ����� ����

Answers for Chapter �� 	�

Chapter ��

Answer ���� �p����� No� That es is �nite is used when de�ning the variant to
be $es� since that must be an integer�

�For those with some knowledge of set theory� The variant can be any ordinal�
valued function� even in�nite� But in developing iteration or recursion we depend
on a strict decrease of the variant�

$�es � feg� � $es�

That is not true when $es is in�nite� instead� the two expressions are equal��

Answer ���� �p�����

procedure Fact ��value m� k � N� b� f � �m"� k

v variant M is m�

if m � �� f � � k

�� m � �� f� � m � M g f � �m"� k �
�

v f � �� � m � � � M � f � �m � ��"�m � k �
v Fact � �m � ��m � k� �

Chapter ��

Answer �	�� �p����� See Figure B���

Answer �	�� �p����� The de�ning properties of the Gray code treat cases n � ��
n � �� and n 	� the code should do the same�

Answer �	�� �p�����

�� 	� �	 � rv���
v rewrite�

�� 	� �	 � 	� �� rv��� �
v re R variant N is $� �

�� 	� �$� � N � 	 � 	� �� rv���
v if eof � skip

�� �eof �
�� 	� �� �� hi �$� � N � 	 � 	� �� rv��� �

�

v var e � E �

�� 	� e� �$ tl� � N � 	 � 	� �� rv tl�� �� hhd��i�

c� Carroll Morgan ����� ����� ����

	
 Answers for Chapter �

n gc n binary
� � �
� � �
	 � � � �
� � � � �

 � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
 � � � � � � � �
� � � � � � � � �
�� � � � � � � � �
�� � � � � � � � �
�	 � � � � � � � �
�� � � � � � � � �
�
 � � � � � � � �
�� � � � � � � � �

Figure B�� Gray codes

v input e�
�� 	� �$� � N � 	 � 	� �� rv�� �� hei� �

v �� 	� �$� � N � 	 �� hei � 	� �� rv �� �� hei� � �
output e

v R �

Chapter ��

Answer �
�� �p�����

�� Buf b� empty j fullN
	� Tree b� tipR j nodeTree Tree

�� violet j indigo j blue j green j yellow j orange j red

Answer �
�� �p�����

if nn is okn � nn � � ok�n � �� �

c� Carroll Morgan ����� ����� ����

Answers for Chapter �
 	�

�increments� n is if is not unde�ned� and aborts otherwise�

Answer �
�	 �p����� The speci�cation is d � �k in db 	 full k d � db��

Answer �
�� �p����� The speci�cation is

if ��k in db� � d � � unde�ned

�� k in db � d � �full k d � db�
�

Why is the overall speci�cation feasible even though the body of the second branch�
on its own� is not�

Answer �
�� �p����� The reasoning would continue

� �Predicate law A���
paradox � setTooBig � several paradox �� paradox �

establishing a contradiction� since the �rst conjunct follows from the de�nition
of paradox � Our only remaining assumption is that the de�nition of TooBig was
meaningful� which we must now abandon�

Answer �
��	 �p���	� It is a strict partial order� and � is a non�strict partial
order� Whether it is well founded depends on the set over which it is de�ned� over
setN it is not well founded� but over �nset N it is�

Answer �
��� �p���	�

r � s � � rv s� �
v con R�

r � s� �R � rv s � r � R�
v r � �hi�

r � s� �R � rv s �� r � R � rv s �� r � s � hi� �

v do s is h�t � r � s � � h�r � t od �

Answer �
�� �p����� This development requires two stacks of trees� say ntl�
and ntl	� with invariant �the frontiers are equal so far���

�F � seqX �

F� � F �� ���nt � ntl� � frontier nt�
F	 � F �� ���nt � ntl	 � frontier nt�

�
�

where F� and F	 are logical constants equal to the frontiers of nt� and nt	 re�
spectively�

The iteration has four alternatives� corresponding to the four possibilities for the
tops of the two stacks when considered together� it should terminate when either
or both of the stacks is empty�

c� Carroll Morgan ����� ����� ����

	� Answers for Chapter ��

This algorithm is a good example of one in which for space e!ciency �two�
explicit stacks are needed� rather than recursion� �Other options are coroutines� or
a lazy functional language��

Answer �
��� �p����� We give an argument for each of the two cases� First we
have

sizelt ntl

� �alternation guard
sizelt�empty�ntl �

� �de�nition sizelt
sizet empty � sizelt ntl �

� �de�nition sizet
� � sizelt ntl �

� sizelt ntl � �

For the second we have

sizelt ntl

� �alternation guard
sizelt�node n � nt� nt	�ntl �

� �de�nition sizelt
sizet�node n � nt� nt	� � sizelt ntl �

� �de�nition sizet
� � sizet nt� � sizet nt	 � sizelt ntl �

� �de�nition sizet
� � sizelt�nt��nt	�ntl ��

� sizelt�nt��nt	�ntl �� �

Chapter �	

Answer ���� �p����� Change Acquire to read

t � u� �u �� N � t �� u� � 	 j t � u � u� � ftg� �
That re�nes the original speci�cation� hence the new procedure re�nes the old�
hence the new module re�nes the old�

But it is not feasible� because it is forced to return an even number even when u

might contain only odd numbers� See Chapter �� for a way to get around that �
surely� beginning with an in�nite supply of integers both even and odd� one should
never run out"

c� Carroll Morgan ����� ����� ����

Answers for Chapter �� 	�

module Random�
var n � N �

procedure Acquire �result t � N�b� n � ��A� n� modB �
t � � n�

procedure Return �value t � N�b� skip�

initially n � S

end

The constants A�B � S � N determine the precise values returned�

Figure B�� Random number module

Answer ���	 �p���	� See Figure B�	� it does not re�ne Tag � because pseudo�
random sequences eventually repeat�

Answer ���
 �p���	� In Figure ����� yes� Part � of re�ne module ���	 allows it�
But in Figure ���� that change would a�ect the exported procedure P� in a way
not allowed by re�ne module ���	� Hence in Figure ���� no�

Answer ���� �p���	� Originally Out assigned � to n� given the speci�c actual
procedure In supplied� after the change� it assigned � to n instead� The new
module does re�ne the old module� but the new behaviour does not re�ne the old
behaviour�

The explanation is that the n � � � behaviour� though guaranteed given the actual
procedure In� represented a resolution of nondeterminism in the implementation
which cannot be depended on by clients� Indeed the behaviour could be changed at
any time by a junior programmer who knows no more than to link imported proce�
dures to actual procedures that re�ne them� and that he need not ask permission
to do so�

Chapter �

Answer ���	 �p����� For the �rst� we have by diminish speci�cation ������

x � ��
 a� � �� a � x � a����
v x � ��
 a� � x � a��� � �i�

c� Carroll Morgan ����� ����� ����

	 Answers for Chapter ��

For the second� we have

x � ��
 a� � �� a � x � a���
v x � �true�
v choose x �

The �rst results in the infeasible �i�� we cannot have x equal to all values of a�"
But a is not auxiliary in the given speci�cation anyway� since the �nal value of x
depends on the initial value of a� So we should expect infeasibility�

The second re�nes to code�

Answer ���
 �p����� The invariant is N � l �m � n�
The augmented program is

l �m� n� l ��m � � � �� ��N � ��M �
do n �� ��

if even n � m� n�m � � � 	�m� n � 	� 	�m �

�� oddn � l � n� l � � � l �m� n � �� l � �m �

�

od �

Since the original program established l � N � the augmented program will establish
l � � M � N �as well��

To determine which variables are auxiliary� as far as the calculation of l � is con�
cerned� we do the opposite� collect the essential variables� Variable n is essential�
because it occurs in guards� and it is given that l � is essential� From the assignment
l � � � l � �m � we �nd that we need m � as well� but the process stops there� thus l
and m are auxiliary� After removing them� then renaming �of l � to l and m � to m��
we get

n� l �m � �N � ��M �
do n �� ��

if even n � n�m � �n � 	� 	�m

�� oddn � n� l � �n � �� l �m

�

od �

Answer ��� �p���� If the constant A were a matrix� division by A � � would
no longer be a simple matter�

Answer ���� �p���� We have by diminish speci�cation ����	

x � ��� a � pre� � �
 a � pre� 	 post��
v �Predicate laws A��
� A���

x � �pre � pre� 	 post �

c� Carroll Morgan ����� ����� ����

Answers for Chapter �� 	�

v �strengthen postcondition ���

w � �pre � post � �

Thus such speci�cations are una�ected�

Answer ����� �p���� Here are the two laws�

Law B�� augment assumption The assumption fpreg becomes fpre �
CI g�
Proof�

fpreg
� � �pre � true� �

Then by augment speci�cation ���� that becomes

c� �pre � CI � CI �

v � �pre � CI � CI �

v �strengthen postcondition ���

� �pre � CI � true�

� fpre � CI g �
�

Law B�	 diminish assumption The assumption fpreg is diminished to
f�� a � A � pre�g�
Proof�

� � �pre � true�

Then by diminish speci�cation ����	 that becomes

c� ��� a � A � pre� � �
 a � pre� 	 true��

v � ��� a � A � pre� � true�

� f�� a � A � pre�g �
�

Answer ����� �p���� Here are the two laws�

Law B�
 augment coercion The coercion �post � becomes �CI 	 post ��
Proof�

�post �

� � �post �

becomes �augment speci�cation ����

� �CI � CI � post �

c� Carroll Morgan ����� ����� ����

	�� Answers for Chapter ��

v � �CI 	 post �

� �CI 	 post � �

�

Law B�� diminish coercion The coercion �post � becomes ��
 a � A � post���
Proof�

v �post �

� � �post �

becomes �diminish speci�cation ����	

c� ��� a � A � true� � �
 a � true	 post��

v c� ��
 a � A � post��

� ��
 a � A � post�� �

�

Answer ����� �p���� The law augment guard ���� gives the new guards n �� �
and n � � directly� the law alternation guards
�� is then unnecessary" The other
data re�nements are as before�

Answer ����	 �p���� The e�ect of the augmentation is to add u � �nsetN as
an invariant of every command� in particular�

t � u� �u �� N � t �� u� � u � u� � ftg�
becomes t � u� �u �� N � u � �nsetN � t �� u� � u � u� � ftg� �
v �u � ftg is �nite if u is

t � u� �u � �nsetN � t �� u� � u � u� � ftg� �
The e�ect on Exercise ���	 is to allow us to include u � �nsetN in the precon�

dition before we strengthen the postcondition with 	 j t � Feasibility is maintained�

Answer ����
 �p���� After adding v we have Figure B��� removing u gives
Figure B�
� See also Exercise ������

Answer ���� �p��	� The data�type invariant �such as imposed by and� of the
module is strengthened� the augmentation laws simply ensure that it is maintained�

Answer ����� �p��	� The concrete iteration do aq �n� �� a � n � �n � � od
would fail to terminate if a were not in aq � It is reasonable� since the abstract
command could abort in that case�

Answer ����� �p��	� There is no hard�and�fast answer to questions like that�
it depends on what your �compiler� �or reader� will accept� In this case� one might

c� Carroll Morgan ����� ����� ����

Answers for Chapter �� 	��

module Tag

var u� v � setN �

procedure Acquire �result t � N�b� u� t � v � �u �� N � u � v � v � �nsetN � t �� u� � u � u� � ftg� �

procedure Return �value t � N�b� u� v � � u � ftg� v �

initially u � fg � u � v � v � �nsetN
end

Figure B�� Augmented module �Exercise ������

module Tag

var v � setN �

procedure Acquire �result t � N�b� t � v � �v �� N � t �� v� � v � v� � ftg� �

procedure Return �value t � N�b� v � � v �

initially v � fg
end

Figure B�	 Diminished module �Exercise ������

be thinking of a further data re�nement to a �xed�length sequence and an integer
�end�of�sequence� pointer� The data re�nement of fr then is trivial�

Answer ����	 �p��	� The re�nements are

�� a � � aq �a� �
	� a� n � � as�n � ��� n � � � and
�� fn � N g aq �n�� n � � a� n � � �

Answer ����
 �p��	� Binary search is a suitable �nishing o� of the derivation�
�See Exercise ������

c� Carroll Morgan ����� ����� ����

	�	 Answers for Chapter ��

Answer ����� �p��	�

w � �pre � post �
v �expand frame ��

w � a� �pre � post � a � a��
becomes �data�re�ne speci�cation �����

w � c� �pre�an af c� � dti c � post �a�� an af c�� af c� � af c � af c��
v �contract frame ��

w � �pre�an af c� � dti c � post �a�� an af c�� af c�� �
The e�ect is exactly as before� so that data�re�ne speci�cation ����� can be used
even when a does not occur in the abstract frame� Note however that the c� in
the postcondition can be replaced by c� since c is not in the concrete frame�

Of more interest however is the use of contract frame ��
� where a proper re�
�nement occurs� The conjunct af c � af c�� e�ectively strengthened to c � c� by
contract frame ��
� allows considerable freedom in adjusting the concrete represen�
tation� �See Exercise ���	���

Answer ����� �p��	� Implementing a � as� where the concrete representation
is an unordered sequence aq � might result in bringing a to the front of the sequence
aq so that it would be found more quickly on a subsequent search�

Answer ���� �p���� Assuming a declaration adb � K !�D � the speci�cation
would be

if k �� dom adb � d � � unde�ned

�� k � dom adb � d � � ok adb k

� �

The coupling invariant is adb � fk � K � d � d j full k d � dbg� Note that it is func�
tional�

Answer ����� �p���� If the array were �xed�size� then there would be an upper
limit on the number of trees it could contain� with the given algorithm the size
needed would depend on the depth of the original tree� Thus the speci�cation
would indeed need modi�cation� including a precondition limiting the depth of the
tree nt �

That taken care of� the data�re�nement is simple� The abstract variable is ntl �
and the concrete say would be nta � seqN Tree� h � N with coupling invariant
ntl � nta�h � h � N � The resulting code is shown in Figure B���
That leaves the records and pointers� Since the original tree nt is not modi�ed�

one could represent it and its subtrees by pointers to their root nodes� the array
nta would then become a �xed�length sequence of pointers to records�

Answer ����
 �p���� These are the re�nement steps�

c� Carroll Morgan ����� ����� ����

Answers for Chapter � 	��

j� var nta � seqN Tree� h � N�

nta���� h � �hnti� ��
do h �� ��

if nta�h � �� is
empty� h � � h � �

�� �node n �nt� nt	��
n� nta�h � ��� nta�h�� h � �n � n �� nt�� nt	� h � �

�

od

�j

Figure B�
 Iterative tree�summing with �xed�size array

x � � �
v �simple speci�cation ��

x � �x � ��
v x � ��x � � � x � ��� � x ��
v �absorb coercion ���	 �backwards�

x � �x � � � x � ��� � �
�x �� �i�

v �alternation
��� assignment ���

if true� x � � �
�� true� x � ���
� �

The coercion �i� would test for x �� and force backtracking to the earlier non�
deterministic choice if the test failed� �Eventually� the correct branch x � � � would
be taken� and the coercion would then behave like skip�

Chapter ��

Answer ��� �p����� If � em as�i � then for all x we have

�as�i��x � i�	 �

Hence for all x not equal to as�i �� we have

�as��i � ����x � �i � ���	 �

Thus the only possible majority in as��i � �� is as�i � itself�

c� Carroll Morgan ����� ����� ����

	�
 Answers for Chapter ��

Answer ��	 �p����� We have these equalities�

j� var x � prog �j
� j� var x � procedure P b� prog�

P

�j
� j� module M

var x �
procedure P b� prog

end�

P

�j �
The transformation is carried out on the interior of module M � and the above
process reversed�

Answer ��
 �p����� For p���� we need two steps� First� the invariant c � as�i �x
is conjoined to the guards� Then we must show that

�� �� em as�i � c � as�i �x �
� �sm x as�i � c � as�i �x �

V true

	� ��� em as�i � c � as�i �x �
� �sm x as�i � c � as�i �x ��
� c � i�	

V � em as�i � c � as�i �x
�� ��� em as�i � c � as�i �x �

� �sm x as�i � c � as�i �x ��
� c � i�	

V sm x as�i � c � as�i �x �

For p���� the procedure is similar�

Chapter �

Answer ���� �p�	��� The re�nement is valid because� in seeking to minimise
overall waste wt� we cannot do better than to minimise wt for what remains�

That is not a property of all waste functions� but it is of wt� Is it a property of
this one�

wt� pss b� ��ls � fr pss � M �X
ls�

c� Carroll Morgan ����� ����� ����

Answers for Chapter �� 	��

What kind of paragraph results from minimising wt��
The re�nement of �ii� is proved by strengthen postcondition� then �trivially�

weaken precondition� What we must show is of the form

�
 qss �A	 B� V �
 qss �A	 C� �
and that follows from just B V C by propositional reasoning and distribution of
V through
 qss� The precondition of �ii� contains I � which by instantiating qss

to hws�i�j �i�� qss �Predicate law A��� gives

ep�ws�i� �hws�i�j �i�� qss�
	 epws �pss �� hws�i�j �i�� qss� �

That is exactly what is required�

Answer ���� �p�	��� It is removed when the shortest next line is taken�

Answer ���	 �p�	��� Procedure GetWord is used to �ll the sequence ws� in each
case assigning w�� to account for a following blank� The line widthM is increased
by � to allow for the blank following the last word on a line�

In the code of the second half� pss is removed� The command j � s � � j��� s�ws�j �
is followed by PutWord and pss � � pss �� hws�i�j �i is replaced by PutLine�

Chapter ��

Answer ���� �p�	��� The time is linear in the size of hs�
For a given call of Hist � let I be the value it receives through its formal parameter

i � and let J be the value it returns through its formal parameter J � Note �rst that
I � J � the procedure is guaranteed to return J greater than the I it received�

Then consider the number of further calls made by Hist �to itself�� it is no more
than J � I � �� and so any call to Hist accounts for at most J � I calls in all
�including the initial one��

Since for the initial call we have I � ��� and the J returned cannot exceed N �
we have limited the total number of calls to N � ��

Answer ���� �p�	��� Consider successively longer �row pre�xes� of the rectangle�
maintaining the invariant that the largest true rectangle of the pre�x is known�
Re�establishing the invariant for one further row is done by �nding the largest
rectangle under the histogram formed by �true columns� above the new row�

The heights of columns in the histogram above successive rows can form part
of the invariant also� leading to overall time complexity linear in the area of the
array�

Answer ���� �p�	��� This problem is much easier than Exercise 	��	� though
the complexity is still linear in the area of the array� One considers �lower�right

c� Carroll Morgan ����� ����� ����

	�� Answers for Chapter ��

corners� of possible squares element�by�element along rows� Knowing the height of
a �true column� above the current element� the length of the �true su!x� of the part
of the current row ending in that element� and �nally the size of the largest true
square for the element immediately left and above it� is su!cient to re�establish
the invariant that the largest true square is known for all elements considered so
far�

The di�erence between squares and rectangles is that if one square has less area
than another� then it can be nested within the other� The same is not true of
rectangles�

Chapter ��

Answer ���� �p�	

� Following the convention that all procedures have the iden�
tity of their user as the �rst parameter� the de�nition would be

procedure Cancel �value me � Usr � id � Id�b� sent � � sent �B fidg �
�Unauthorised� removal is possible by any user knowing the id of the message�

and in practice that would be someone who has already received it� �The sender
knows the id � but is �authorised���

Including me always as a �rst parameter allows subsequent design changes with�
out altering the interface � in this case� we might change the speci�cation to
record messages� senders� and alter Cancel to take that into account� Would it be
a re�nement�

Answer ���� �p�	

� The unfortunate programmer saw in the speci�cation of
Send that the new identi�er was �rst chosen outside the set dommsgs� and then
immediately added to it by msgs�id � � �msg � Noticing that msgs was not assigned
to elsewhere in the module� he reasoned correctly that Procedure Send never re�
turned the same id twice� Rather than write a generator of unique identi�ers
himself� therefore� he simply used the one he had found�

The change represented by Figure 		�	 invalidated his second observation� for
msgs is assigned to by the replacement Read � and in fact made smaller�

Answer ��� �p�	
�� Remove msgs� sent and recd as abstract variables� and
introduce the concrete variable used � the coupling invariant is

ran sent � used � �

Yes� it is a problem� If we do not address time explicitly� then we do not have
the vocabulary with which to express �prompt� delivery� And one extreme of not
being prompt is not to deliver at all�

c� Carroll Morgan ����� ����� ����

Answers for Chapter �� 	��

Beyond any mathematical speci�cation are �extra�mathematical� requirements
that must be speci�ed some other way� If informal requirements are not good
enough in any particular case� then more sophisticated mathematical techniques
must be used� where the mathematics stops� and informality begins� is a matter
for taste and good judgement�

c� Carroll Morgan ����� ����� ����

Appendix C

Summary of laws

The laws� de�nitions� and abbreviations appear below in alphabetical order�

Law �� absorb assumption p���

An assumption before a speci�cation can be absorbed directly into its precondition�

fpre �g w � �pre � post � � w � �pre � � pre � post � �

�

Law ���	 absorb coercion p���

A coercion following a speci�cation can be absorbed into its postcondition�

w � �pre � post � � �post �� � w � �pre � post � post �� �
�

Law 		�	 advance assumption p����

w � �E fpreg � fpre�wnE �g w � �E �

�

Law 		�� advance coercion p����

w � �E �post � � �post �wnE �� w � �E �

�

Law
�� alternation p���

If pre V GG � then

w � �pre � post �
v if ��� i � Gi � w � �Gi � pre � post �� � �

�

	�

Summary of laws 	��

Law
�	 alternation p���

f�W i � Gi�g prog
� if ��� i � Gi � fGig prog� � �

�

Law
�� alternation guards p�	�

Let GG mean G� � � � � � Gn � and HH similarly� Then provided

�� GG V HH � and
	� GG V �Hi 	 Gi� for each i separately�

this re�nement is valid�

if ��� i � Gi � progi� � v if ��� i � Hi � progi� � �

�

Law ��	 assignment p�		

If �w � w�� � �x � x�� � pre V post �wnE �� then

w � x � �pre � post � v w � �E �

�

De�nition 	��� assignment p��
�

For any postcondition A�
wp�w � �E �A� b� A�wnE � �

�

Law ��� assignment p�

If pre V post �wnE �� then

w � x � �pre � post � v w � �E �

�

Abbreviation ��� assumption p���

fpreg b� � �pre � true� �

�

De�nition 	��� assumption p��
	

wp�fpreg�A� b� pre � A �

�

c� Carroll Morgan ����� ����� ����

��� Summary of laws

Law ���� augment assignment p����

The assignment w � �E can be replaced by the fragment

fCI g w � c � �E � � �CI � �

�

Law ��� augment assignment p����

The assignment w � �E can be replaced by the assignment w � c � �E �F provided
that

CI V CI �w � cnE �F � �

�

Law B�� augment assumption p���

The assumption fpreg becomes fpre � CI g� �
Law B�� augment coercion p���

The coercion �post � becomes �CI 	 post ��
�

Law ���� augment guard p���

The guard G may be replaced by G � provided that

CI V �G � G �� �

�

Law ���� augment initialisation p����

The initialisation I becomes I � CI �
�

Law ���� augment speci�cation p����

The speci�cation w � �pre � post � becomes

w � c� �pre � CI � post � �

�

Abbreviation ���� coercion p���

no initial variables�

�post � b� � �true � post � �

�

De�nition 	�� coercion p��
	

no initial variables�

wp��post ��A� b� post 	A �

�

c� Carroll Morgan ����� ����� ����

Summary of laws ���

Law ��� collapse identical branches p���	

if ��� i � Gi � branchi�
�� G � branch

�� G � � branch

�

� if ��� i � Gi � branchi�
�� G �G � � branch

� �

�

Law ��
 contract frame p�	

w � x � �pre � post � v w � �pre � post �x�nx �� �

�

De�nition 	���� data re�nement p��
�

Let a be a list of variables called abstract� let c be a list of variables called concrete�
and let I be a formula called the coupling invariant� Then command progA is data�
re�ned to progC by a� c� I exactly when for all postconditions A not containing c
we have

�� a � I � wp�progA�A�� V wp�progC � �� a � I � A�� �
�

Law ����� data�re�ne assignment p����

Under abstraction function af and data�type invariant dti� the assignment
w � a � �E �F can be replaced by the assignment w � c � �E �an af c��G provided that
G contains no a� and that

dti c V F �an af c� � af G

and dti c V dtiG �

�

Law ����� data�re�ne guard p���

Under abstraction function af and data�type invariant dti� the guard G may be
replaced by G �an af c� � dti c� or if desired simply by G �an af c� on its own�
�

Law ����
 data�re�ne initialisation p���

Under abstraction function af and data�type invariant dti� the initialisation I be�

comes

I �an af c� � dti c �

�

c� Carroll Morgan ����� ����� ����

��	 Summary of laws

Law ����� data�re�ne speci�cation p����

Under abstraction function af and data�type invariant dti� the speci�cation
w � a� �pre � post � becomes

w � c� �pre�an af c� � dti c � post �a�� an af c�� af c�� �
�

Abbreviation ��� default precondition p���

w � �post � b� w � �true � post � �

�

Law ����� diminish assignment p����

If E contains no variables a� then the assignment w � a � �E �F can be replaced by
the assignment w � �E �
�

Law B�
 diminish assumption p���

The assumption fpreg is diminished to f�� a � A � pre�g�
�

Law B�� diminish coercion p����

The coercion �post � becomes ��
 a � A � post���
�

Law ����� diminish initialisation p���

The initialisation I becomes

�� a � A � I � �

�

Law ����� diminish speci�cation p����

The speci�cation w � a� �pre � post � becomes

w � ��� a � A � pre� � �
 a� � A � pre� 	 �� a � A � post��� �

where pre� is pre�w � anw�� a��� The frame beforehand must include a�
�

Law ����	 diminish speci�cation p����

The speci�cation w � �pre � post � becomes

w � ��� a � A � pre� � �
 a � A � pre� 	 post�� �

where pre� is pre�wnw��� The frame beforehand need not include a� and post must
not contain a��
�

c� Carroll Morgan ����� ����� ����

Summary of laws ���

Law ���
 establish assumption p����

An assumption after a speci�cation can be removed after suitable strengthening of
the precondition�

w � �pre � post � � fpre �g
� w � �pre � �
w � post 	 pre �� �w�nw � � post � �

�

Law �� expand frame p���

w � �pre � post � � w � x � �pre � post � x � x�� �

�

Law �� expand frame p���

For fresh constant X �

w � �pre � post �
v con X �

w � x � �pre � x � X � post � x � X � �

�

De�nition 	��� feasibility p��
	

Command prog is feasible exactly when

wp�prog � false� � false �

Otherwise it is infeasible�
�

De�nition ��
 feasibility p���

The speci�cation w � �pre � post � is feasible i�

pre V ��w � T � post� �

where T is the typea of the variables w �
�

aIn Chapter � the notion of type will be generalised to include so�called �local invariants�� and
then a more comprehensive de�nition ��	
� of feasibility will be appropriate	 It does not concern
us now� but must be borne in mind if ever referring to the de�nition above once local invariants
have been introduced	

De�nition ��� feasibility p�

The speci�cation w � �pre � post � is feasible in context inv i�

�w � w�� � pre � inv V ��w � T � inv � post� �
where T is the type of w �
�

c� Carroll Morgan ����� ����� ����

��
 Summary of laws

Law ��� �x initial value p�
�

For any term E such that pre V E � T � and fresh name c�

w � �pre � post �
v con c � T �

w � �pre � c � E � post � �

�

Law ��� �atten nested alternations p����

if ��� i � Gi � if ��� j � Hj � branchij � �� �
� if ��� i � j � Gi � Hj � branchij � � �

�

Law ��� following assignment p���

For any term E �

w � x � �pre � post �
v w � x � �pre � post �xnE �� �

x � �E �

�

Abbreviation �	 initial variable p���

Occurrences of ��subscripted variables in the postcondition of a speci�cation refer
to values held by those variables in the initial state� Let x be any variable� probably
occurring in the frame w � If X is a fresh name� and T is the type of x � then

w � �pre � post �b� j� con X � T � w � �pre � x � X � post �x�nX �� �j �
�

Law B�� initialised iteration p����

Provided inv contains no initial variables�

w � �pre � inv � �G �
v w � �pre � inv � �

do G � w � �G � inv � inv � �� � V � V��� od �

�

Law ����� introduce assumption p���

�post � v �post � fpostg�

�

c� Carroll Morgan ����� ����� ����

Summary of laws ���

Law ���� introduce coercion p���

skip is re�ned by any coercion�

skip v �post � �

�

Law ��� introduce local variable p�

If x does not occur in w � pre or post then

w � �pre � post � v j� var x � T � and inv � w � x � �pre � post � �j �
�

Law ��	 introduce logical constant p�
�

If pre V �� c � T � pre ��� and c does not occur in w � pre or post � then

w � �pre � post �
v con c � T �

w � �pre � � post � �

If the optional type T is omitted� then the quanti�cation in the proviso should be
untyped�
�

Law ��� iteration p�	�

Let inv � the invariant� be any formula� let V � the variant� be any integer�valued
expression� Then if GG is the disjunction of the guards�

w � �inv � inv � �GG �
v do ���i � Gi � w � �inv � Gi � inv � �� � V � V���� od �

Neither inv nor Gi may contain initial variables� The expression V� is V �wnw���
�

Law �� leading assignment p���

For any expression E �

w � x � �pre�xnE � � post �x�nE���
v x � �E �

w � x � �pre � post � �

The expression E� abbreviates E �w � xnw�� x���
�

Law ��� leading assignment p��

For disjoint w and x �

w � x � �E �F �wnE � � w � �E � x � �F �

�

c� Carroll Morgan ����� ����� ����

��� Summary of laws

Law ��	 left�distribution of composition over alternation p����

if ��� i � Gi � branchi� �� prog

� if ��� i � Gi � branchi � prog� � �

�

Abbreviation ��� local block initialisation p���

j� var l � T � initially inv � prog �jb� j� var l � T � l � �inv � � prog �j �

�

De�nition 	��
 local variable p��
�

wp�j� var x � prog �j�A� b� �
 x � wp�prog �A�� �

provided A contains no free x �
�

De�nition 	��� logical constant p��
�

wp�j� con x � prog �j�A� b� �� x � wp�prog �A�� �

provided A contains no free x �
�

Law ��� merge assumptions p��	

fpre �g fpreg � fpre � � preg �

�

Law ���� merge coercions p���

�post � �post �� � �post � post �� �

�

Law ��� open assignment p���

For any expression F �

w � x � �E � � v w � x � �E �F �

�

De�nition 	���	 recursion p��

Let C�p� be a program fragment in which the name p appears� Then

re p � C�p� er
is the least�re�ned program �x such that C��x � � �x �
�

c� Carroll Morgan ����� ����� ����

Summary of laws ���

Law ���� re�ne initialisation p��
�

If init � V init � then

initially init v initially init � �

�

Law ���	 re�ne module p��

Let E be the list of exported procedures from moduleM � I its imported procedures�
and init its initialisation� A module M � re�nes M if the following three conditions
are satis�ed�

�� Its exported variables are unchanged�
	� Its exported procedures E � re�ne E �
�� Its initialisation init � re�nes init �

In addition� the following changes may be made provided the three conditions
above are not invalidated as a result�

�� Its imported variables� declarations are weakened�
	� Its imported procedures I � are re�ned by I �
�� An imported procedure I is replaced by a local �neither imported nor ex�

ported� procedure I � that re�nes I �

�

De�nition 	��� re�nement p��
�

For any commands prog� and prog	� we say that prog� is re�ned by prog	� writing
prog� v prog	� exactly when for all postconditions A we have

wp�prog��A� V wp�prog	�A� �
�

Law ��� remove alternation p����

if true� branch � � branch �

�

Law ���� remove assumption p��

Any assumption is re�ned by skip�

fpreg v skip �

�

Law ���	� remove coercion p���

fpreg �pre� v fpreg�

�

c� Carroll Morgan ����� ����� ����

�� Summary of laws

Law ��
 remove false guard p����

if ��� i � Gi � branchi�
�� false� branch

�

� if ��� i � Gi � branchi� � �

�

Law ��� remove invariant p���

Provided w does not occur in inv �

w � �pre � inv � post � v w � �pre � post � �

�

Law ��
 remove logical constant p�
�

If c occurs nowhere in program prog � then

j� con c � T � prog �j v prog �

�

Law ���� result assignment p����

Given a procedure declaration that re�nes

procedure Proc �result f � T � b� w � f � �E �F �

with f not occurring in E or in F � we have the following re�nement�

w � a � �E �F v Proc �a� �

Variables a and f need not be di�erent from each other� but w must be disjoint
from both�
�

Law ���
 result speci�cation p����

Given a procedure declaration that re�nes

procedure Proc �result f � T � b� w � f � �pre � post �anf �� �
with f not occurring in pre� and neither f nor f� occurring in post � we have the
following re�nement�

w � a� �pre � post � v Proc �a� �

Again� variables a and f need not be di�erent from each other� but w must be
disjoint from both�
�

c� Carroll Morgan ����� ����� ����

Summary of laws ���

Law ��� right�distribution of assignment over alternation p����

x � �E � if ��� i � Gi � branchi� �
� if ��� i � Gi �xnE �� x � �E � branchi� � �

�

Law �� select true guard p����

if ��� i � Gi � branchi�
�� true� branch

�

v branch �

�

Abbreviation ���� sequence assignment p���

For any sequence as� if � � i � j � $as then

as�i � �E ��j � b� E when i � j

as�j � when i �� j �

�

Law ��� sequential composition p���

For anya formula mid �

w � �pre � post � v w � �pre � mid � � w � �mid � post � �

�

aNeither mid nor post � however� may contain the so�called �initial variables� that are the
subject of Chapter � to come	 That does not at all concern us now� but must be remembered
if ever referring to this law later� once they have been introduced	 Law B	 on page �
 is the
most appropriate replacement for the more general case	

Law �
 sequential composition p���

For fresh constants X �

w � x � �pre � post �
v con X �

x � �pre � mid � �
w � x � �mid �x�nX � � post �x�nX �� �

The formula mid must not contain initial variables other than x��
�

c� Carroll Morgan ����� ����� ����

��� Summary of laws

Law B�	 sequential composition p���

w � x � �pre � post �
v x � �pre � mid � �

w � x � �mid � post � �

The formula mid must not contain initial variables� and post must not contain x��
�

Abbreviation �� simple speci�cation p��

For any relation ��
w ��E � w � �w � E�� �

where E� is E �wnw���
�

Law ��� simple speci�cation p���

Provided E contains no w �

w � �E � w � �w � E � �

If w and E are lists� then the formula w � E means the equating of corresponding
elements of the lists�
�

Law ��	 skip command p���

If pre V post � then

w � �pre � post � v skip �

�

Law ��� skip command p�	

If �w � w�� � pre V post � then

w � �pre � post � v skip �

�

Law ��
 skip composition p���

For any program prog �

prog � skip � skip� prog � prog �

�

De�nition 	��	 speci�cation p��
�

wp�w � �pre � post � �A� b� pre � �
w � post 	 A� �v�nv � �

where the substitution �v�nv � replaces all initial variables by corresponding �nal
variables�
�

c� Carroll Morgan ����� ����� ����

Summary of laws ���

Abbreviation ��� speci�cation invariant p�	�

Provided inv contains no initial variables�

w � �pre � inv � post � b� w � �pre � inv � inv � post � �

�

Law ��� strengthen postcondition p��

If post � V post � then

w � �pre � post � v w � �pre � post �� �

�

Law ��� strengthen postcondition p�		

If pre�wnw�� � post � V post � then

w � �pre � post � v w � �pre � post �� �

�

De�nition 	���� substitution by result p��

wp�prog �result f na��A� b� �
 f � wp�prog �A�anf ��� �

provided f does not occur free in A�
�

De�nition 	��� substitution by value p��

wp�prog �value f nE ��A� b� wp�prog �A��f nE � �

provided f does not occur free in A�
�

De�nition 	���� substitution by value�result p��

wp�prog �value result f na��A� b� wp�prog �A�anf ���f na��

provided f does not occur free in A�
�

c� Carroll Morgan ����� ����� ����

��	 Summary of laws

Law ���� tagged alternation p����

Let �rst� middle and last be tags from a typical type declaration

�rst A � � �H jmiddle I � � �P j last Q � � �Z �

Provided none of a � � �h� q � � � z appear free in E or prog � this re�nement is valid�

fE is �rst � E is lastg prog
v if E is

�rst a � � � h � fE � �rst a � � � hg prog
�� last q � � � z � fE � last q � � � zg prog
� �

�

Law ���	 tagged iteration p��	

Let �rst� middle and last be tags from a type declaration

Type b� �rst A � � �H jmiddle I � � �P j last Q � � �Y �

Provided none of a � � �h� q � � � y appears free in z � inv � E � or V � this re�nement is
valid�

z � �inv � inv � ��E is �rst � E is last��
v do E is

�rst a � � �h� z � �E � �rst a � � � h � inv � V �� V��
�� last q � � � y� z � �E � last q � � � y � inv � V �� V��
od �

The formula inv is the invariant� the expression V is the variant� and the relation
�� must be well�founded�
�

Law ���� value assignment p���

Given a procedure declaration that re�nes

procedure Proc �value f � T � b� w � f � �E � � �

we have the following re�nement�

w � �E �f nA� v Proc �A� �

The actual parameter A may be an expression� and it should have type T � �If it
does not� the re�nement remains valid but subsequent type checking will fail�� As
usual� variables w and f must be disjoint�
�

c� Carroll Morgan ����� ����� ����

Summary of laws ���

Law ���	 value speci�cation p����

Given a procedure declaration that re�nes

procedure Proc �value f � T � b� w � f � �pre � post � �

with post containing no f �but possibly f��� the following re�nement is valid�

w � �pre�f nA� � post �f�nA��� v Proc �A� �

where A� is A�wnw���
�

Law ���� value�result assignment p����

Given a procedure declaration that re�nes

procedure Proc �value result f � T � b� w � f � �E �F �

we have the following re�nement�

w � a � �E �f na��F �f na� v Proc �a� �

�

Law ���� value�result speci�cation p����

Given a procedure declaration that re�nes

procedure Proc �value result f � T � b� w � f � �pre � post �anf �� �
with post not containing f � we have the following re�nement�

w � a� �pre�f na� � post �f�na��� v Proc �a� �

�

Law ��	 weaken precondition p��

If pre V pre �� then

w � �pre � post � v w � �pre � � post � �

�

c� Carroll Morgan ����� ����� ����

References

�Abr��� J��R� Abrial� Generalised substitutions� �� Rue des Plantes	 Paris �
��	
France	 �����

�Bac��� R��J�R� Back� On the correctness of re�nement steps in program development�
Report A������	 Department of Computer Science	 University of Helsinki	
�����

�Bac��� R��J�R� Back� Correctness preserving program re�nements� Proof theory and
applications� Tract ���	 Mathematisch Centrum	 Amsterdam	 �����

�Bac��� R� Backhouse� Program Construction and Veri�cation� Prentice�Hall	 �����

�Bac��� R��J�R� Back� Procedural abstraction in the re�nement calculus� Report Ser�A

	 Departments of Information Processing and Mathematics	 Swedish Uni�
versity of �Abo	 �Abo	 Finland	 �����

�Bac��� R��J�R� Back� A calculus of re�nements for program derivations� Acta Infor�

matica	 �
�
�����	 �����

�Bir��� R�S� Bird� Transformational programming and the paragraph problem� Science
of Computer Programming	 ���
�����	 �����

�Boo��� H� Boom� A weaker precondition for loops� ACM Transactions on Program�

ming Languages and Systems	 ��������	 �����

�CU��� Wei Chen and J�T� Udding� Towards a calculus of data re�nement� In J�L�A�
van de Snepsheut	 editor	 Lecture Notes in Computer Science ���� Mathemat�

ics of Program Construction� Springer	 June �����

�Der��� N� Dershowitz� The Evolution of Programs� Birkh�auser	 �����

�DF��� E�W� Dijkstra and W�H�J� Feijen� A Method of Programming� Addison�Wesley	
�����

�Dij��� E�W� Dijkstra� A Discipline of Programming� Prentice�Hall	 Englewood Cli�s	
�����

��

References ���

�Flo��� R�W� Floyd� Assigning meanings to programs� In J�T� Schwartz	 editor	 Math�

ematical Aspects of Computer Science� American Mathematical Society	 �����

�GM��� P�H�B� Gardiner and C�C� Morgan� Data re�nement of predicate transformers�
Theoretical Computer Science	 ���������	 ����� Reprinted in �MV���

�Gri��� D� Gries� The Science of Programming� Springer	 �����

�Hay��� I�J� Hayes	 editor� Speci�cation Case Studies� Prentice�Hall	 London	 second
edition	 �����

�Heh�� E�C�R� Hehner� The Logic of Programming� Prentice�Hall	 London	 ����

�Hoa��� C�A�R� Hoare� An axiomatic basis for computer programming� Communica�
tions of the ACM	 �������
���
��	
��	 October �����

�Jon��� C�B� Jones� Systematic Software Development using VDM� Prentice�Hall	
�����

�Kin��� S� King� Z and the re�nement calculus� In Proceedings of the �rd VDM�Europe

Symposium	 Kiel	 ����� Springer� Lecture Notes in Computer Science ���

�Mee��� L� Meertens� Abstracto �� The next generation� In Annual Conference� ACM	
�����

�MG��� C�C� Morgan and P�H�B� Gardiner� Data re�nement by calculation� Acta

Informatica	 ������
��	 ����� Reprinted in �MV���

�Mor� J�M� Morris� Invariance theorems for recursive procedures� Department of
Computer Science	 University of Glasgow�

�Mor��� J�M� Morris� A theoretical basis for stepwise re�nement and the programming
calculus� Science of Computer Programming	 ������������	 December �����

�Mor��a� C�C� Morgan� Auxiliary variables in data re�nement� Information Processing

Letters	 �������������	 December ����� Reprinted in �MV���

�Mor��b� C�C� Morgan� Data re�nement using miracles� Information Processing Letters	
���
�������	 January ����� Reprinted in �MV���

�Mor��c� C�C� Morgan� Procedures	 parameters	 and abstraction� Separate concerns�
Science of Computer Programming	 �����������	 ����� Reprinted in �MV���

�Mor��d� C�C� Morgan� The speci�cation statement� ACM Transactions on Program�

ming Languages and Systems	 �����	 July ����� Reprinted in �MV���

�Mor��� J�M� Morris� Laws of data re�nement� Acta Informatica	 ����������	 �����

�MR��� C�C� Morgan and K�A� Robinson� Speci�cation statements and re�nement�
IBM Journal of Research and Development	 ���
�	 September ����� Reprinted
in �MV���

c� Carroll Morgan ����� ����� ����

��� References

�MS��� C�C� Morgan and J�W� Sanders� Laws of the logical calculi� Technical Report
PRG���	 Programming Research Group	 �����

�MV��� C�C� Morgan and T�N� Vickers� Types and invariants in the re�nement cal�
culus� Science of Computer Programming	 ����� A shorter version appears in
LNCS ��
	 van de Snepsheut	 J�L�A� �ed��

�MV�� C�C� Morgan and T�N� Vickers	 editors� On the Re�nement Calculus� FACIT
Series in Computer Science� Springer	 ����

�Nel��� G� Nelson� A generalization of Dijkstra�s calculus� ACM Transactions on

Programming Languages and Systems	 �����
���
��	 October �����

c� Carroll Morgan ����� ����� ����

Index

Mathematical symbols and phrases
occur �rst� in order of their appear�
ance in the text� the remainder of the
index is alphabetical� Bold page num�
bers are de�ning occurrences of the
entry�

Abbreviations� de�nitions� and laws
may be found either by number or al�
phabetically� laws for example appear
by number under the heading �Law��
and they appear alphabetically as sep�
arate entries indicated by underlining�

v� see re�nement
w � �pre � post �� see speci�cation
� �end of law�� �
�wnE �� see substitution into formulab� �is de�ned�� ��
fpreg� see assumption
� �answer supplied�� ��p
� see square root

"� see factorial
�� see and
�� see or
�� see not
	� see implies

�� see if and only if

� see quanti�cation
�� see spot
�� see quanti�cation
�� see equivalence
V� see entailment
W� see entailment
� � see decoration
��� see assignment
x � ��� see assignment� open
� � see sequential composition
�� see equality
�� see re�nement marker
G � prog � see guarded command
��� see else
���i � Gi � progi�� ��
GG � see disjunction of guards
�i�� see re�nement marker
w � �pre � inv � post �� see

speci�cation invariant
N � see natural numbers
Z� see integers
Q � see rational numbers
R� see real numbers
C � see complex numbers
T	 �positive elements of type��
�
T� �negative elements of type��
�
�� see addition
�� see subtraction
�� see multiplication

���

�� Index

�� see division� real
�� see division� integer
d e� see ceiling
b c� see #oor
�� see natural number subtraction
t� see maximum
u� see minimum
�� see less than
�� see less than or equal to
�� see greater than
� see greater than or equal to
j� see divides exactly
x � T � see declaration
j�� � ��j� see local block
�� see simple speci�cation
x�� see initial variable
f� � �g� see enumeration
�� see set union
�� see set intersection
�� see set subtraction
�� see set Cartesian product
�� see set membership
$� see set cardinality
fx � T j R � Eg� see comprehension
�� between sequences� see promoted

relation
b�e� see bag occurrences
�� see bag membership
�� see bag union
�� see bag intersection
�� see bag subtraction
�� see bag addition
bb� � �cc� see enumeration
bbx � T j R � Ecc� see comprehension
h� � �i� see enumeration
q �i �� see sequence indexing
m�n� see sequence ellipsis
e�q � see sequence cons
q� �� q	� see sequence concatenation
hx � T j R � E i� see comprehension
q �i � j �� see sequence multiple indexing
p � q � see sequence �lter
q �h�� 	i�� see sequence composition
q �f�� 	g�� see sequence subsequence

�� see sequence subsequence
n� see sequence subsequence
q ���	�� see sequence subsegment
�� see sequence subsegment
q�n� see sequence pre�x
�� see sequence pre�x
q�n� see sequence su!x
� x � T j R � E �� see distributed

operatorP
� see sequence sum
!�� see function� partial
�� see Cartesian product
�� see function� total
f �s�� see function applied to element
f �ss�� see function applied to set
f �s � � t �� see overriding
f �ss � � t �� see overriding
f �� g � see overriding
C� see function� domain restriction
�C� see function� domain corestriction
B� see function� range restriction
�B� see function� range corestriction
shrit � see relate s by r to t
r��� see inverseQ
� see sequence product

S��S	�T � see function
declarations associate to right

as�i � �E �� see assignment to
sequences

�� see time complexity
%� see time complexity
#� see time complexity
+� see time complexity
$� see time complexity
�$� see time complexity
� �in heap�� ��
O � see time complexity
'� see time complexity
(� see time complexity
�� see input
	� see output
�post �� see coercion
�� see simple speci�cation

c� Carroll Morgan ����� ����� ����

Index ���

Abbreviation
��� default precondition� ��
��� assumption� ��
��� speci�cation invariant�
�
�� simple speci�cation� �
�	 initial variable� ��
���� sequence assignment� ��
���� coercion� ���
��� local block initialisation� ��

abort� �now� or �later�� �	
abort command �abort�� ��� ���

��� ��
absolute value �abs��
�
absorb assumption� �	 see also Law

��
absorb coercion� ��� see also Law

���	
absorption� 	��
abstract program� see program
abstraction function� ��	
abstraction invariant� see coupling

invariant
actual parameter� see parameter
addition ����
�
advance assumption� 			 see also

Law 		�	
advance coercion� 			 see also Law

		��
aliasing� ���
alternation� ���� ��� ��

exploits disjunction� ��
laws of� ��	�
tagged� ���
if � � ��� ��
if � � � then� ��
if � � � then � � �else� 	�
see also Law
��� Law
�	

alternation guards�
�� ��� �� see
also Law
��

and ���� ��
and� see local invariant
annotation� ��� ��� see also

assumption� coercion
antecedent� ��

antisymmetry� see order
application� see function
arity� ��
assignment� � ����

� 	��

always terminates� ��� ��
multiple� �
open �x � ���� ��
to sequences� ��
see also Law ���� Law ��	�

De�nition 	���
associative� 	�� �� 	�
assumption �fpreg�� ��� 	�
 see also

Abbreviation ���� De�nition
	���

atomic program� ��
augment assignment� ��� see also

Law ����� Law ���
augment assumption� 	� see also

Law B��
augment coercion� 	� see also Law

B��
augment guard� �� see also Law

����
augment initialisation� ��� see also

Law ����
augment speci�cation� ��� see also

Law ����
auxiliary variable� see variable
axiom� ��

backtracking� ��� 	��
bag� �� see also type bag
bag� see conversion function
bag

addition ���� ��
intersection ���� ��
membership ���� ��
occurrences �b�e�� ��
subtraction ���� ��
type� see type
union ���� ��

Binary code� see Program
Binary search� see Program
body� of a quanti�cation� ��

c� Carroll Morgan ����� ����� ����

�	� Index

Boolean� �
bound function� see variant
bound variable� 	�� ��� 	��

in comprehension� �

in formula� ��
one replaced by several� 	��
rightmost varies fastest� �
see also free variable

br �binary�� ��

Bubble Sort� see Program

Calculator� see Program
Cartesian product ���� �� �	
case analysis� ��� ��
ceiling �d e��
��
�
change of representation� see state

transformation
Checking for powers of two� see

Program
choose command �choose�� ���
��

��� �	� ���� 	
client� �� ��
cm �conditional majority�� �

code� ��� �� 	�

cannot be developed from
infeasible program� ��

for initialisation� see initialisation
is feasible� ��� ��
no comments� ���
re�nement of� �
� ���

coercion ��post ��� ���� 	�
 see also
Abbreviation ����� De�nition
	��

collapse identical branches� ��
 see
also Law ���

commutative� 	�� 	� 	�
quanti�ers� 	�

complement� 	��
complex numbers �C ��
�
complexity� see time complexity
composition� see sequence
compound program� ��
comprehension

bag bbx � T j R � Ecc� ��

sequence hx � T j R � E i� �
set fx � T j R � Eg� �

con� see logical constant
concurrency� 	��� 	���
conjunction� see and� conjunctive

normal form
conjunctive normal form� 	��
consequent� ��
constant

in formula� ��
in program �const�� ��� ��
see also logical constant

context�
�� 	��
contract� ��

negotiation� �
contract frame� �
�
� see also Law

��

contrapositive� 	��
conversion function

bag� ��� ��
cpx� ��
implicit� �� ��� �� 	
int� ��
rat� ��
real� ��
seq� ��
set� ��� ��

Copy Rule� see procedure
coupling invariant� ��	�� ���� ��

referring to global variable� ��
false� �	

cpx� see conversion function
Currying� ���

data re�nement� ����� ��	� �����
���� 	��

functional� ����� ��	
see also state transformation�

De�nition 	����
data�re�ne assignment� ��� see also

Law �����
data�re�ne guard� �� see also Law

�����

c� Carroll Morgan ����� ����� ����

Index �	�

data�re�ne initialisation� ��� see also
Law ����

data�re�ne speci�cation� ��� see also
Law �����

data�type invariant� see invariant
Database search� see Program
de Morgan�s laws� ���
debugging� ��
declaration

type� �
��
see also local variable� local

invariant� logical constant�
formal parameter

decoration of proof step� � � �	
decoration of re�nement step

� separates from program�

� � ��b� � �

con�
�
procedure� ���
var�

default� none in alternation� �
default precondition� �� see also

Abbreviation ���
De�nition

��
 feasibility� ��
��� feasibility� �
	��� assignment� 	��
	��	 speci�cation� 	��
	��� re�nement� 	�	
	��
 local variable� 	��
	��� logical constant� 	��
	��� feasibility� 	�

	��� assumption� 	�

	�� coercion� 	�

	��� substitution by value� 	��
	���� substitution by result� 	��
	���� substitution by

value�result� 	��
	���	 recursion� 	��
	���� data re�nement� 	��

de�nition module� see module
describe� see formula
deterministic� 	��

development history� ����
diminish assignment� ��� see also

Law �����
diminish assumption� 	� see also

Law B�

diminish coercion� 	�� see also Law

B��
diminish initialisation� �� see also

Law �����
diminish speci�cation� ��� see also

Law ����	� Law �����
disjoint union� ���
disjunction� see or� disjunctive

normal form
disjunction of guards �GG�� ��
disjunctive normal form� 	��
distributed operator� 	��

� x � T j R � E �� ��
distribution� 	��
distributive law� 	�
divides exactly �j�� ���
�
division

integer ����
�
real ����
�

do� see iteration
dom� see function� relation
domain� see function
downloop� see iteration
drop� see sequence su!x

e!ciency� ��� �		 see also time
complexity

else� see alternation
else

in alternation� ��
in iteration� 	�

em �exists majority�� �

entailment �V and W�� ��

distribution of� 	

enumeration

bag bb� � �cc� ��
sequence h� � �i� ��
set f� � �g� �	

eof� ���

c� Carroll Morgan ����� ����� ����

�		 Index

ep �even paragraph�� ��

equality ���� ��

of programs� ��
equivalence ���� ��

chain of� 	

is not a propositional connective�

	�
er� see recursion block
establish assumption� ��� see also

Law ���

even paragraph� 	��
executable program� see program
executable speci�cation� see

speci�cation
existential� see quanti�cation
exit� ���
exotic operators� ��
expand frame� ��� �	 see also Law

��� Law ��
exponentiation in logarithmic time�

see Log�time exponentiation
export� see module
expression� ��

unde�ned� ���

Factorial� see Program
factorial �"�� ��
false� �� �

describes no states� �� �
unit of �� 	��
zero of �� 	��

feasibility� ��� �� 	�

checking omitted� ��
see also De�nition ��
� infeasible�

De�nition ���� De�nition 	���
�� see alternation
�lter� see sequence
�nal state� see state
�nancial ruin� ��
�nset� �	� �	� see also type
�x initial value� �� see also Law ���
�� see sequence #atten
#atten nested alternations� ��	 see

also Law ���

#oor �b c��
��
�
fn �in �nal positions�� ���
following assignment� �	 see also

Law ���
formal parameter

type of �x � T �� ���� ���
see also parameter

formula� ���� 	��
describes a state�

general� ��
propositional� ���
satis�ed by a state�

simple� �
stronger� �� ��
weaker� �� ��

fr� see sequence front
frame

laws for� ���
see also speci�cation� contract

frame� expand frame
free variable� ��� 	�� see also bound

variable
Frontier equality iteratively� see

Program
Frontier of tree iteratively� see

Program
function� ��

application� �
applied to element �f �s��� �
applied to set �f �ss��� �
declaration associates to right

�S��S	�T �� �	
domain �dom�� �
domain corestriction ��C��
domain restriction �C��
higher�order� 		
injection� ���
injective� see relation
inverse� see relation
one�to�one� see relation
onto� �
overriding� �
partial � !���

range �ran�� �

c� Carroll Morgan ����� ����� ����

Index �	�

range corestriction ��B��
range restriction �B��
source�

surjective� �
target�

total ���� �
type� see type

functional� see relation
functional abstraction� ����� ��	

gc �Gray code�� ���
gcb �Gray code binary�� ��

Gray code� see Program
greater than ����
�
greater than or equal to ���
�
guard� ��

overlapping� ��
guarded command �G � prog��

���
�

Handing out sweets� see Program
hd� see sequence head
heap� ��
Heap Sort� see Program
hi �higher heap�� ���
hint

in proof� 	

in re�nement� ��

histogram� 	��
hp �heap�� ��

idempotent� 	�� 	� 	�
if� see alternation
if and only if ���� ��
if statement� see alternation
i�� see if and only if
ill�typed� ��
imperative programming�

implementation module� see module
implies �	�� ��
import� see module
induction� 	�	
infeasible� ��� �	� ��� see also

feasibility
inference rule� ��

initial state� see state
initial variable �x���

� ��� �� see

also Abbreviation �	
initialisation

code for� ���
in local block� see local block

initialisation
of module �initially�� �

�

���� ��	
omitted if true� ���
re�nement� see re�ne

initialisation
false� ���

initialised iteration� 	�	 see also Law
B��

initially� see initialisation
injection function� see function
injective� see relation
input ���� ���� 	��
input� ���
Insertion Sort� ��� see also Program
int� see conversion function
integers �Z��
�
introduce assumption� �� see also

Law �����
introduce coercion� ��� see also Law

����
introduce local variable� �� see also

Law ���
introduce logical constant� �� see

also Law ��	
invariant

checking� ���� ���
coupling� see coupling invariant
data�type� ��	
introduction in local block� ���
local� see local invariant
loop� see iteration
speci�cation�
�
strengthening� 	�	

inverse �r���� �� see also relation
involution� 	��
irre#exivity� see order
italic� for variables� ��

c� Carroll Morgan ����� ����� ����

�	
 Index

iteration�
���
�� 	��
do � � �od� 	�
checklist for�
��
down �loop�� ���� ���
in�nite equivalent to abort�
�
initialised�

invariant�
	
tagged� �	

unfolding�
	
up �loop�� ��
variant� 		
see also Law ���

Largest rectangle under histogram�
see Program

Law
��� strengthen postcondition� �
��	 weaken precondition� �
��� assignment�
��� simple speci�cation� ��
�� absorb assumption� �	
��� merge assumptions� �

���� remove assumption� ��
��� open assignment� 	�
��	 skip command� ��
��� sequential composition� ��
��
 skip composition� ��
��� following assignment� �	
��� leading assignment� ��

�� alternation� ��

�	 alternation� ��

�� alternation guards�
�
��� strengthen postcondition�

��	 assignment�

��� skip command�
�
��
 contract frame�
�
��� iteration�
�
��� introduce local variable� ��
��	 introduce logical constant� ��
��� �x initial value� ��
��
 remove logical constant� ��
��� remove invariant� ��
�� expand frame� ��
�
 sequential composition� ��

�� leading assignment� ��
�� expand frame� �	
���� value assignment� ��
���	 value speci�cation� ���
���� result assignment� ���
���
 result speci�cation� ���
���� value�result assignment� ���
���� value�result speci�cation�

���
���� tagged alternation� ���
���	 tagged iteration� �
�
���� re�ne initialisation� ���
���	 re�ne module� ��
���	 absorb coercion� ���
���� introduce coercion� ���
���
 establish assumption� ���
���� augment initialisation� ���
���� augment speci�cation� ���
���� augment assignment� ���
��� augment assignment� ���
���� augment guard� ��
����� diminish initialisation� ��
����� diminish speci�cation� ���
����	 diminish speci�cation� ���
����� diminish assignment� ���
����
 data�re�ne initialisation�

���
����� data�re�ne speci�cation�

���
����� data�re�ne assignment� ���
����� data�re�ne guard� ��
���� merge coercions� ��
����� introduce assumption� ��
���	� remove coercion� ��
��	 left�distribution of

composition over alternation�
���

��� right�distribution of
assignment over alternation�
���

��
 remove false guard� ��	
��� remove alternation� ��	
��� #atten nested alternations�

��	

c� Carroll Morgan ����� ����� ����

Index �	�

��� collapse identical branches�
��

�� select true guard� ���
		�� advance coercion� 			
		�	 advance assumption� 			
B�� initialised iteration� 	�	
B�	 sequential composition� 	��
B�� augment assumption� 	�
B�
 diminish assumption� 	�
B�� augment coercion� 	�
B�� diminish coercion� 	��

Law of the excluded miracle� see
miracle

leading assignment� ��� �� see also
Law ���� Law ��

left�distribution of composition over
alternation� ��� see also Law
��	

less than ����
�
less than or equal to ����
�
linear� see time complexity
Linear search� see Program
list of variables

in assignment� 	
in quanti�cation� 	�

lo �lower heap�� ���
local block �j�� � ��j��
	

transformation� see state
transformation

local block initialisation� �� see also
Abbreviation ���

local invariant� ���� �
� ��� 	�� 	��
declaration �and��
�
explicit� �
�
implicit� �
�
removing� ��� ���� ���� 	��
subsumes type� ��
see also local block� type

checking
local variable� ���� 	��

declaration �var x � T ��
�
see also local block� De�nition

	��

Log�time exponentiation� see
Program

Log�time multiplication� see Program
Log�time transitive closure� see

Program
Logarithm� see Program
logical constant�
	�� �� 	��

declaration �con x � T ��
	
see also De�nition 	���

loop� see iteration
loop� ���
lt� see sequence last

magic command �magic�� ��� ��� ���
���� ��� see also miracle

Majority voting� see Program
map� �� see also state
mathematical induction� 	�	
maximum �t��
�
Maybe� as type� �
	
merge assumptions� �
 see also Law

���
merge coercions� �� see also Law

����
minimum �u��
�
miracle� ��� 	�	� �
	

excluded� 	�

see also magic

mixed program� see program
mod� see modulus
module� ��
�� �

declaration �module�� �

de�nition� ���
equivalent to local block� �

export list �export�� �

for input�output� 	�
implementation� ���
import list �import�� �

initialisation� see initialisation
many implementations� ���
re�nement� see re�ne module
transformation� see state

transformation
modulus �mod��
�

c� Carroll Morgan ����� ����� ����

�	� Index

Mortgage� see Program
multiple assignment� see assignment
multiplication ����
�
multiplication in logarithmic time�

see Program Log�time
multiplication

mw �minimum waste�� ���

natural numbers �N��
�
subtraction ���� �	

negation� see not
nl �new line�� ��
nondeterminism� �� 	��
nontermination�
� see also

termination
not ���� ��
od� see iteration
ok �of paragraph�� ���
one�point laws� 	��
one�to�one� see relation
onto� see function� relation
open assignment� 	� see also Law

���� assignment
or ���� ��
order� �

�

antisymmetry� �		� �
�
irre#exivity� �		� ���
partial� �		� ���
re#exivity� �
�
total� �		
transitivity� ��� �		� �
�
well�founded� �	

ordinal� 	�
output �	�� ���� 	��
output� ���
overriding �f �� g�� � see also

function

Paragraph� see Program
parameter� ��	� ����

actual� ��

formal� ��

partial correctness� �	�
partial function� see function

partial operator� ��
partial order� see order
pattern matching� see tag
permutation� ��
ph �partial heap�� ���
postcondition� see speci�cation
powerset� see type set
pr �parity�� ��	
precedence� of operators� ��
precondition� see speci�cation
predicate� �

laws� 	�	�
transformer� see weakest

precondition
predicate calculus� �
pre�x� see sequence
procedure� ��	�

body� ���
call� ���
Copy Rule� ��
� 	�
declaration �procedure��

��	� ���
exported� see module
imported� see module
parametrized� see parameter
recursive� see recursion

Program
Binary code� ���
Binary search� ���
Bubble Sort� �	�
Calculator� ����
Checking for powers of two�
�
Database search� �
�
Factorial�
�� ��� �	
�� ��	
Frontier equality iteratively� ���
Frontier of tree iteratively� ��	
Gray code� ��	�� ���
Handing out sweets�
�
Heap Sort� ����
Insertion Sort� �
�� ���
Largest rectangle under

histogram� 	���
Linear search� �	� ���
Log�time exponentiation� ��

c� Carroll Morgan ����� ����� ����

Index �	�

Log�time multiplication� ���
Log�time transitive closure� ��
Logarithm�

Majority voting� �
�
Mortgage� ��
Paragraph� 	���
Power of two�
	�
Remove element from sequence�

���
Reverse� ���
Square root� ���� ���
Summing a list� �
�
Summing a tree iteratively�

�
� ��
Summing a tree recursively� �
�
Swap variables� �	�� ��

program
abstract� 	�
�
annotation� ��� ���
atomic� ��
compound� ��
equal to another� ��
executable� 	�
infeasible� ���
mixed� ��
not necessarily executable� 	
testing� ��
tuning� ���� �		

programmer� ��
programming hierarchy� 	� ��
programming methodology� �
promoted relation� ��� �� ��� ��
proof� ��

axiomatic� natural deduction�
tableau� ��

by contradiction� ��
hint in� 	

obligation� ��

propositional
connective� ��
formula� ���
laws� 	��

proviso� �
pt �power of two�� 	�

quadratic� see time complexity
quanti�cation

body of� ��
existential ���� ��� 	�	
nested� 		
scoped explicitly� 	�
typed� ��
universal �
�� ��� 	�	
untyped� ��

Quick Sort� �	�

ran� see function� relation
random numbers� ��	
range� in comprehension� �

rat� see conversion function
rational numbers �Q ��
�
re� see recursion block
real� see conversion function
real numbers �R��
�
recursion� �	
�� 	��

block� ��� ���� ���� �
�
bogus without variant� �	�� �	�
procedure� �	

proper� 	��
stack� �
�
tail� ���� ���
variant� ���
see also De�nition 	���	

recursive type� see type
reference� ��	

causes aliasing� ��

similar to value�result� ���

re�ne initialisation� ��� see also Law
����

re�ne module� �� see also Law ���	
re�nement �v�� �� 	�	

of code� see code
of initialisation� see re�ne

initialisation
of module� see re�ne module
ridiculous leads to infeasibility�

�	
see also De�nition 	���

re�nement marker ��� �i��� ��� �

c� Carroll Morgan ����� ����� ����

�	 Index

relate s by r to t �shrit�� ��
relation

domain �dom�� �
domain corestriction� see

function
domain restriction� see function
functional� �
injective� �
inverse �r���� ��
one�to�one� �
onto� �
overriding� �
range �ran�� �
range corestriction� see function
range restriction� see function
single�valued� �
source�
target�
total� �
type� see type

remove alternation� ��	 see also Law
���

remove assumption� �� see also Law
����

remove coercion� �� see also Law
���	�

Remove element from sequence� see
Program

remove false guard� ��	 see also Law
��

remove invariant� �� see also Law ���
remove logical constant� �� see also

Law ��

result assignment� ��� see also Law

����
result speci�cation� ���� ���� 	� see

also Law ���

Reverse� see Program
rewrite� ���
right�distribution of assignment over

alternation� ��� see also Law
���

Russell�s paradox� ���
rv �reverse�� ��

sanserif
for constants and functions� ��
for predicates� �

satisfy� see formula
search� see Program Binary search�

Program Linear search
select true guard� ��� see also Law

��
semantics� �� 	
��
seq� �� see also type sequence
seq� see conversion function
sequence

cardinality �$�� �
composition �q �h�� 	i��� �
concatenation �q� �� q	�� �
cons �e�q�� �
ellipsis �m�n�� ��
�lter �p � q�� �
�xed length �seqL�� ��
#atten ���� ���
front �fr�� �
head �hd�� �
indexed from �� ��
indexing �q �i ��� ��
in�nite �seq��� ��
last �lt�� �
multiple indexing �q �i � j ��� �
pre�x �q�n� ��� �
product �

Q
�� ��

sorted� see up

subsegment �q ���	�� ��� �
subsequence �q �f�� 	g�� �� n��

�

su!x �q�n�� �
sum �

P
�� 	� 	��

tail �tl�� �
type� see type

sequence assignment� �� see also
Abbreviation ����

sequential composition �� �� �� ��� ���
��� 	��

omitted between annotations�
���

with initial variable� ��

c� Carroll Morgan ����� ����� ����

Index �	�

see also Law ���� Law �
� Law
B�	

set� see type set
set� see conversion function
set

cardinality �$�� �

Cartesian product ���� �

intersection ���� �

membership ���� �

subtraction ���� �

type� see type
union ���� �

set� �	
similar pre� and postconditions� ���

��� ���
simple formula� see formula
simple paragraph� ���
simple speci�cation� ��� � see also

Law ���� Abbreviation ��
simple substitution� see substitution
single�valued� see relation
skip command �skip�� ��� ���
� see

also Law ��	� Law ���
skip composition� �� see also Law ��

sm �strict majority�� �

sorted sequence� see up

source� see function� relation
speci�cation� ���
� 	��

w � �pre � post ��

executable� �� �
frame�

postcondition�

precondition�

subspeci�cation� �
see also De�nition 	��	

speci�cation invariant
�w � �pre � inv � post ���
� see
also Abbreviation ����
invariant

spot ���
after decoration�

in comprehension� ��
in local block�
	
in quanti�cation� ��

Square root� see Program
square root �

p
�� ��

stack� related to recursion� �
�
state� 	� ��

�nal�

initial�

maps variables to values�

state transformation� ����� ��	
of local block� ���� ���
of thing� see augment thing�

data�re�ne thing� diminish
thing

strengthen postcondition� �� ��

 see
also Law ���� Law ���

strengthening the invariant� see
invariant

stronger formula� see formula
subsegment� see sequence
subsequence� see sequence
substitution� ����� �	�

by thing� see thing assignment�
thing speci�cation

into formula� � 	���
simple� ���

substitution by result� 	�� see also
De�nition 	����

substitution by value� 	�� see also
De�nition 	���

substitution by value�result� 	�� see
also De�nition 	����

subtraction ����
�
not applicable to natural

numbers� ��
su!x� see sequence
Summing a list� see Program
Summing a tree iteratively� see

Program
Summing a tree recursively� see

Program
surjective� see function� relation
Swap� ��� �	�
Swap variables� see Program
syntax� �

c� Carroll Morgan ����� ����� ����

��� Index

tag
in type� ���
pattern matching� ���
testing for� ��

tagged alternation� ��� see also Law
����

tagged iteration� �
� see also Law
���	

tags �natural number�� ��

tail recursion� see recursion
take� see sequence pre�x
target� see function� relation
tc� see transitive closure
term� ��

in comprehension� ��
termination� �� �	%��� ��� ���
��
��

�� ��
of iteration�

see also variant

testing� see program
then� see alternation
time complexity� ���� 	��

exponential� ���
linear� �� ��� 	��
logarithmic� ���� ���
optimal� ��� �	�
orders �O �'�(�� ���
polynomial� ���
quadratic� ��� ��� �� 	��
relations ���%�#�+�$� �$�� ��

tl� see sequence tail
total� see function� relation
total correctness� �	�
total order� ��� �		
transformation� see state

transformation
transitive� 	

transitive closure� ��

in logarithmic time� see Program
transitivity� �� see also order
transliteration� ��
tree� �
	�� �
��

in�nite� �

see also Program Frontier�
Program Summing

true� �� �
describes all states� �� �
unit of �� 	��
zero of �� 	��

truth table� ��
tuning a program� see program
type�
�
�

bag� ���
checking� ��
�nite set� �

function� ��
not empty in code� ��
recursive� �
	�
relation� �
sequence� ���
set� �
�

unde�ned expression� ���� �	�� ���
unfeasible� see infeasible
unfold iteration� 	�
unfolding� see iteration
unit of an operator� �
� see also

false� true� zero
universal� see quanti�cation
up �sorted sequence�� �	
uploop� see iteration

value� 	
value� ��

value assignment� �� see also Law

����
value result� ���
value speci�cation� ��� see also Law

���	
value�result assignment� ��� see also

Law ����
value�result speci�cation� ��� see

also Law ����
var� see local variable
variable� 	� ��

auxiliary� ��	� ���
bound� �� see also bound

variable

c� Carroll Morgan ����� ����� ����

Index ���

capture� �� ��

exported� see module
free� �� see also free variable
imported� see module
list� see list of variables
local� see local variable
not mentioned in speci�cation� ��

variant
bounded below in invariant� ��
in iteration� 		
in recursion� ���
increasing� ��� �
�
in�nite� 	�
not obvious� �
�
well�founded� �
�

VDM� xii

waste� of paragraph� 	��
weaken precondition� � see also Law

��	
weaker formula� see formula
weakest precondition� ���� �
��
well�founded� see order
well�typed� ��
what without how� �
while loop� see iteration
wp� see weakest precondition
wt �waste�� ���

Z� xii
schema� 	�	

zero of an operator� �
� see also false�
true� unit

c� Carroll Morgan ����� ����� ����

