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Prologue

It is fair to state, that in this digital era
correct systems for information processing
are more valuable than gold.

H. Barendregt. The quest for correctness.
Images of SMC Research 1996, pages 39-58, 1996.

March 2002 Joost-Pieter Katoen
Enschede, The Netherlands
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Chapter 1

System Verification

This chapter discusses the need for system verification for software as well as
for hardware systems. It surveys the main techniques in systematic system
verification such as testing, simulation, and deductive methods and introduces
model checking as a valuable technique for defect detection.

1.1 Introduction

Our reliance on the functioning of ICT systems (Information and Communi-
cation Technology) is growing rapidly. These systems are becoming more and
more complex and are massively encroaching on daily life via Internet and all
kinds of embedded systems such as smartcards, hand-held computers, mobile
phones and high-end television sets. In 1995 it was estimated that we are con-
fronted with about 25 ICT-devices on a daily basis. Services like electronic
banking and tele-shopping have become reality. The daily cash flow via Inter-
net is about 10'? million US dollar. Roughly 20% of the product development
costs of modern transportation devices such as cars, high-speed trains and air-
planes is devoted to information processing systems. ICT systems are universal
and omnipresent. They control the stock exchange market, form the heart of
telephone switches, are crucial to Internet technology, and are vital for several
kinds of medical systems. Our reliance on embedded systems makes their reli-
able operation of large social importance. Besides offering a good performance
in terms like response times and processing capacity, the absence of annoying
errors is one of the major quality indications.

It is all about money. We are annoyed when our mobile phone malfunctions,
or when our video recorder reacts unexpectedly and wrongly to our issued
commands. These software and hardware errors do not threathen our lives,
but may have substantial financial consequences for the manufacturer. Correct

13



14 System Verification

ICT systems are essential for the survival of a company. Dramatic examples are
known. The bug in Intel’s Pentium-II floating-point division unit in the early
nineties caused a loss of about 475 million US dollar to replace faulty processors,
and severely damaged Intel’s reputation as a reliable chip manufacturer. The
software error in a baggage handling system postponed the opening of Denver’s
airport for 9 months, at a loss of 1.1 million US dollar per day. 24 hours of
failure of the worldwide on-line ticket reservation system of a large airplane
company will cause its bankruptcy because of missed orders.

Figure 1.1: The Ariane-5 launch on June 4, 1996; it crashed 36 seconds after
the launch due to a conversion of a 64-bit floating point into a 16-bit integer
value

It is all about safety: errors can be catastrophic too. The fatal defects in the
control software of the Ariane-5 missile (cf. Figure 1.1), the Mars Pathfinder
and the airplanes of the Airbus family led to headlines in the newspapers all
over the world and are renowned by now. Similar software is used for the
process control of safety-critical systems such as chemical plants, nuclear power
plants, traffic control and alert systems, and storm surge barriers. Clearly, bugs
in such software can have disasterous consequences. For example, a software
flaw in the control part of the radiation therapy machine Therac-25 caused the
death of 6 cancer patients between 1985 and 1987 as they were exposed to an
overdosis of radiation.

The increasing reliance of critical applications on information processing leads
us to state:

The reliability of ICT systems is a key issue
i the system design process.

The magnitude of ICT systems grows excessively, but their complexity grows
rapidly too. ICT systems are no longer stand alone, but are typically embedded
in a larger context, connecting and interacting with several other components
and systems. They thus become much more vulnerable to errors — the number
of defects grows exponentially with the number of interacting system compo-
nents. In particular, phenomena such as concurrency and non-determinism that
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are central to modelling interacting systems, turn out to be very hard to handle
with standard techniques, both in software engineering and in hardware design.
Their growing complexity, together with the pressure to drastically reduce sys-
tem development time (“time-to-market”), makes the delivery of low-defect ICT
systems an enormously challenging and complex activity.

1.2 Hard- and Software Verification

System verification techniques are applied to design ICT systems in a more
reliable way. To put it bluntly, system verification is used to establish that the
design or product under consideration possesses certain properties. The proper-
ties to be validated can be quite elementary, e.g., a system should never be able
to reach a situation in which no progress can be made (a deadlock scenario),
and are mostly obtained from the system’s specification. This specification pre-
scribes what the system has to do and what not, and thus constitutes the basis
for any verification activity. A defect is found once the system does not fulfill
one of the specification’s properties. The system is considered to be “correct”
whenever it satisfies all properties obtained from its specification. So correct-
ness is always relative to a specification, and is not an absolute property of a
system. A schematic view on verification is depicted in Figure 1.2.

system
specification

|

Design Process

product or
prototype

bug(s) found
\) Verification

Figure 1.2: Schematic view of a posteriori system verification

This book deals with a verification technique, called model checking, that starts
from a formal system specification. Before introducing this technique and dis-
cussing the role of formal specifications, we briefly review software and hardware
verification.
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1.2.1 Software Verification

Software verification techniques. Peer reviewing and testing are the major soft-
ware verification techniques used in practice.

A peer review amounts to a software inspection carried out by a team of soft-
ware engineers that preferably has not been involved in the development of the
software under review. The uncompiled code is not executed, but analyzed
completely statically. Empirical studies indicate that peer review provides an
effective technique that catches between 31 and 93 percent of the defects with
a median around 60%. While mostly applied in a rather ad-hoc manner, more
dedicated types of peer review procedures, e.g., those that are focused at spe-
cific error-detection goals, are even more effective. Despite its almost complete
manual nature, peer review is thus a rather useful technique. It is therefore not
surprising that some form of peer review is used in almost 80% of all software
engineering projects. Due to its static nature, experience has shown that subtle
errors such as concurrency and algorithm defects are hard to catch using peer
review.

Software testing constitutes a significant part of any software engineering project.
Between 30% and 50% of the total software project costs are devoted to testing.
As opposed to peer review that analyzes code statically without executing it,
testing is a dynamic technique that actually runs the software. Testing takes
the piece of software under consideration and provides its compiled code with
inputs, called tests. Correctness is thus determined by forcing the software
to traverse a set of execution paths, sequences of code statements represent-
ing a run of the software. Based on the observations during test execution,
the actual output of the software is compared to the output as documented
in the system specification. Although test generation and test execution can
partly be automated, the comparison is usually performed by human beings.
The main advantage of testing is that it can be applied to all sorts of software
ranging from application software (e.g., e-business software) to compilers and
operating systems. As exhaustive testing of all execution paths is practically
infeasible, in practice only a small subset of these paths is treated. Testing can
thus never be complete. That is to say, testing can only show the presence of
errors, not their absence. Another problem with testing is to determine when
to stop. Practically, it is hard, and mostly impossible, to indicate the intensity
of testing to reach a certain defect density — the fraction of defects per number
of uncommented code lines.

Studies have provided evidence that peer review and testing catch different
classes of defects at different stages in the development cycle. They are there-
fore often used both. To increase the reliability of software, these software
verification approaches are complemented with software process improvement
techniques, structured design and specification methods (such as the Unified
Modeling Language) and the use of version- and configuration management



Hard- and Software Verification 17

control systems. Formal techniques are used, in one form or the other, in about
10 — 15% of all software projects. These techniques are discussed later on in
this chapter.

Catching software errors: the sooner, the better. It is of great importance to
locate software bugs. The slogan is: the sooner, the better. The costs of
repairing a software flaw during maintenance are roughly 500 times higher than
a fix after detection in an early design phase, cf. Figure 1.3. System verification
should thus take place at an early stage in the design process.

Analysis Conc?plual Programming Unit Testing System Testing Operation
Design
50% = pame 125
i detected ’ - /
introduced N B /
< (i errors (in %) . /' cost of
40% +— errors (in %) - ’ ,/ correction 10
/. per error
R "/ (in 1,000 US $)
’
30% 1 S 15
’
’ 0
20% /) -5
- ’ 8
10% T s
oo Wlwnll TEREES - ; ; 0

Time (non-linear)

Figure 1.3: Software life-cycle and error introduction, detection and repair-
costs [126]

About 50% of all defects are introduced during programming, the phase in
which actual coding takes place. Whereas just 15% of all errors are detected in
the initial design stages, most errors are found during testing. At the start of
unit testing, which is oriented to discovering defects in the individual software
modules that make up the system, a defect density of about 20 defects per 1,000
lines of (uncommented) code is typical. This has been reduced to about 6 defects
per one thousand code lines at the start of system testing, where a collection
of such modules that constitutes a real product is tested. On launching a new
software release, the typical accepted software defect density is about one defect
per 1,000 lines of code lines'.

Errors are typically concentrated in a few software modules — about half of the
modules are defect free, and about 80% of the defects arise in a small fraction
(about 20%) of the modules — and often occur when interfacing modules. The
repair of errors that are detected prior to testing can be done rather econom-
ically. The repair cost significantly increases from about 1,000 US dollar (per
error repair) in unit testing to a maximum of about 12,500 US dollar when the
defect is demonstrated during system operation only. It is of vital importance

!For some products this is much higher, though. Microsoft has acknowledged that Windows
95 contained at least 5,000 defects. Despite the fact that users were confronted with anomalous
behaviour daily, Windows 95 was very successful.
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to seek techniques that find defects as early as possible in the software design
process: the costs to repair them are substantially lower, and their influence on
the rest of the design is less substantial.

1.2.2 Hardware Verification

The importance of hardware wverification. Preventing errors in hardware de-
sign is vital. Hardware is subject to high fabrication costs, fixing defects after
delivery to customers is difficult, and quality expectations are high. Whereas
software defects can be repaired by providing users with patches or updates —
nowadays users even tend to anticipate and accept this — hardware bug fixes
after delivery to customers are very difficult and mostly require refabrication
and redistribution. This has immense economic consequences. The replacement
of the faulty Pentium IT processors caused Intel a loss of about 475 million US
dollar. Moore’s law — the number of logical gates in a circuit doubles every 18
months — has proven to be true in practice and is a major obstacle for producing
correct hardware. Empirical studies have indicated that more than 50% of all
ASICs (Application-Specific Integrated Circuit) do not work properly after ini-
tial design and fabrication. It is not surprising that chip manufacturers invest
a lot in getting their designs right. Hardware verification is a well-established
part of the design process. The design effort in a typical hardware design com-
prises only 27% of the total time spent on the chip; the rest is devoted to error
detection and prevention.

Hardware verification techniques. Emulation, simulation and structural analysis
are the major techniques used in hardware verification.

Structural analysis comprises several specific techniques such as synthesis, tim-
ing analysis, and equivalence checking that are not described in further detail
here.

Emulation is a kind of testing. A re-configurable generic hardware system (the
emulator) is configured such that it behaves like the circuit under consideration
and is then extensively tested. Like with software testing, emulation amounts
to providing a set of stimuli to the circuit and comparing the generated output
with the expected output as laid down in the chip specification. To fully test
the circuit, all possible input combinations in every possible system state should
be examined. This is impractical and the number of tests needs to be reduced
significantly, yielding potential undiscovered errors.

With simulation, a model of the circuit at hand is constructed and simulated.
Models are typically provided using hardware description languages such as
Verilog or VHDL that are both standardized by IEEE. Based on stimuli, exe-
cution paths of the chip model are examined using a simulator. These stimuli
may be provided by a user, or by automated means such as a random generator.
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A mismatch between the simulator’s output and the output described in the
specification determines the presence of errors. Simulation is like testing, but
is applied to models. It suffers from the same limitations, though: the number
of scenarios to be checked in a model to get full confidence goes beyond any
reasonable subset of scenarios that can be examined in practice.

Simulation is the most popular hardware verification technique and is used in
various design stages, e.g., at register-transfer level, gate and transistor level.
Typically, about 21% of the verification time is spent on emulation, 63% on
simulation and 16% on structural analysis. Besides these error detection tech-
niques, hardware testing is needed to find fabrication faults resulting from layout
defects in the fabrication process.

1.3 Formal Verification Techniques

In software and hardware design of complex systems, more time and effort
is spent on verification than on construction. Techniques are sought to reduce
and ease the verification efforts while increasing their coverage. Formal methods
offer a large potential to obtain an early integration of verification in the design
process, to provide more effective verification techniques, and to reduce the
verification time. This section presents a survey of the main formal verification
techniques.

1.3.1 Formal Methods

Let us first briefly discuss the role of formal methods. To put it in a nutshell,
formal methods can be considered as “the applied mathematics for modeling
and analyzing [CT systems”. Their aim is to establish system correctness with
mathematical rigour. Their great potential has led to an increasing use by engi-
neers of formal methods for the verification of complex software and hardware
systems. Besides, formal methods are one of the “highly recommended” verifi-
cation techniques for software development of safety-critical systems according
to e.g., the best practices standard by the IEC (International Electrotechni-
cal Commission) and standards by the ESA (European Space Agency). The
resulting report of an investigation by the FAA (Federal Aviation Authority)
and NASA (North-Atlantic Space Agency) about the use of formal methods
concludes that

“Formal methods should be part of the education of every computer
scientist and software engineer, just as the appropriate branch of
applied maths is a necessary part of the education of all other engi-
neers.”
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During the last decade, research in formal methods has led to the development
of some very promising verification techniques that facilitate the early detection
of defects. These techniques are accompanied by powerful software tools that
can be used to automate various verification steps. Investigations have shown
that formal verification procedures would have revealed the exposed defects in
e.g., the Ariane-5 missile, Mars Pathfinder, Intel’s Pentium II processor and the
Therac-25 therapy radiation machine.

Roughly speaking, two brands of formal verification approaches can be distin-
guished: deductive and model-based methods.

With deductive methods, the correctness of systems is determined by properties
in a mathematical theory. These properties are proven with the highest possible
precision using tools such as theorem provers and proof checkers.

Model-based techniques are based on models describing the possible system be-
haviour in a mathematical precise and unambiguous manner. It turns out that —
prior to any form of verification — the accurate modelling of systems often leads
to the discovery of incompleteness, ambiguities and inconsistencies in informal
system specifications. Such problems are usually only discovered at a much later
stage of the design. The system models are accompanied by algorithms that
systematically explore all states of the system model. This provides the basis
for a whole range of verification techniques ranging from an exhaustive explo-
ration (model checking) to experiments with a restrictive set of scenarios in the
model (simulation), or in reality (testing). Due to unremitting improvements
of underlying algorithms and data structures together with the availability of
faster computers and larger computer memories, model-based techniques that
a decade ago only worked for very simple examples, are nowadays applicable
to realistic designs. As the starting-point of these techniques is a model of the
system under consideration, we have as a given fact that:

Any verification using model-based techniques is only
as good as the model of the system.

1.3.2 Model-based Simulation

As argued before, one of the most well-known and practically used verification
techniques is simulation. The software tool, the simulator, allows the user to
study the system behaviour. This happens by determining, on the basis of the
system model, how the system will react on certain specific scenarios (stimuli).
These scenarios are either provided by the user or are generated by tools such
as random scenario generators.

Simulation of formal models is typically useful for a first, quick assessment of
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the quality of the (prototype) design. It is, however, less suited to find subtle
errors because it is mostly impossible to generate all possible system scenarios,
let alone simulate them all. The number of scenarios easily gets out of hand.
For a mobile phone or remote control unit with a very restricted number, five
say, of choices per step, the number of scenarios with 20 steps already equals
529 (almost 100,000,000,000,000 possibilities). The exhaustive generation and
simulation of scenarios is time-consuming and costly. In practice, only a small
subset of all possible scenarios is actually examined. Consequently, there is a
realistic risk that subtle defects remain hidden. Unexplored scenarios might
reveal the fatal error.

Besides, after examining a restricted number of scenarios, it is hard to quantify
the degree of the system’s correctness. Quantitative measures of the number of
errors left in the system are difficult to obtain, let alone indications about the
probability that such errors will be discovered when the system is in operation.
In practice, this often means that the criterion to stop simulation is simply
when the project runs out of money!

1.3.3 Model Checking

Model checking is a verification technique that explores all possible system
states in a brute force manner. Similar to a computer chess program that
checks possible moves, a model checker, the software tool that performs the
model checking, examines all possible system scenarios in a systematic manner.
In this way, it can be shown that a given system model truly satisfies a certain
property. It is a real challenge to examine the largest possible state spaces that
can be treated with current means, i.e., processors and memories. State-of-the-
art model checkers can handle state spaces of about 103-10” states with explicit
state-space enumeration. Using clever algorithms and tailored data structures,
larger state spaces (10%° upto even 10*"® states) can be handled for specific
problems. Even the subtle errors that remain undiscovered using emulation,
testing and simulation can potentially be revealed using model checking.

Typical properties that can be checked using model checking are of a qualitative
nature: Is the generated result ok?, Can the system reach a deadlock situation,
e.g., when two concurrent programs are mutually waiting for each other and
thus halt the entire system? But also timing properties can be checked: Can
a deadlock occur within 1 hour after a system reset?, or Is a response always
received within 8 minutes? Model checking requires a precise and unambigu-
ous statement of the properties to be examined. As with making an accurate
system model, this step often leads to the discovery of several ambiguities and
inconsistencies in the informal documentation. For instance, the formalization
of all system properties for a subset of the ISDN user part protocol revealed
that 55% (!) of the original, informal system requirements were inconsistent.
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Figure 1.4: Schematic view of the model-checking approach

The system model is usually automatically generated from a model description
that is specified in some appropriate dialect of programming languages like C or
Java or hardware description languages such as Verilog or VHDL. Note that the
property specification prescribes what the system should do, and what it should
not do, whereas the model description addresses how the system behaves. The
model checker examines all relevant system states to check whether they satisfy
the desired property. If a state is encountered that violates the property under
consideration, the model checker provides a counterexample that indicates how
the model could reach the undesired state. The counterexample describes an
execution path that leads from the initial system state to a state that violates
the property being verified. With the help of a simulator, the user can replay
the violating scenario, in this way obtaining useful debugging information, and
adapt the model (or the property) accordingly, cf. Figure 1.4.

Model checking has been successfully applied to several ICT systems and their
applications. For instance, deadlocks have been detected in on-line airline reser-
vation systems, modern e-commerce protocols have been verified, and several
studies of international IEEE standards for in-house communication of domes-
tic appliances have led to significant improvements of the system specifications.
Five previously undiscovered errors were identified in an execution module of
the Deep Space 1 space-craft controller (cf. Figure 1.5), in one case identifying a
major design flaw. A bug identical to one discovered by model checking escaped
testing and caused a deadlock during a flight experiment 96 million kilometers
from earth. In the Netherlands, model checking has revealed several serious
design flaws in the control software of a storm surge barrier that protects the
main port of Rotterdam for flooding.

Ezample 1.1. Most errors, such as the ones exposed in the Deep Space-1 space-
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Figure 1.5: Modules of NASA’s Deep Space 1 space-craft (launched in October
1998) have been thoroughly examined using model checking

craft, are concerned with classical concurrency errors. Unforeseen interleavings
between processes may cause undesired events to happen. This is exemplified
by analysing the following concurrent program, in which three processes, Inc,
Dec and Reset cooperate. They operate on the shared integer variable x with
arbitrary initial value, that can be accessed (i.e., read), and modified (i.e., write)
by each of the individual processes. The processes are:

process Inc = while truedo if z < 200 then z := z + 1 fi od
process Dec = while truedo if z > Othen z:=2 — 1fiod
process Reset = while truedo if z = 200 then z := 0 fi od

Process Inc increments x if its value is smaller than 200, Dec decrements x if
its value is at least 1, and Reset resets x once it has reached the value 200. They
all do so repetitively.

Is the value of x always between (and including) 0 and 2007 At first sight this
seems to be true. A more thorough inspection, though, reveals that this is not
the case. Suppose x equals 200. Process Dec tests the value of x, and passes
the test, as x exceeds 0. Then, control is taken over by process Reset. It tests
the value of x, passes its test, and immediately resets x to zero. Then, control
s returned to process Dec and this process decrements x by one, resulting in
a negative value for z (viz. -1). Intuitively, we tend to interpret the tests on
z and the assignments to x as being executed atomically, i.e., as a single step,
whereas in reality this is (mostly) not the case. (End of example.)
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1.3.4 Model-based Testing

Whereas formal verification techniques such as simulation and model checking
are based on a model description from which all possible system states can be
generated, the well-established verification technique of testing is even applica-
ble in cases where it is hard (e.g., in case of physical devices) or even impossible
(e.g., when the model is proprietary) to obtain a system model. With testing,
products or parts thereof are subject to scenarios to check whether there is an
appropriate reaction.

An important parameter of testing is the extent to which access to the internal
state of the system under test can be obtained. In white boz testing the in-
ternal structure of an implementation can be fully accessed, while in black box
testing the internal structure is completely hidden. In practice, intermediate
scenarios are often encountered, referred to as grey box testing. The main ad-
vantage of testing is its broad applicability, in particular to final products and
not restricted only to models. The drawback is comparable to simulation, as
exhaustive testing is practically impossible. Like simulation, testing can show
the presence of errors, not their absence.

Most currently available testing methods are rather ad-hoc and not very sys-
tematic. As a result, testing is a labour-intensive, error-prone and hardly man-
ageable activity. In particular, the manual generation and maintenance of ap-
propriate test cases causes a bottleneck. This leads to an increasing interest
in model-based testing, as this allows a much more systematic treatment by
mechanizing the generation of tests as well as the test execution phase. Analo-
gous to model checking, the starting-point of model-based testing is a precise,
unambiguous model description. With traditional testing methods such a basis
is often absent. Based on this formal specification, test generation algorithms
generate provably valid tests, i.e., tests that test what should be tested and no
more than that. Testing tools support these algorithms, thus providing auto-
matic, faster and less error-prone test generation. In this way, a test process in
which the system under test and its formal model are the only required input
parameters becomes possible, cf. Figure 1.6.

Model-based testing has important advantages also for regression testing. Re-
gression testing involves checking the correct behaviour of a modified version
of an existing system. This typically involves the adaptation, selection and
repetition of existing tests. In model-based testing, a small modification of the
system only requires an adaptation of its model, for which a new test suite (a
set of tests) can be automatically generated.

In practice, model-based testing has been implemented in several software tools
and has demonstrated its power in various case studies. For several systems, like
embedded systems that control the exchange of information between high-end
television sets and VCRs, errors have been found that remained undiscovered



Formal Verification Techniques 25

product or
prototype

0

Modeling

system model

i

Test Generation

Test Execution

Figure 1.6: Schematic view of the model-based testing

i

with conventional testing techniques.

1.3.5 Theorem Proving

With deductive methods, the verification problem is interpreted as a mathe-
matical theorem that typically has the form: system specification = desired
property. Trying to establish this result is referred to as theorem proving. In
order to apply theorem proving, it is a prerequisite that the system specifica-
tion has the form of a mathematical theory, or should be transformable into
such form. Using a set of axioms (the basic theorems), a theorem prover (the
software tool) tries to either construct a proof of the theorem by generating
the intermediate proof steps, or to refute it. The axioms are either built-in
or are provided by the user. Theorem provers are also called proof assistants.
The general demand to prove theorems of a rather general type and the use
of undecidable logics requires some user interaction. Different variants exist:
highly automated, general-purpose proof assistants, and interactive programs
with special-purpose capabilities.

Proof checkers are highly automated proof assistants that require a limited
interaction with the user. The checker basically checks whether a user-provided
proof suggestion is valid or not. The capability of proof checkers to generate
intermediate proof steps in an automatic way is rather limited.

General-purpose proof assistants incorporate search components. In order to
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reduce the search in theorem proving, interaction with the user takes place.
The user may well be aware of what is the best strategy to conduct a proof.
Usually, interactive proof assistants help in giving a proof by keeping track of
the things still to be done and by providing hints on how these remaining (inter-
mediate) theorems can be proven. Moreover, each proof step is automatically
verified. Typically many small and detailed steps have to be taken in order to
arrive at a fully proof-checked proof. The degree of interaction with the user is
usually rather high. This is due to the fact that human beings see much more
structure in their subject than logic or theorem provers do. This covers not
only the content of the theorem, but also how it is used. In addition, the use of
theorem provers or proof checkers requires much more scrunity than users are
used to. Typically, human beings skip certain small parts of proofs (“trivial”
or “analogous t0”) whereas the proof assistant requires these steps explicitly.

The main advantage of theorem proving is that it can deal with infinite state
spaces (relying on proof principles such as structural induction) and can verify
the validity of properties for arbitrary parameter values. Their main drawback
is that the verification process is usually slow, error-prone and labour-intensive
to apply. Besides, the mathematical logic used by the proof assistant requires a
rather high degree of user expertise. Although some successful applications of
theorem proving have been reported, like the thorough verification of smartcard
software, these characteristics have restricted their use mainly to the academic
world.

Logics for proof assistants. Logics used by proof assistants are variants of first-
order logic and thus mostly undecidable. This logic ranges over an infinite set of
variables and a set of function and predicate symbols of given arities. The arity
specifies the number of arguments of a function or predicate symbol. A term
is either a variable or of the form f(t1,...,t,) where f is a function symbol of
arity n and t; is a term. Constants can be viewed as functions of arity 0. A
predicate is of the form P(¢1,...,t¢,) where P is a predicate symbol of arity n
and #; is a term. Sentences in first-order predicate logic are either predicates,
logical combinations of sentences, or existential or universal quantifications over
sentences. In typed logics there is, in addition, a set of types and each variable,
function and predicate symbol is typed. In these typed logics, quantifications
are over types (rather than over variables), since the variables are typed. This
enables to quantify over these types, which makes the logic more expressive than
first-order predicate logic. Many theorem provers use higher-order logics: typed
first-order logics where variables can range over function types or predicate
types. There does not exist a canonical higher-order logic. Various syntactic
and semantic differences do exist. Examples of prominent proof assistants for
higher-order logics are PVS, Coq, HOL and Isabelle.

The internals of proof assistants. Most theorem provers have algorithmic and
search components. The algorithmic components are used to apply proof rules
and to obtain conclusions from this. Important techniques for this purpose are
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natural deduction (e.g., from the validity of ® and the validity of ¥ we may con-
clude the validity of ® A ), resolution, unification (a procedure which is used
to match two terms with each other by providing all substitutions of variables
under which two terms are equal), rewriting (where equalities are considered
to be directed; in case a system of equations satisfies certain conditions, the
application of these rules is guaranteed to yield a normal form).

These techniques are not sufficient to find the proof of a given theorem, even if
the proof exists. The tool needs to have a strategy (a tactic) which describes
how to proceed to find a proof. Such strategy may suggest to use rules back-
wards, starting with the sentence to be proven. This leads to goal-directed
proof attempts. The strategies that humans use in order to find proofs are not
formalized. Strategies that are used by theorem provers are simple strategies,
e.g., based on breadth-first and depth-first search principles.

1.4 Characteristics of Model Checking

This book is devoted to the principles of model checking:

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,
systematically checks whether this property holds
for (a given state in) that model.

The next chapters treat the elementary technical details of model checking. This
section describes the process of model checking (how to use it), presents its main
advantages and drawbacks, and discusses its role in the system development
cycle.

1.4.1 The Model Checking Process

In applying model checking to a design the following different phases can be
distinguished:

e Modeling phase:

— model the system under consideration using the model description
language of the model checker at hand

— as a first sanity check and quick assessment of the model perform
some simulations

— formalise the property to be checked using the property specification
language
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e Running phase: run the model checker to check the validity of the prop-
erty in the system model

e Analysis phase:

— property satisfied? — check next property (if any)

— property violated? —
1. analyse generated counterexample by simulation
2. refine the model, design, or property
3. and repeat the entire procedure

— out of memory? — try to reduce the model and try again

In addition to these steps, the entire verification should be planned, adminis-
tered and organized. This is called verification organization. We discuss these
phases of model checking in somewhat more detail below.

Modeling

The prerequisite inputs to model checking are a model of the system under
consideration and a formal characterization of the property to be checked.

Models of systems describe the behaviour of systems in an accurate and unam-
biguous way. They are mostly expressed using finite-state automata, consist-
ing of a finite set of states and a set of transitions. States comprise informa-
tion about the current values of variables, the previously executed statement
(e.g., a program counter), and the like. Transitions describe how the system
evolves from one state into another. For realistic systems, finite-state automata
are described using a model description language such as an appropriate di-
alect /extension of C, Java, VHDL, or the like. Modeling systems, in particular
concurrent ones, at the right abstraction level is rather intricate and is really
an art; it is treated in more detail in Chapter 2.

In order to improve the quality of the model, a simulation prior to the model
checking can take place. Simulation can be used effectively to get rid of the
simpler category of modelling errors. Eliminating these simpler errors before
any form of thorough checking takes place may reduce the costly and time
consuming verification effort.

To make a rigorous verification possible, properties should be described in a
precise and unambiguous manner. This is typically done using a property spec-
ification language. We focus in particular on the use of a temporal logic as
property specification language, a form of modal logic that is appropriate to
specify relevant properties of ICT systems. In terms of mathematical logic, one
checks that the system description is a model of a temporal logic formula. This
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explains the term “model checking”. Temporal logic is basically an extension
of traditional propositional logic with operators that refer to the behaviour
of systems over time. It allows for the specification of a broad range of rel-
evant system properties such as: functional correctness (does the system do
what it is supposed to do?), reachability (is it possible to end up in a deadlock
state?), safety (“something bad never happens”), liveness (“something good will
eventually happen”), fairness (does, under certain conditions, an event occur
repeatedly?), and real-time properties (is the system acting in time?).

Although the aforementioned steps are often well understood, in practice it
may be a serious problem to judge whether the formalized problem statement
(model + properties) is an adequate description of the actual verification prob-
lem. This is also known as the walidation problem. The complexity of the
involved system as well as the lack of precision of the informal specification of
the system’s functionality may make it hard to answer this question satisfacto-
rily. Verification and validation should not be confused. Verification amounts
to check that the design satisfies the requirements that have been identified,
i.e., verification is “check that we are building the thing right”. In validation, it
is checked whether the formal model is consistent with the informal conception
of the design, i.e., validation is “check that we are verifying the right thing”.

Running the model checker

The model checker first has to be initialised by appropriately setting the various
options and directives that may be used to carry out the exhaustive verification.
Subsequently, the actual model checking takes place. This is basically a solely
algorithmic approach in which the validity of the property under consideration
is checked in all states of the system model.

Analyzing the results

There are basically three possible outcomes: the specified property is either
valid in the given model or not, or the model turns out to be too large to fit
within the physical limits of the computer memory.

In case the property is valid, the following property can be checked, or, in case
all properties have been checked, the model is concluded to possess all desired
properties.

Whenever a property is falsified, the negative result may have different causes.
There may be a modeling error, i.e., upon studying the error it is discovered that
the model does not reflect the design of the system. This implies a correction of
the model, and verification has to be restarted with the improved model. This
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re-verification includes the verification of those properties that were checked
before on the erroneous model and whose verification may be invalidated by the
model correction! If the error analysis shows that there is no undue discrepancy
between the design and its model, then either a design error has been exposed,
or a property error has taken place. In case of a design error, the verification is
concluded with a negative result, and the design (together with its model) has
to be improved. It may be the case that upon studying the exposed error it
is discovered that the property does not reflect the informal requirement that
had to be validated. This implies a modification of the property, and a new
verification of the model has to be carried out. As the model is not changed,
no re-verification of properties that were checked before has to take place. The
design is verified if and only if all properties have been checked with respect to
a valid model.

Whenever the model is too large to be handled — state spaces of real-life systems
may be many orders of magnitude larger than what can be stored by currently
avalaible memories — there are various ways to proceed. A possibility is to
apply techniques that try to exploit implicit regularities in the structure of the
model. Examples of these techniques are the representation of state spaces using
symbolic techniques such as binary decision diagrams or partial-order reduction.
Alternatively, rigorous abstractions of the complete system model are used.
These abstractions should preserve the (non-)validity of the properties that
need to be checked. Often, abstractions can be obtained that are sufficiently
small with respect to a single property. In that case, different abstractions need
to be made for the model at hand. Another way of dealing with too large state
spaces is to give up the precision of the verification result. The probabilistic
verification approaches explore only part of the state space while making a
(often negligible) sacrifice in the verification coverage. The most important
state-space reduction strategies are discussed in Chapters 11 through 14 of this
book.

Verification organization

The entire model-checking process should be well organized, well structured
and well planned. Industrial applications of model checking have provided ev-
idence that the use of version and configuration management is of particular
relevance. During the verification process, for instance, different model descrip-
tions are made describing different parts of the system, various versions of the
verification models are available (e.g., due to abstraction) and plenty of verifi-
cation parameters (e.g., model checking options) and results (diagnostic traces,
statistics) are available. This information needs to be documented and main-
tained very carefully in order to manage a practical model checking process and
to allow the reproduction of the experiments that were carried out.
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1.4.2 Strengths and Weaknesses

The strengths of model checking.

e [t is a general verification approach that is applicable to a wide range of
applications such as embedded systems, software engineering, and hard-
ware design.

e It supports partial verification, i.e., properties can be checked individu-
ally, thus allowing to focus on the essential properties first. No complete
requirement specification is needed.

e It is not vulnerable to the likelihood with which an error is exposed; this
contrasts with testing and simulation that are aimed at tracing the most
probable defects.

e It provides diagnostic information in case a property is invalidated; this
is very useful for debugging purposes.

e [t is a potential “push-button” technology; the use of model checking re-
quires neither a high degree of user-interaction nor a high degree of ex-
pertise.

e It enjoys a rapidly increasing interest by industry; several hardware com-
panies started their in-house verification labs, job offers with required
skills in model checking frequently appear, and commercial model check-
ers become available.

e [t can be easily integrated in existing development cycles; its learning
curve is not very steep, and empirical studies indicate that it may lead to
shorter development times.

e It has a sound and mathematical underpinning; it is based on theory of
graph algorithms, data structures, and logic.

The weaknesses of model checking.

e It is mainly appropriate to control-intensive applications and less suited
for data-intensive applications as data typically ranges over infinite do-
mains.

e [ts applicability is subject to decidability issues; for infinite-state systems,
or reasoning about abstract data types (that requires undecidable or semi-
decidable logics), model checking is in general not effectively computable.

e It verifies a system model, and not the actual system (product or pro-
totype) itself; any obtained result is thus as good as the system model.
Complementary techniques such as testing are needed to find fabrication
faults (for hardware) or coding errors (for software).
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e [t checks only stated requirements, i.e., there is no guarantee of complete-
ness. The validity of properties that are not checked cannot be judged.

e [t suffers from the state-space explosion problem, i.e., the number of states
needed to model the system accurately may easily exceed the amount of
available computer memory. Despite the development of several very ef-
fective methods to combat this problem (cf. Chapter 5), models of realistic
systems may still be too large to fit in memory.

e [ts usage requires some ezpertise in finding appropriate abstractions to
obtain smaller system models and to state properties in the logical for-
malism used.

e It is not guaranteed to yield correct results: as any tool, a model checker
may contain software defects.?

e [t does not allow to check generalizations: in general, checking systems
with an arbitrary number of components, or parameterized systems can-
not be treated. Model checking can, however, suggest results for arbitrary
parameters that may be verified using proof assistants.

We believe that one can never achieve absolute guaranteed correctness for sys-
tems of realistic size. Despite the above limitations we conclude that:

Model checking is an effective technique
to expose potential design errors.

Thus, model checking can provide a significant increase in the level of confidence
of a system design.

1.4.3 Integration in the Development Cycle

Model-checking hardware. With the notable exception of communication proto-
cols, formal verification has been more successful for hardware than for software.
There are several reasons for this. The high-quality standards in hardware de-
sign, together with the rather standard design levels (e.g., architecture, reg-
ister transfer, gate, and transistor level) in its development cycle have paved
the way to the smooth introduction of techniques such as model checking and
theorem proving. Besides, the role of checking the correctness of circuits as
part of the design process, together with the usage of finite-state models have
been beneficial. Both theorem proving and model checking, and combinations
thereof, have found their place in the hardware development process of compa-
nies like Cadence, Fujitsu, IBM, Intel and Motorola. Theorem proving is mostly

2Parts of the more advanced model-checking procedures have been formally proven correct
using theorem provers to circumvent this.
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used for checking data paths, signal processors and arithmetic units, whereas
model checking is typically used for the control logic (one of the main sources
of design flaws), controllers, and combinatorial circuits. Model checking is a
widely accepted technique for the design phases that deal with circuits at the
register transfer level and the gate level. At these levels, phenomena like non-
determinism, concurrency, and module composition — issues par excellence for
model checking — play a prominent role. Recently, IBM reported the successful
usage of model checking at multiple levels in their design trajectory, includ-
ing the more abstract architecture level. Industrial experiments have provided
evidence that model checking is no worse than random simulation in terms of
time spent and that it is clearly superior in terms of coverage. The design of a
memory bus adapter at IBM showed that 24% of all defects found were found
with model checking, while 40% of these errors would most likely not have been
found by simulation.

Model-checking software. Model checking has been successfully applied to a
particular branch of software, namely the development of communication pro-
tocols. In such protocols, notions like atomicity, concurrency control and non-
determinism play a crucial role, and these phenomena can extremely well be
captured by model checkers. Lucent Technologies, in earlier days known as
AT&T, and IBM have played a prominent role in the practical development of
(the first) model checkers. Several serious defects in communication protocols
have been found using model checking. One of the most prominent example is
perhaps the error that was adopted in the popular Needham-Schroeder encryp-
tion protocol that remained undetected for over 17 years.

“ver-

As opposed to hardware design, software engineering has not exposed a
ification aware” discipline in the design process. Formal verification of (se-
quential) computer programs was begun in the late fourties by Turing and has
emerged in the sixties with the pioneering works by Floyd and Hoare. De-
spite this early interest in correctness of software, these rigorous verification
techniques have mainly been used by academia only. Although the rigid verifi-
cation approach using axioms and proof rules never has become popular among
software engineers, concepts like assertions, and, more importantly, pre- and
postconditions have found their role in modern software engineering methods.
In the popular “design by contract” software engineering philosophy, pre- and
postconditions constitute the specification (i.e., the contract) to which the soft-
ware under development should comply.

One of the main reasons for the conservative attitude of software engineers with
respect to model checking has been the need for constructing a model of their
software that is amenable to model checking. This obstacle has recently led to
an increased interest by large companies and institutes such as Microsoft, NASA
and Compaq to automatically generate compact models from programs written
in programming languages such as C, C++, Java, or the like. First experiments
with these techniques are very promising. It is expected that model-checking
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techniques will rapidly be adopted on a wider scale by sofware engineers in the
near future. According to Holzmann, the main developer of one of the leading
model-checking tools SPIN, “within 5 years it (model checking) will become
standard in most software development tools”.

1.5 Bibliographic Notes

Model checking. Model checking originates from the independent work of two
couples in the early eighties: of Clarke and Emerson [46] and Queille and
Sifakis [155]. The term model checking was coined by Clarke and Emerson.
The brute force examination of the entire state space in model checking can
be considered as an extension of automated protocol validation techniques by
Hajek [86] and West [187, 188]. While these earlier techiques were restricted
to checking the absence of deadlocks or livelocks, model checking allows for
the examination of broader classes of properties. Introductory papers on model
checking can be found in [52, 48, 54, 138, 190]. The limitations of model checking
were discussed by Apt and Kozen [15]. More information on model checking
is available in the earlier books by Holzmann [96], McMillan [133] and Kur-
shan [115] and the recent works by Clarke, Peled and Grumberg [53], Huth and
Ryan [102], and Bérard et al. [22]. The model-checking trajectory has recently
been described by Brinksma and Ruys [159].

Software wverification. Empirical data about software engineering is gathered
by the Center for Empirically Based Software Engineering (www.cebase.org);
their collected data about software defects has recently been summarised by
Boehm and Basili [25]. The different characterisations of verification (“are we
building the thing right?”) and validation (“are we verifying the right thing?”)
originate from Boehm [26]. An overview of software testing is given by Whit-
taker [189]; books about software testing are by Myers [143] and Beizer [20].
Testing based on formal specifications has been studied extensively in the area
of communication protocols. This has led to an international standard for
conformance testing [103]. The use of software verification techniques by Ger-
man software industry has been studied by Liggesmeyer et al. [126]. Books by
Storey [172] and Leveson [122] describe techniques for developing safety-critical
software and discuss the role of formal verification in this context. Rushby [158]
addresses the role of formal methods for developing safety-critical software. The
recent book of Peled [149] gives a detailed account on formal techniques for soft-
ware reliability that includes testing, model checking and deductive methods.

Model-checking software. Model-checking communication protocols has become
popular through the pioneering work by Holzmann [96, 97]. An interesting
project at Bell Labs in which a model-checking team and a traditional design
team worked on the design of part of the ISDN user part protocol has been
reported by Holzmann [95]. In this large case study, 112 serious design flaws
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were discovered while checking 145 formal properties in about 10,000 verifica-
tion runs. Errors found by Clarke et al. [49] in the IEEE Futurebus+ standard
(checking a model of more than 1030 states) has led to a substantial revision of
the protocol by IEEE. Chan et al. [40] used model checking to verify the control
software of a traffic control and alert system for airplanes. Recently, Staunstrup
et al. [171] have reported the succesful model-checking of a train model consist-
ing of 1,421 state machines comprising a state space of 10*"® states. Lowe [127]
discovered using model checking a flaw in the well-known Needham-Schroeder
public key encryption algorithm. The usage of formal methods (that includes
model checking) in the software development process of a safety-critical sys-
tem within a Dutch software house is presented by Tretmans, Wijbrans and
Chaudron [178]. The formal analysis of NASA’s Mars Pathfinder and the Deep
Space-1 space-craft are addressed by Havelund, Lowry and Penix [88], and Holz-
mann, Najm and Serhrouchini [98], respectively. The automated generation of
abstract models amenable to model checking from programs written in pro-
gramming languages such as C, C++, or Java has been pursued, for instance,
by Godefroid [79], Dwyer, Hatcliff and co-workers [87], at Microsoft Research
by Ball, Podelski and Rajamani [18] and at NASA Research by Havelund and
Pressburger [89].

Model-checking hardware. Applying model checking to hardware originates from
Browne et al. [33] analyzing some moderate size self-timed sequential circuits.
Successful applications of (symbolic) model checking to large hardware systems
have been first reported by Burch et al. [38] in the early nineties. They analyzed
a synchronous pipeline circuit of approximately 10?° states. Overviews of formal
hardware verification techniques can be found in works by Gupta [84], and the
books by Yoeli [194] and Kropf [113]. The need for formal verification techniques
for hardware verification has been advocated by, amongst others, Sangiovanni-
Vincentelli, McGeer and Saldanha [161]. The integration of model checking
techniques for error finding in the hardware development process at IBM has
been recently described by Schlipf et al. [162] and Abarbanel-Vinov et al. [1].
They conclude that model checking is a powerful extension of the traditional
verification process, and consider it as complementary to simulation/emulation.

Theorem proving. The Boyer-Moore proof assistant NQTHM (nowadays called
ACL2) [29] for first-order logic has been used for hardware verification by,
amongst others, Bronstein and Talcott [32] and Pierre [150]. Higher-order logics
have recently become more popular for this purpose. Well-known higher-order
logic proof assistants are Coq [101], HOL [137], Isabelle [148], Nuprl [57], and
PVS [147]. A recent overview of checking proofs for distributed, concurrent
systems has been provided by Groote, Monin and van de Pol [82]. The appli-
cation of theorem proving to checking software systems is covered in the recent
monograph by Schumann [?]. An interesting current trend is the application
of proof assistants to the verification of smartcards, see, e.g., the recent work
by Poll, van den Berg and Jacobs [153]. An impressive application of theorem
proving is the correctness proof, consisting of about 28,000 proof obligations,
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of the formal specification for the automatic train operatring system METEOR
of the (first) driverless metro-line in Paris [19].



Chapter 2

Modelling Reactive Systems

2.0.1 Reactive Systems

Model checking is an appropriate technique for the verification of reactive sys-
tems. Reactive systems — this term was coined by Pnueli (1985) — are character-
ized by a continuous interaction with their environment. They typically contin-
uously receive inputs (stimuli) from their environment and, usually within quite
a short delay, react on these inputs (response). Reactive systems are usually
technical, event/driven systems and are embedded in products of which they
determine (part of) their functionality. Administrative systems are typically
not reactive systems. Examples of reactive systems are operating systems, air-
craft control systems, embedded systems, communication protocols, and process
control software. For instance, a control program of a chemical plant regularly
receives control signals, like indications about temperature and pressure, at sev-
eral time instants. Based on this information, the program decides to turn on
the heating elements, to switch off a pump, or the like. As soon as a dangerous
situation is anticipated, e.g, the pressure in the tank exceeds certain thresholds,
the control software needs to take appropriate action. Reactive systems tend
to be complex: the nature of their interaction with the environment can be
intricate and they typically have a distributed and concurrent nature. Aspects
like non-determinism, distribution and concurrency play an important role in
reactive systems.
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Chapter 3

Linear Temporal Logic

This chapter discusses the appropriateness of temporal logic as a specification
language for formalizing properties of reactive systems. This motivation takes
place starting from the perspective of classical assertional verification of sequen-
tial programs. Propositional linear temporal logic is presented, covering both
its theoretical underpinnings — syntax, semantics and axiomatization — and its
practical use as a property specification language.

3.1 The Need for Temporal Logic

Reactive systems are characterized by a continuous interaction with the envi-
ronment. For instance, an operating system or a coffee machine interacts with
its environment (i.e., the user) and usually performs actions, such as fetching
a file or producing coffee. A reactive system thus reacts to a stimulus from
the environment. After receiving a stimulus and producing an accompanying
reaction, a reactive system is — once more — able to interact. Typically, this
repetitive behavior does not terminate. The continuous character of interac-
tion in reactive systems differs from the traditional view of sequential programs.
Sequential programs can be considered as functions mapping inputs onto out-
puts. After receiving input, a sequential program can generate output(s) and
will eventually terminate after a finite number of computation steps, provided
it does not end up in an endless loop. In the next section, we briefly explain as-
sertional verification of sequential programs and argue that the different nature
of reactive systems requires a modification of this approach. In particular, it
does not suffice to use propositional (or predicate) logic to express the relevant
properties but a logic is needed that is able to cope with the dynamic evolution
between states during the program execution.

39



40 Linear Temporal Logic

3.1.1 Propositional Logic

Properties of sequential programs can be expressed in terms of pre- and postcon-
ditions. A precondition describes the set of interesting start states, i.e., the al-
lowed input(s), while a postcondition describes the set of desired final states, i.e.,
the required output(s). A pair of pre- and postcondition thus specifies the re-
quired input-output behavior of a sequential program. For instance, the simple
program z := z + 1; x := x + 1 establishes the postcondition “z equals 2” once
started in a state satisfying the precondition “x equals 07; it thus transforms the
value of z from 0 into 2. Similarly, the program while z < 200do z := x+10d
establishes the postcondition “z equals 200” when started in some state satis-
fying the precondition “z is at most 200”.

The syntax of propositional logic, a language that constitutes the basis for
specifying pre- and postconditions, is defined as follows. The basic elements
are atomic propositions, i.e., statements that cannot be further broken down.
Atomic propositions are the most elementary statements that can be made.
That is to say, atomic propositions intuitively express atomic facts about the
states of the system under consideration. Examples of atomic propositions are
“x equals 07, or “x is smaller than 200” for some given integer variable z. Other
examples are “it is raining” or “there are currently no customers in the shop”.
The (possibly empty) finite set of atomic propositions is referred to by AP, and
elements of AP are typically denoted by p, ¢ and r. We will not dwell upon a
precise definition of AP here and simply postulate its existence.

Note that the choice of the set AP of atomic propositions is an important one; it
determines the most basic statements that can be expressed about the program
under investigation. Fixing the set AP can therefore be regarded as a first step
of abstraction. If one, for instance, decides not to allow some program variables
to be referred to in AP, then no property can be stated that refers to these
variables, and consequently no such property can be checked.

Each atomic proposition ranges over the boolean types tt (true) and ££ (false).
In the setting of this book, it is assumed that for each state in the system under
consideration, it is known which atomic propositions do hold and which ones do
not. This is established by an interpretation function, or also called labelling.
Let S be a set of states.

Definition 3.1. (Interpretation function)
Interpretation function Label : S — 24 assigns to each state s the atomic
propositions Label(s) that are valid in s.

The function Label indicates which atomic propositions are valid for any state.
If for state s we have Label(s) = @ it means that no proposition is valid in s.
A state s for which the proposition p is valid, i.e., p € Label(s), is referred to
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as a p-state. Alternatively, a mapping from AP — 2% can be defined which
provides for each atomic proposition p, the set of p-states. Such function is
typically called a valuation.

Note that no constraints are put on the labelling Label of states with atomic
propositions. No further interpretation of propositions is thus given. For in-
stance, if proposition “z = 1”7 belongs to Label(s), it does not mean that
proposition “z # 0” also belongs to Label(s).

Definition 3.2. (Syntax of propositional logic)
Let p be an atomic proposition. Formulas in propositional logic satisfy the
following rules:

1. pis a formula.
2. If ® is a formula, then = ® is a formula.
3. If ® and ¥ are formulas, then ® V WV is a formula.

4. Anything else is not a formula.

Here, — denotes negation and V denotes disjunction. The boolean connectives
A (conjunction), = (implication) and < (equivalence) are defined by:

ATV = (-0 V D)
=¥ = PV VU
PV = (¢ = U) A (T = D)
true = & v -9
false = —true

The precedence of the above operators is as follows: — binds the strongest,
followed by A, V, = and <. Parentheses are omitted whenever appropriate.
For example, p = ¢ A r is interpreted as p = (¢ A r). We further assume
that A, V, = and < are all right-associative, e.g., p A (¢ A r) may be written
asp AN g AN r.

The meaning of formulas in propositional logic is defined by means of a satis-
faction relation (denoted =) between a state s and a formula ®. (s,®) € | is
denoted by the following infix notation: s = ®. The concept is that s = @ if
and only if @ is valid (i.e., evaluates to tt) in state s.

Definition 3.3. (Semantics of propositional logic)
Let p be an atomic proposition, s a state and ®, ¥ formulas in propositional
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logic. The satisfaction relation |= is defined by:

sEp iff p € Label(s)
sE-® iff not (s = @)
sE® VY if (sEP)or (s=Y)

Note that the logical operators on the right-hand side of a defining equation
are denoted by “not” and “or” to distinguish them from the logical operators
— and V in propositional logic. If s |= ® we say that state s satisfies ®.

The validity of propositional logic is static in the sense that the truth value of
® is only determined by the labelling of the current state (such as propositions
about the current value of program variables). The labelling and the truth
value of ® are regarded as immutable; there is no way in which they are related
to the validity of ® in other states, like the previous or the next state.

Tautologies are statements that are satisfied by all states, e.g., ® V —®. Simi-
larly, the formula —(® V —®) is a contradiction, i.e., it is satisfied by no state.
For state s with p,q ¢ Label(s) we have s = (p = q); p = ¢ is however,
neither a tautology nor a contradiction.

3.1.2 Assertional Verification of Sequential Programs

Pre- and postconditions are usually expressed in predicate logic, basically an
extension of propositional logic in which

(i) atomic propositions are refined into expressions built up from variables,
constants, function and predicate symbols, and

(ii) existential (3) and universal V quantification over variables is allowed.

For example, if getElt(a,) selects the i-th element of array a, postcondition
(VO < i < K.getElt(a,7) > 0) asserts that all elements of array a of length K
are non-negative. As predicate logic does not play a further role in this book,
we omit a formal treatment of its syntax and semantics.

For precondition ® and postcondition ¥, the correctness of sequential program
statement S is denoted by:

{2} S{¥} (3.1)

This is also referred to as a Hoare triple [93]. There are two possible interpre-
tations of Hoare triples:
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e (3.1) is partially correct if any terminating computation of S that starts
in a state satisfying @, terminates in a state satisfying V.

e (3.1) is totally correct if any computation of S that starts in a state sat-
isfying ®, terminates and finishes in a state satisfying .

So, in the case of partial correctness no statements are made about compu-
tations of S that diverge, i.e., that do not terminate. In the course of our
discussion here, it suffices to assume that each program terminates, i.e., we do
not distinguish between partial and total correctness in this section.

To prove that a sequential program meets its pre- and postcondition, a math-
ematical proof system is used consisting of a set of axioms and proof rules. To
illustrate the approach, a proof system for simple deterministic sequential pro-
grams will be given. These programs are constructed according to the BNF
grammar:

S:=skip | z:= E | S; S | if B then S else S fi | while B do S od

where skip stands for no operation, z := E for the assignment of the value of
expression E to variable z (where 2 and E are assumed to be equally typed),
S; S for the sequential composition of statements, and the latter two for al-
ternative composition and iteration (where B denotes a boolean expression),
respectively. For simplicity, we do not consider variable declarations.

Ezxample 5.1.  Consider the following program S':
p:=0;7:=k;while 1 >0do p:=p+mn;7:=7—1od

The Hoare triple {k > 0An >0} S {p = kn} asserts that S computes for
any two non-negative integers n and k, the product k-n. (End of example.)

A proof system for our example programming language is given in Table 3.1.
The proof rules should be read as follows: if all conditions indicated above the
straight line are valid, then the conclusion below the line is valid. For rules with
a condition true only the conclusion is indicated; these proof rules are called
axioms. Axioms are thus proof rules that always can be applied.

The proof rule for the skip statement states that under any condition, if formula
® is valid before the statement, then it is valid afterwards. According to the
axiom for assignment, one starts with the postcondition ® and determines by
substitution the precondition ®[z := k]. ®[x := k] roughly means ® where all
occurrences of z are replaced by k. The rule for sequential composition uses an
intermediate predicate ®' that characterizes the final state of S and the starting
state of S’. The rule for alternative composition uses the boolean B whose value
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Axiom for skip {®}skip{P}
Axiom for assignment {Oz:=k|}z:=k{D}

- " {2} S{2'}, {2} S{¥}
Sequential composition (615; S {0}

. {®AB}S{V}, {PA-B}S {T}
Alternative {®}if Bthen Selse S’ fi{ ¥}

: {enB}S{®}
lteration {®}whileBdoSod{®A B}
/ ! / /

Consequence = ¢ {P}S{V},V >0

{e}s{v}

Table 3.1: Proof system for partial correctness of sequential programs

determines whether S or S’ is executed. The proof rule for iteration states that
predicate ® holds after the termination of while Bdo S od, provided ® remains
valid during each execution of body S. Hence, @ is called an invariant.

All rules discussed so far are syntaz-oriented: a proof rule is associated to each
syntactical construct. This differs from the consequence rule which establishes
the connection between program verification and logics. The consequence rule
allows the strengthening of preconditions and the weakening of postconditions.
In this way, it may facilitate the application of other proof rules. It should be
noted, though, that proving implications like ® = @’ is in general undecidable.

The presented proof system allows to prove the correctness of composed pro-
grams with respect to their pre- and postcondition by considering program
parts only. The procedure of starting the proof from a postcondition is usually
applied successively to parts of the program such that finally the precondition
of the entire program can be proven. For instance, the proof rule for sequential
composition allows the correctness of the composed program S ; S’ to be estab-
lished by considering the pre- and postconditions of its components S and S’.
Proof systems that exhibit this property are called compositional.

3.1.3 Assertional Verification of Parallel Programs

Let us now consider the extension to parallelism. For statements S and S’ let
the construct S| S’ denote their parallel composition. Major aim of applying
assertional verification to parallel programs is to obtain a proof rule such as:
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{ers{v} {o'}s"{v'}
(DAD}S|S {UAT}

This proof rule would allow the verification of parallel programs in a compo-
sitional way by considering the parts S and S’ separately, i.e., to prove the
correctness of S| S’ it suffices to prove {®} S{ ¥} and {®'} S' {T'}. Due to
interaction between S and S’, albeit in the form of access to shared variables or
by exchanging messages, this rule is unfortunately not valid in general. Much
effort has been devoted to obtain proof rules of the above form. The devel-
opment of a compositional proof system for parallel systems that interact (in
some way) has turned out to be hard, and proof rules tend to become rather
complex. There are several reasons for this.

Parallelism inherently leads to the introduction of non-determinism. This re-
sults in the fact that for parallel programs which interact using shared vari-
ables the input-output behavior strongly depends on the order in which the
shared variables are accessed. For instance, for statements S = z := z+2, and
S'=x:=2+1; z:=2+1, and S” = z := 0, the value of z at termination of
S| S" can be either 0 or 2, whereas the value of z at termination of S"|S” can
be 0, 1 or 2. The different outcomes for z depend on the order of execution of
the statements in S and S”, or S’ and S”. Hence, although the input-output
behavior of S and S’ is obviously the same — increasing = by 2 — there is no
guarantee that this remains true in an identical parallel context (like S”).

Concurrent processes can potentially interact at any point of their execution,
not only at the beginning or end of their computation. In order to infer how
parallel programs interact, it is not sufficient to know properties of their initial
and final states only. Instead, it is important to be able to make, in addition,
statements about what happens during the computation. So, relevant properties
should not only refer to start and end-states, but also to the evolution between
states during executions.

The main problem of applying the classical approach to the verification of par-
allel and reactive systems is its sole focus on the idea that a program (system)
computes a function from inputs to outputs. That is, given certain allowed
input(s), certain desired output(s) are produced. For parallel systems the com-
putation usually does not terminate, and correctness refers to the behavior of
the system in time, not only to the final result of a computation (if a computa-
tion ends at all). Typically, the global property of a parallel program can often
not be stated in terms of an input-output relationship only.

The main difficulties of applying classical assertional verification to parallel (and
reactive) systems are:

e the proof rules adequately reflect the input-output behavior of programs,
but do not refer to their (finite or infinite) executions.
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e finding appropriate invariants is typically hard.
e the proof rules cannot handle fairness.

e the number of proof obligations becomes very large '.

As a result of the last drawback, proofs are rather lengthy, tedious, and thus
quite vulnerable to (human) errors. Besides, the organization of proofs of such
complexity in a comprehensible form is difficult. To overcome these drawbacks,
proof assistants and theorem provers may be used (see also Chapter 1). The
first drawback stems from the fact that propositional (or predicate) logic is
static, i.e., each formula represents the set of states that satisfy it. In order
to capture the continuous behavior of reactive systems, the dynamic evolution
between states during the execution needs to be addressed.

3.1.4 Temporal Logic

For reactive systems, correctness depends on the executions of the system —
not only on the input-output relationship of a computation — and on fairness
issues. Temporal logic is a formalism par excellence for treating these two as-
pects. It allows to express properties about the relation between states during
an execution. This has first been recognized by Pnueli [151] in the late sev-
enties. It is a well-accepted and commonly used specification technique for
expressing properties of executions (of reactive systems) at a rather high level
of abstraction.

Temporal logic is a member of the broader class of modal logics. Besides propo-
sitional (or predicate) logic these logics possess modal operators. A typical
modality in temporal logic is “sometime ®” which holds if formula ® holds
at some future moment. There do exist various temporal logics with different
modal operators and with different interpretations thereof. The main distin-
guishing aspects are:

e Propositional or first-order logic as basis. In propositional temporal logic,
atomic propositions express simple atomic facts about the state of the
system. In first-order temporal logic, atomic propositions are allowed to
contain expressions constructed from function and predicate symbols, and
quantification is allowed.

e The underlying nature of time. This aspect refers to issues like:

— are temporal operators evaluated as true or false of points of time,
or are they evaluated over intervals of time?

'"Due to possible interactions between parallel programs, N-M additional proof obligations
have to be checked for parallel programs of length N and M using the classical approach
of [146].
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— is time discrete where the present moment refers to the current state
and the next moment corresponds to the immediate successor state,
or is it continuous?

— is time linear — at each moment in time there is a single successor
moment — or does it have a branching, tree-like structure, where time
may split into alternative courses?

e Future or past modalities. Future modal operators refer to events that
happen in the future; past modalities refer to moments in the past.

In this book, we only consider propositional temporal logics for which any
temporal operator is evaluated as true or false of points of time. This chapter
considers temporal logic that is based on a linear interpretation of discrete time
— linear temporal logic (PLTL). Chapters 6 and 9 both deal with branching
temporal logics; Chapter 6 with a discrete time variant (CTL), and Chapter
9 with a continuous variant (TCTL). Table 3.2 summarizes the distinguishing
features of these logics.

logic linear branching discrete continuous

PLTL V

CTL V J
TCTL v v

Table 3.2: Classification of the temporal logics in this book

3.2 Syntax of Propositional Linear Temporal Logic

The set of formulas that can be stated in propositional linear temporal logic
(PLTL, for short) is defined as follows.

Definition 3.4. (Syntax of propositional linear temporal logic)
Let p be an atomic proposition. Formulas in PLTL satisfy the following rules:

1. pis a formula.

2. If @ is a formula, then = ® is a formula.

3. If ® and ¥ are formulas, then ® V WV is a formula.
4. If ® is a formula, then X ® is a formula.

5. If ® and ¥ are formulas, then ® U ¥ is a formula.

6. Anything else is not a formula.
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PLTL thus extends propositional logic with the temporal operators X (pro-
nounced “neXt”) and U (pronounced “Until”). The intuitive interpretation
of these operators is as follows. Formula X ® holds at the current moment, if
® holds at the next moment. Formula ® UV holds at the current moment, if
there is some future moment for which ¥ holds and ® holds at all moments
until that future moment.

The precedence order on the operators is as follows. The unary operators bind
stronger than the binary ones. — and X bind equally strong. The temporal
operator U takes precedence over A, V, and =- . Parentheses are omitted when-
ever appropriate, e.g., we write = ® U X ¥ instead of (- ®)U (X ¥). Operator
U is right-associative, e.g., pUqUr stands for pU (qgUr).

Ezample 3.2. Let AP = {z = 1,z < 2,x > 3} be the set of atomic
propositions. Example PLTL-formulas over AP are: X(z = 1), = (z < 2),
r<2Vazx=1,(xr<2)U(x >3), and X(x = 1). The second and the third
formula are also propositional logic formulas. An example of a PLTL-formula
in which temporal operators are nested is X ((z < 2) UX(z > 3)). (End of
example.)

3.3 Semantics of PLTL

3.3.1 Kripke Structures

The above definition provides us a recipe for the construction of PLTL-formulas,

but it does not give an interpretation to these operators. The formal meaning

of temporal logic formulas is defined using the notion of Kripke structures 2.

Definition 3.5. (Kripke structure)
A Kripke structure I is a tuple (S, I, R, Label) where

e S is a countable set of states,
e | C Sis a set of initial states,
e RC S x S is a transition relation satisfying Vs € S.(3s' € S.(s,5') € R)

o Label: S — 247 is an interpretation function on S.

Transition relation R associates to any state its set of successors R(s) = {5 |
(s,8') € R} which is required to be non-empty. Each state thus has at least

2Kripke used similar structures to provide an interpretation to modal logics [112].
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one successor, i.e., there are no states without any successor. In other words, R
is a total relation. Note that a state may have no predecessors, i.e., R~ !(s) =
{s"] (s',s) € R} may be empty, and that an initial state is not required to
have no predecessors.

Ezxample 3.3.  The following Kripke structure models a triple modular redun-

Proc 1

nput output

Proc 2——=

vote

Proc 3

Figure 3.1: A triple modular redundant system

dant system (TMR, cf. Figure 3.1), a fault-tolerant computer system consist-
ing of three processors and a single (majority) voter. The processors generate
results and the voter decides upon the correct value by taking a majority vote.
Components may fail and after failure may be repaired. Initially all components
are functioning correctly. For simplicity, it is assumed that one component can
be repaired at a time. If the voter fails, the entire system is assumed to have
failed, and after o repair the system is assumed to start “as good as new”. Con-
sider as atomic propositions the set AP = {up; | 0 <i <4} U{down}. The
components of the Kripke structure are:

o S={s1]10<i<4}U{sgp}.
o I={s31}

e R = { (Si,l,S0,0) | 0<:1< 4} U { (80,0,83,1)}
U{(Si,lasi,l) | 0<i1< 4} U{(Si71,8i+1,1) | 0<i1< 3}
U { (Si+1,1,8i71) | 0 < 7 < 3}

e Label(spo) = { down} and Label(s; ;) = { up; } for 0 <i < 4.

State s;; models that i (0 < i < 4) processors and j (0 < j < 2) voters are
operational. The Kripke structure is depicted in Figure 3.2. Here states are
depicted by circles, initial states have an incoming arrow with no source state,
and the relation R is denoted by arrows, i.e., there is an arrow from s to s' if
and only if (s,s') € R. The labelling Label(s) is indicated beside the state s,
where for simplicity, the set brackets are omitted from singleton sets, e.g., down
denotes { down }. (End of example.)
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down

Figure 3.2: A Kripke structure of the TMR system

As each state in a Kripke structure is required to have at least one successor
state, one may wonder how to model a system that contains a deadlock state,
i.e., a state from which no progress can be made. This situation can be modeled,
by adding to the Kripke structure a distinguishing state that is equipped with
a self-loop. Each state from which no progress should take place is equipped
with a transition to this new state.

Definition 3.6. (Path)
A path in K is an infinite sequence of states sg s1 82 ... such that (s;,8,41) € R
for all 7 > 0.

A path is thus an infinite sequence of states such that between successive states
transitions do exist. For path o = sy s;s2... and integer i > 0 we use o[i] to
denote the (i+1)-th state of o, i.e., o[i] = s; and use o' to denote the suffix

of o obtained by removing its first i states, i.e., 0" = ; $j41 Si42.... Note
that o°[j] = o[i+j]; in particular, 0° = 0. For paths with a certain regularity,
such as 0 = sgsgsg... Or 0 = 8ps1SpS;... an alternative and more succinct

notation is o = (s9)* and & = (sg s1)“. The set of paths that start in state s is
denoted Paths(s), i.e., Paths(s) = {o € S¥ | o[0] = s }.

Example 3.4.  An example path in the Kripke structure modeling the TMR
system s 0 = 53,1 52,1 50,0 $3,1 52,1 50,0 - - -- That z's, g = (83,1 52,1 80,0)(‘]. We
have, for example, o[2] = s0,0, 0[3] = s31, 0% = 50,0 53,1 52,1 50,0 + - -5 %-€., 0? =

(50,0 53,1 52,1)“.

Some alternative paths are & = s31 52,1 51,1 50,1 51,1 50,1 --. and & = $31 531 - ..,
i.e., 0 = 831521 (51,150,)" and & = (s31)%. (End of example.)

3.3.2 Semantics of PLTL

The meaning of formulas in logic is defined by means of a satisfaction relation
(denoted by [=) between a path o, and PLTL-formula ®. The concept is that
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o = @ if and only if ® is valid for o.

Definition 3.7. (Semantics of PLTL)
Let p € AP be an atomic proposition, ¢ a path and ®, V PLTL-formulas. The
satisfaction relation |= is defined by:

oEp iff p € Label(o[0])

o= -® iff not (o = @)

oE® VvV VY iff (0 F®)or (oY)

ocEXd® iff o' = @

cE®UT  iff35>0. (0/ =T and (VO<k <j.of E®))

If o |= ® we say that path o satisfies ®. The first three clauses of the above
definition coincide with the semantics of propositional logic, cf. Definition 3.3.
The fourth clause states that o = sy s1 s2. .. satisfies X ® if and only if its suffix
$1 89 ... satisfies ®. Note that the propositions in sy play no role here. Formula
® U W is satisfied by o if there is some suffix of o, 07 say, that satisfies ¥, and
all preceding suffixes satisfy ®. Since the case j = 0 is allowed, it means that
suffix 0/ may be equal to o itself. In that case, the second conjunct of the fifth
clause becomes vacuously true as there is no k£ such that 0 < k < 7 =0. We
will discuss this issue more extensively in Section 3.5. Intuitively, o = ® U ¥ if
and only if a U-state will be reached at some moment in the future, and in all
preceding states ® is guaranteed to hold. The semantics of U is neither stating
anything about the validity of ® for suffix o/, nor does it state anything about
the validity of ¥ for o (k < j), nor about the validity of ® (and ¥) in any
suffix ¢™ with m > j. The latter means that once a W-state is reached, the
validity of ® (and ) in any subsequent state is irrelevant.

Ezample 3.5.  Consider the paths o, ¢ and & from the previous example. It
follows, for instance, that o = Xupy and o = XXX =down. In addition, we
have o |= (upy, V ups)Udown and o |= upy U ups. The latter follows from the
fact that for j = 0 suffiz o° satisfies proposition ups; the fact that there is no
state in o for which upy holds is thus irrelevant. As a final ezample, we have
that & = — (trueU down), as a state for which proposition down holds is never
reached along this path. (End of example.)

3.3.3 Auxiliary Temporal Operators

To ease the specification of relevant properties, four auxiliary temporal opera-
tors are now introduced. These operators are defined in terms of the operators
introduced before, and thus, do not add any expressiveness to the language of
PLTL. The temporal operators G (pronounced “always” or “Globally”) and F



52 Linear Temporal Logic

(pronounced “eventually” or “Future”) are defined by:

F® = trueU®
G(I) = -F-®

Since true is a tautology, i.e., it is valid in all states, F ® indeed denotes that ®
holds at some moment in the future. Suppose there is no moment in the future
for which = ® holds. Then, the counterpart of ® holds at any moment. This
explains the definition of G ®. Alternative notations are: F may be denoted as
¢, G as O, and X as . In this book, we use the traditional notations F, G
and X. The precedence order on the operators is extended in the following way:
the operators = and X bind equally strong and stronger than F and G that also
bind equally strong.

To summarize, a formula without a temporal operator (X,F,G, U) at the “top
level” refers to the first state of a path, the formula X ® to the next state, G®
to all (future) states, F ® to some future state, and U to all future states until
a certain condition becomes valid.

The formal interpretation of G and F can be obtained from the above charac-
terization and Definition 3.7 by straightforward calculation. We derive for the
semantics of F ®:
cEF®
< { definition of F }
o = trueU ®
< { semantics of U }
35 20. (67 E® A (VO <Kk < j.o [ true))
< { calculus }
3j>0.0' =@

Therefore, F ® is valid for path o if and only if there is some (not necessarily
direct) successor state of o[0], or o[0] itself where ® is valid.

Using this result for F for the semantics of G ® we derive:

cEG®

< { definition of G }
o= -F-®

< { using result of previous derivation }
= (3j>0.0' E - ®)

< { semantics of - ® }
= (37 20.2(c7 | ®))

< { predicate calculus }
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Vij>0.0 | o.

Therefore, path o satisfies the formula G ® if and only if all its suffixes (including
o itself) satisfy ®. This explains the expression “always” ®. Combinations of
F and G frequently occur and have the following intuitive meaning: FG® is
satisfied if from some future moment on ® holds continuously, and GF @ is
satisfied if ® holds “infinitely often”.

Ezxample 3.6.  Consider again the paths of the TMR system. The simple path
(s3,1)“ satisfies, amongst others, the formulas G ups (as each state of the path
is labelled with proposition ups), G —down (as a down-state is never reached),
F Gups (as the path itself satisfies Gups), and GF upy (as a state labelled with
ups is visited infinitely often.)

Path (s3,1 52,1 50,0)” satisfies the formula F down as state s is reachable. Be-
sides it satisfies G ((ups V upy) U down), GF down and GF ((upsV upy) U down).

Finally, path s31 s2,1(s1,1 50,1)* satisfies the following formulas: F upy, = GF up,,
and G (up; = XG —ups). (End of example.)

The temporal operator U is sometimes called a strong until, as the formula
® U ¥ implicitly states that there exists some future state for which ¥ holds.
That is, if a path satisfies ® U W, then it also satisfies FW. This is often too
strong, as it is not always clear that indeed a W-state will be reached. A weaker
variant of until, the unless operator W, states that ® holds continuously either
until ¥ holds for the first time, or throughout the path. This operator is defined
by:

PWU =GP VvV (PUVD)
or equivalently by:
PWY =F -9 = dUVY

The final auxiliary operator that we treat here is the release operator, denoted
R; it is defined as follows:

OPRY = = (-DU - 0)
Its intuitive interpretation is as follows. Formula ® R ¥ holds for path o if ¥
always holds, a requirement that is released as soon as ® becomes valid. Thus,
the formula false R @ is valid for o if ® always holds, since the release condition

(false) is a contradiction (i.e., not valid in any state). We thus have:

o = falseR® if and only if 0 = G®
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In a similar way, formula ® R =W can be shown to be valid for a path if on this
path it holds that if ¥ ever becomes true eventually, then it is strictly preceded
by an occurrence of ®.

3.3.4 Model Checking, Satisfiability and Validity

In Chapter 1, we gave an informal definition of the model-checking problem.
Given the formal machinery developed so far we are now in a position to give
a more precise characterization. We first define what it means for a Kripke
structure to satisfy a PLTL-formula. 3

Definition 3.8. (Satisfaction of a formula by a Kripke structure )
For Kripke structure K = (S, I, R, Label) and PLTL-formula ®:

K = @ if and only if Vs € I. (Vo € Paths(s).o |= @)

Stated in words, Kripke structure IC satisfies @ if and only if all paths that start
in some of its initial states satisfy ®.

Ezxample 3.7.  The Kripke structure of the TMR system does not satisfy the
formula G —down, as there exists a path starting from sz, the only initial
state, that reaches a down-state. For instance, path s31800... 18 such path.
Similarly, it does not satisfy GF down, since e.g., path (s31)* does never reach
a down-state. The Kripke structure does, however, satisfy G (down = Xupsy),
as being currently in the down-state, it means that immediately afterwards the
system is repaired, i.e., in the upg-state. This holds for all paths. (End of
example.)

The model-checking problem is now formalized as follows:

The model-checking problem is: given a Kripke structure IC,
and a formula ®, do we have K = ®?

If € = ® we say that KC is a model of the formula ®; this explains the term
“model checking”. The model-checking problem should not be confused with
the more traditional satisfiability problem in logic.

The satisfiability problem is: given a formula @, does there exist a Kripke
structure K such that IC |= ®? While for model checking the Kripke structure

3This relation is denoted by |=, the same symbol as we have used to defined the semantics of
propositional logic and PLTL. This overloading of notation is, however, not a large problem as
it is always clear whether |= is used for a model (as below) or for a path (as in Definition 3.7).
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K is given, this is not the case for the satisfiability problem. For PLTL, the
satisfiability problem is decidable, for first-order temporal logic — where atomic
propositions are richer — this problem is undecidable. A logic is said to be
decidable if its satisfiability problem is decidable. For propositional logic, the
satisfiability problem is NP-complete, i.e., the best known algorithm to check
for satisfiability needs a time exponential in the length of the formula. This can
be seen by considering the following naive procedure. Consider a propositional
formula @ of length n, i.e., ® contains n propositions. In order to check for
satisfiability of ® each proposition is checked for all possible values, tt of ff.
This requires 2" combinations to be checked for n propositions.

The validity problem is: given a property @, do we have for all Kripke structures
K: K | @7 Validity thus amounts to check whether a formula is a tautology.
The difference to the satisfiability problem is that to solve the validity problem
one has to check whether K = @ for all existing /C, rather than to determine
the existence of one (or more) such K. Logically speaking, ® is valid if = ® is
unsatisfiable. In order to show that a formula is not a tautology it thus suffices
to construct one Kripke structure that refutes it.

At first sight the validity problem seems to be undecidable — there does not
seem to be an effective method for deciding whether formula @ is valid in all
Kripke structures, since these structures may have an infinite number of states.
However, due to the so-called finite-model property for PLTL, it suffices to
consider only all structures with a finite number of states. The finite-model
property states that if a PLTL-formula is satisfiable, then it is satisfiable in a
structure with a finite set of states.

Ezample 3.8. Gp = —(—=p A XG =p) is a tautology. The proof goes along
the following lines:
o ~Gp V (=(=p A XG=p))
< { calculus; semantics = }
~(oEGp A (=p A XG =)
< { semantics conjunction }
“(cEGp AN o= = p AN XGp)
< { semantics G (twice), conjunction and semantics X }
S((Vj20.00fp) A o E-p A (V)3 0.(0") = p))
< { calculus }
(V5> 0.00 Ep) A (V) 0.09 F -p))
Note that all steps in the derivations are equivalences, and hence the reverse
implication is also valid. (End of example.)

Ezample 3.9. GpUFq = G(pUFq) is satisfiable — this can be shown by just
constructing a model that satisfies G (pUF q) — but is not a tautology as there
exists a Kripke structure such as:
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{q} zg

The only path starting in s satisfies formula GpUF q as the initial state of this
path satisfies q and thus the path satisfies Fq. Thus, K = GpUFq. However,
G (pUFq) is not fulfilled as the successor of s does not satisfy pUF q. Thus,
K~ G(pUFgq). (End of example.)

Satisfiability is relevant to assertional system verification using PLTL in the
following sense. Consider a system specification and its implementation, both
formalized as PLTL-formulas, ®spec and (I)implv say. Checking whether the
implementation conforms to the system specification may be interpreted as:
<I>1-mp1 = ®@gpec. If a PLTL-formula is viewed as a characterization of the set
of paths that satisfy it, then this implication should be read as: “all the paths
that are allowed by the implementation are also allowed by the specification”. If
‘I)impl = ®gpec is not satisfiable, i.e., no Kripke structure exists for which this
formula holds, then the relation between the implementation and specification
cannot be realized in any structure. Thus, the implementation can never be a
correct implementation of the specification.

3.4 Axiomatization

The validity of a PLTL-formula of the form ® < W can be derived using the
semantics of Definition 3.7 by proving for all paths o:

o= @ if and only if o = ¥

This is usually a rather cumbersome task, since we have to reason about the
formal semantics that is defined in terms of the Kripke structure K. Let us, for
instance, try to deduce that:

PUT & T V (& A X(DUTD))

Intuitively the implication < is valid: if in the first state of a path ¥ holds,
then obviously ® U ¥ holds (for arbitrary ®), since ¥ can be reached via a path
of length 0. Otherwise, if ® holds in the first state and in the next state ® U ¥
holds, then ® U ¥ holds. For the implication in the other direction, a similar
informal reasoning applies. The reader is encouraged to first prove the above
fact without considering the derivation below. We formally derive:

GET V (B AX(®UT))
< { semantics of A and V }
(cEY)V (cE® A o E=X(PUT))
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< { semantics of X }

(cETY)V (cE® A ot EPUD)
< { semantics of U }

(cEV)V (cE® A (Fj20.(c")Y ET AVOLE<] (o) Ed))
& { calculus using (o)) = o711 }

(cET)V (3j20.00" T AVOLE<] (cFTTE® A 0 = ®))
& { calculus using 0% =0 }

(cET)V (3j20.001 =T A VO<LE < j+l.0F = 0)
& { calculus using 0’ =0 }

(3i=00"EV AVOLk<jof ED)

V(35200 T AVOLEk<j+Hl.of = d)
< { predicate calculus }

(3j =00/ ¥ A VOLk <jof E®)
< { semantics of U }

ocE®UT.

As we can learn from this calculation, formula manipulation is tedious and
error-prone. A more effective way to check the validity of formulas is to use the
syntax of the formulas rather than their semantics. The concept is to define
a set of axioms that allow the replacement of PLTL-formulas by semantically
equivalent PLTL-formulas for reasoning at a syntactic level. The set of such
axioms obtained is called a sound aziomatization.

It is not our aim to cover all possible axioms for PLTL but rather to give the
reader some elementary ones that are convenient. The axioms presented in
Table 3.3 are grouped and each group has been given a name, for reference
purposes. Using the idempotency and the absorption axioms any non-empty
sequence of F and G can be reduced to either F, G, FG, or GF. The valid-
ity of these axioms can be established using the semantic interpretation as
we have exemplified for the first expansion axiom. The difference is that we
only have to perform these tedious proofs once; thereafter these axioms can be
universally applied, i.e., using the principle of substitivity, each occurrence of
UV (e A X(®UY)) in a formula can be replaced by ® U ¥, and vice versa.
Note that the validity of the expansion axioms for F and G follows directly from
the validity of the expansion axiom for U, using the definition of F and G (the
reader may check this).

An axiom is said to be sound if it is valid. Formally, the axiom ® = ¥ is called
sound if and only if, for any path o:

ocE®ifand only if o = U

Applying sound axioms to a certain formula means that the validity of that
formula is unchanged: the axioms do not change the semantics of the formula
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Duality axioms: -G® = F-®
-F® = G-9d
-XP = X9
Idempotency axioms: GGP = GO
FF® = FO
oU(QPUT) = U
(PUT)UT = dUT
Absorption axioms: FGF® = GF®
GFG® = FG?
Commutation axiom: X(@UT) = (XP)U(XV)
Expansion axioms: PUT = TV (2 AX(PUY))
F® = &V XF®
GP = & A XGOD

Table 3.3: Some sound axioms for PLTL

at hand. If for any semantically equivalent ® and W it is possible to derive this
equivalence using axioms then the axiomatization is said to be complete. The
list of axioms given before for PLTL is sound, but not complete. A sound and
complete axiomatization for PLTL does exist [78], but falls outside the scope
of this book. For first-order temporal logic, such complete axiomatization does
not exist, as variables (in atomic propositions) may range over the integers, and
no complete deductive system exists for reasoning about integers.

3.5 Variants of PLTL

Strict and non-strict interpretation. Gp means that p holds in all suffixes of
the path under consideration including the path itself. It is called a non-strict
interpretation since it also refers to the current state, i.e., the first state of the
path. In contrast, a strict interpretation does not refer to the current state.
The strict version of G, denoted G, can be defined by G® = XG®. That is,
G p means that p holds at all successor states without stating anything about
the current state. Similarly, we have the strict variants of F and U that are
defined by F® = XF® and ®U¥ = X (& U ¥). Notice that for X it does not
make much sense to distinguish between a strict and a non-strict interpretation.
These definitions show that the strict interpretation can be defined in terms of
the non-strict interpretation. For the reverse direction we have:

GP = ® A GO
Fdé = &V F®
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PUT = TV (& A (PUD)).

The first two equations are self-explanatory given the above definitions of G
and F. The third equation is justified by the expansion axiom of the previous
section: if we substitute ®U ¥ = X (P UT) in the third equation we indeed
obtain the expansion axiom for U from Table 3.3. As a result, the strict and
the non-strict interpretation are equivalent: for each non-strict formula there
does exist a stric-formula that expresses the same, and vice versa. We will
adopt the more common non-strict interpretation.

Past operators. All operators from PLTL refer to the future (including the cur-
rent state). Consequently, operators are known as future operators. PLTL can,
however, also be extended with past operators. This can be useful for specify-
ing properties as some properties are more easily (and succinctly) expressed in
terms of the past than in terms of the future. For instance, G p (“always in
the past”) means — in the non-strict interpretation — that p is valid now and
in any state in the past. F~!p (“sometime in the past”) means that either p
is valid in the current state or in some state in the past and X~ p means that
p holds in the previous state, if such state exists. As for future operators, also
for past operators a strict and a non-strict interpretation can be given. The
main reason for introducing past operators is to simplify the property specifi-
cation; the expressive power of PLTL is not increased by the addition of past
operators [124] when a discrete notion of time is taken, as we do. Thus, for any
property which contains one or more past operators, a PLTL-formula with only
future temporal operators does exist expressing the same thing.

3.6 Specifying Properties in PLTL

In order to give the reader some idea of how to formulate informally stated prop-
erties in PLTL, we treat a couple of examples. The first example deals with a
classical problem, a mutual exclusion algorithm. In the second example we for-
malize properties of a simple communication system. The third example deals
with a (more involved) leader election protocol in a distributed system where
processes can start the election at arbitrary, i.e., non-synchronized moments.

3.6.1 Mutual Exclusion

The following program is a mutual exclusion protocol for two processes due
to Pnueli (taken from [62]). The only purpose of using this algorithm is its
simplicity; the approach we use for formalizing its properties is equally well
applicable to other (similar) mutual exclusion algorithms. In Pnueli’s protocol
there is a single shared variable s which is either 0 or 1, and initially equal to
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1. Besides, each process has a local boolean variable y that initially equals 0.
The program text for process P; (1 = 0,1) is as follows:

10: while true do

11: Non-critical section

12: (yi,8) = (1,4)

13: wait until ((y1_; =0) V (s # 1))

14: Critical section

15: y; =10

16: od.

Here, the statement (y;,s) := (1,4) is a multiple assignment in which the as-
signments y; := 1 and s := ¢ are performed in a single, atomic step. State-

ment wait until B for boolean expression B can be seen as an abbreviation of
while — B do skip od.

The intuition behind this protocol is as follows. The variables yy and y; are
used by each process to signal the other process of active interest in entering
the critical section. On leaving the non-critical section, process F; sets its own
local variable y; to 1. In a similar way this variable is reset to 0 once the critical
section is left. The global variable s is used to resolve a tie situation between
the processes. It serves as a log-book in which each process that sets its y
variable to 1 signs at the same time. The test at line 13 says that Py may enter
its critical section if either y; equals 0 — implying that its competitor is not
interested in entering its critical section — or if s differs from 0 — implying that
the competitor process P} performed its assignment to y; after Py assigned 1

to Yo-

We formalize the following informal requirements on the mutual exclusion pro-
tocol. We use proposition P;@1; to denote that the execution of process P;
(1 = 0,1) is currently at line 15 (0 < j < 7) and propositions s = b and y; = b
to compare the program variables s and y; with boolean b (i = 0,1).

e “Mutual exclusion is guaranteed”, i.e., the processes cannot occupy their
critical sections simultaneously. Using the fact that line 14 indicates
whether a process occupies its critical section, we obtain:

G - (Py@14 A P,@14)

Note that it does not suffice to state —(Py@14 A P;@14) as this would
require mutual exclusion to hold only for the current state of the path,
and does not state anything about the remaining part of the path.

e “Absence of unbounded overtaking”, i.e., when a process wants to enter
its critical section, it eventually will be able to do so. This property has
the following form:

G((pp = Fao)A(p1 = Faq))
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where proposition p; stands for “process P, wants to enter its critical
section” and proposition ¢; stands for “process P; is currently in its critical
section”, i.e., ¢; = P;@14. A process wants to enter its critical section is
expressed by the fact that its local variable y is equal to 1, thus we obtain:

G(((yo=1) = FRQL4)A((yy =1) = FPQ14))
Note that this is the same as stating
G((yo=1) = FPQL4)AG((yy =1) = FPQ14)

e “Each process will infinitely often occupy its critical section”. This is
expressed by:

(GF Py@14) A (GF P,@14)

It expresses that process Py is infinitely often in its critical section, and
that the same applies to process P;. This formula should not be confused
with:

GF (PyQ14 A P@14)

since this expresses that infinitely often Py and P; are occupying their
critical section simultaneously, and this is not what we want to express.
Similarly,

GF (PyQl4 v P,@14)

is not the formula that we are looking for, as this expresses that infinitely
often one of the two processes is occupying its critical section. The latter
property would be satisfied by for instance, an extremely unfair mutual
exclusion algorithm in which just one process always gets access to its
critical section while the other process never gets access to its critical
section. Such behavior would, however, violate our intended property.

3.6.2 A Communication Channel

Consider an unidirectional channel between two communicating processes: a
sender S and a receiver R. Sender S is equipped with an output buffer S.out
and recipient R with an input buffer R.zn. Both buffers have an infinite capacity.
If sender S sends a message m to R it inserts the message into its output buffer
S.out. The output buffer S.out and the input buffer R.in are connected via an
unidirectional channel. The receiver R receives messages by deleting messages
from its input buffer R.n. We also assume that all messages are uniquely
identified, and let AP = {m € S.out,m € R.in }, where m denotes a message,
be the set of atomic propositions. We assume that all properties are implicitly
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stated for all messages m, i.e., universal quantification over m is assumed. This
is for convenience and does not affect model checking if we assume that there
are finitely many messages. In addition, we assume that the buffers S.out and
R.in behave in a normal way, i.e., they do not disrupt or lose messages, and
messages cannot stay in a buffer ad infinitum. A schematic view of the system
under consideration is:

Sender S

S.out

channel

R.in

We formalize the following informal requirements:

Receiver R

e “A message cannot be in both buffers at the same time”.

G —(m € S.out A m € R.in)

e “The channel does not lose messages”. This means that messages that
are in S.out will eventually be in R.in *:

G (m € S.out = F(m € R.in))
If the first property is valid, we can equally well state:

G (m € S.out = XF(m € R.in))

since m cannot be in S.out and R.in at the same time.

e “The channel is order-preserving”. This means that if m is offered first by
S to its output buffer S.out and subsequently m', then m will be received
by R before m/':

Note that in the premise the conjunct —m’ € S.out is needed in order to
specify that m' is put in S.out after m. F(m' € S.out) on its own does
not exclude that m' is already in the sender’s buffer when message m is
in S.out. (It is left to the reader to investigate what the meaning is when
the first and third occurrence of F are replaced by X.)

“If we do not assume uniqueness of messages then this formula does not suffice to char-
acterize the intended property. If, e.g., two copies of m are transmitted and only the last
copy is eventually received this would satisfy the given formula. Uniqueness of messages is
a prerequisite for the specification of requirements for message-passing systems in temporal
logic, see, e.g., [110].

G (meSout A =m' € Sout N F(m' € S.out)
= F(me Rin A —=m/ € Rin A F(m' € R.in)))
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e “The channel does not spontaneously generate messages”, i.e., for any m
in R.in, it must have been previously sent by S. Using the past operator
F~! this can be formalized conveniently by:

G (m € Rin = F ! (m € S.out))
In the absence of past operators this can be expressed by:

G ((—=m € R.in) U (m € S.out))

3.6.3 Dynamic Leader Election

In current distributed systems several services are offered by some dedicated
process(es) in the system. Consider, for example, address assignment and reg-
istration, query co-ordination in a distributed database system, clock distribu-
tion, token regeneration after token loss in a token ring network, initiation of
topology updates in a mobile network, load balancing, and so forth. Usually
many processes in the system are potentially capable of providing these ser-
vices. However, for consistency reasons it is usually the case that at any time
only one process is allowed to actually provide a given service. This process —
called the “leader” — is in fact elected. Sometimes it suffices to elect an arbi-
trary process, but for other services it is important to elect the process with
the best capabilities for performing that service. Here we abstract from specific
capabilities and use ranking on basis of process identities. The idea is therefore
that the higher the process’ identity, the better its capabilities.

Assume we have a finite number N > 0 of processes connected via some com-
munication means. The communication between processes is asynchronous, as
in the previous example. Pictorially,

P, P | Py

Communication Network

Each process has a unique identity, and it is assumed that a total ordering exists
on these identities. Processes behave dynamically in the sense that they are
initially inactive, i.e., not participating in the election, and may become active,
i.e., participating in the election, at arbitrary moments. In order to have some
progress we assume that a process cannot be inactive indefinitely; i.e., each
process becomes active at some time. Once a process participates it continues
to do so, i.e., it does not become inactive anymore. For a given set of active
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processes a leader will be elected; if an inactive process becomes active, a new
election takes place if this process has a higher identity than the current leader.

We will use 7,7 as process identities. Let the set of atomic propositions be
{leader;, active;,i < j | 0 < i,j < N }, where leader; means that process i is a
leader, active; means that process ¢ is active, and ¢ < j is valid if the identity
of 7 is smaller than the identity of j (according to the total order on identities).
An inactive process cannot be a leader.

The formulations below (adopted from [34]) use universal and existential quan-
tifications over the set of process identities. Strictly speaking, these quantifica-
tions are not part of PLTL. Since we deal with a finite number of processes the
universal quantification Vi. P(i), where P(i) is some proposition over process 1,
can be expanded into P(1) A ... A P(N), and similarly we can expand 3i. P (i)
into P(1) V ... V P(N). The quantifications are thus simply abbreviations
and are used for convenience only.

e “There is always one leader”. This is formalized by:
G (i leader; N (Y j # i. = leader;))

Although this formula expresses the informally stated property, it will
not be satisfied by any realistic protocol. One reason is that processes
may be initially inactive, and thus no leader is guaranteed to exist ini-
tially. Besides, in a distributed system with asynchronous communication
switching from one leader to another can hardly be made atomic. So, it
is more realistic to allow the temporary absence of a leader. As a first
attempt to do so, one could modify the above formula into:

GF (Fi.leader; N (Vj #i. —leader;))

Problematic, though, is that this allows there to be more than one leader
at a time temporarily — it is only stated that infinitely often there should
be exactly one leader, but no statement is made about the moments at
which this is not the case. For consistency reasons this is not desired. We
therefore consider the following two properties.

e “There must always be at most one leader”:
G (leader; = Y j # i. = leadery)

e “There will be enough leaders in due time”:
GF (3i. leader;)

This property does not imply that there will be infinitely many leaders. It
only states that there are infinitely many states at which a leader exists.
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This requirement avoids the construction of a leader election protocol
that never elects a leader. Such a protocol would fulfill the previous
requirement, but is not desired for obvious reasons.

e “In the presence of an active process with a higher identity the leader will
resign at some time”:

G (Vi,j. ((leader; N i <j N —leader; A activej) = F —leader;))

For reasons of efficiency it is assumed not to be desirable that a leader
eventually resigns in presence of an inactive process that may participate
at some unknown time in the future. Therefore we require ;7 to be an
active process.

e “A new leader will be an improvement over the previous one”. This
property requires that successive leaders have an increasing identity.

G (Vi,J. (leader; N —Xleader; N XFleader;) = i < j)

Note that this requirement implies that a process that resigns once, will
not become a leader any more.

3.7 Fairness

3.7.1 On the Notion of Fairness

An important aspect of reactive systems is fairness. We illustrate the concept of
fairness by means of a frequently encountered problem in concurrent systems.

Ezample 3.10.  Consider N processes Py, ..., Py which require a certain ser-
vice. There is one server process Server that is expected to provide services
to these processes. A possible strategy that Server can realize is the following.
Check the processes starting with Py, then Pa, and so on, and serve the first
thus encountered process that requires service. On finishing serving this process,
repeat this selection procedure once again starting with checking P .

Now suppose that Py is continously requesting service. Then this strategy will
result in Server always serving Py. Since in this way another process has to
wait infinitely long before being served, this is called an unfair strategy. In a
fair serving strategy it is required that the server eventually responds to any
request by any one of the processes. For instance, a round-robin scheduling
strategy where each process is only served for a limited amount of time is a fair
strategy: after having served one process, the next (in the round-robin order) is
checked and, if needed, served. (End of example.)
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When verifying concurrent systems one is often only interested in paths in
which enabled transitions (statements) are executed in some “fair” manner. In
Section 3.6.1, for instance, we treated a mutual exclusion algorithm for two
processes. In order to prove the absence of individual starvation, the situation
in which a process that wants to enter its critical section has to wait infinitely
long, we want to exclude those paths in which the competitor process is always
being selected for execution. This type of fairness is also known as process
fairness, since it concerns the fair scheduling of the execution of processes.
If we were to consider unfair paths when proving the absence of individual
starvation we would usually fail, since there always exists an unfair strategy
according to which some process is always neglected, and thus can never make
progress. One might argue that such unfair strategy is unrealistic and should
be avoided.

Process fairness is a particular form of fairness. In general, fairness assumptions
are needed to prove liveness properties, properties of the type “something good
will eventually happen”. This is of vital importance if the Kripke structure to be
checked contains non-determinism. Fairness is then concerned with resolving
non-determinism in such a way that it is not biased to consistently ignore a
possible option. In the above example, the scheduling of processes is non-
deterministic: the choice of the next process to be executed (if there are at least
two processes that can be potentially selected) is arbitrary. Another example
where non-determinism occurs is in sequential programs where constructs like:

do true — Sjelse true — S5 od

are allowed. Both statements S; and S5 are always enabled. An unfair mecha-
nism might always choose statement S; to be executed, and as a consequence,
a property that is established by executing statement S5 is never met. An-
other prominent example where fairness is used to “resolve” non-determinism
is in modeling concurrent processes by means of interleaving. Interleaving is
equivalent to modeling the concurrent execution of two independent processes
by enumerating all the possible orders in which activities of the processes can
be executed (cf. Chapter 2).

In general, a fair path (or: computation) is characterized by the fact that certain
fairness constraints are fulfilled.

3.7.2 Fairness Expressed in PLTL

Fairness constraints are used to rule out computations that are considered to
be unreasonable for the system under consideration. In PLTL, fairness can
be expressed as part of the property specification. The general format of a
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property specification is:
fairness constraint = desired property

We will treat three different forms of fairness. Let ¥ be the desired property,
such as absence of individual starvation, and ® be the fairness constraint un-
der comsideration, like a process has to have its turn “regularly”. Then we
distinguish between the following forms of fairness:

e Unconditional fairness. A path is unconditionally fair with respect to ¥
if it satisfies:

GFU

“ “

For instance, if ¥ denotes “ a process enters its critical section” or “a
process gets its turn”, then a path is uncondionally fair with respect to
these properties if they hold infinitely often, i.e., either a process enters
its critical section infinitely often, or, in the other case, a process gets its
turn infinitely often. Note that the fairness constraint ® here is vacuously
true, e.g., no condition (such as “a process is enabled”) is expressed under
which circumstances a process gets its turn infinitely often. This becomes
more clear by reformulating GF ¥ by:

true = GF U

Unconditional fairness is sometimes referred to as impartiality.

e Weak fairness. A path is weakly fair with respect to ¥ and fairness
constraint @ if it satisfies:

FG® = GFVU
For instance, a typical weak fairness requirement is:

F Genabled(a) = GF executed(a)

Weak fairness means that if an activity such as a, e.g., a transition or an
entire process, is continuously enabled (F G enabled(a)), then it has to be
executed infinitely often (GF executed(a)). A computation is weakly fair
with respect to activity a if it is not the case that a is always enabled
beyond some point without being taken beyond this point. Weak fairness
is sometimes referred to as justice.

e Strong fairness. A path is strongly fair with respect to ¥ and fairness
constraint @ if it satisfies:

GF® = GFVU
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The difference to weak fairness is that the premise F G ® is replaced by
GF ®. Strong fairness means that if an activity is infinitely often enabled
— but not necessarily always, i.e., there may be periods during which ®
is not valid — then it will be executed infinitely often. A path is strongly
fair with respect to activity a if it is not the case that a is infinitely often
enabled without being taken beyond a certain point. Strong fairness is
sometimes referred to as compassion.

An important question now is: given a verification problem, which fairness no-
tion to use? Unfortunately, there is no clear answer to this question. Different
forms of fairness do exist — the above is just a small, though important, frag-
ment of all possible fairness notions — and there is no single favorite notion.
For verification purposes, fairness constraints are crucial, though. Recall that
fairness rules out certain “unreasonable” computations. If the fairness con-
straint is too strong, relevant computations may not be considered. In case a
formula is found to be satisfied (for a Kripke structure), it might well be the
case that some reasonable computation that is not considered (as it is ruled
out by the fairness constraint), refutes this formula. On the other hand, if the
fairness constraint is too weak, we may fail to prove a certain property as some
unreasonable computations (that are not ruled out) refute it.

Ezxample 3.11.  Consider the following two processes that run in parallel and
share an integer variable x that initially has value 0:

process Inc = while (z >0do z:=z+1)od

process Reset = z:= -1

Recall that the pair of brackets (...) embraces an atomic section, i.e., process
Inc performs the check whether x is positive abd the increment of x (if the guard
holds) as one atomic step. Does this parallel program terminate, i.e., does
the model underlying this program satisfy the formula F terminate? When no
fairness constraints are imposed, it is possible that process Inc is permanently
executing, i.e., process Reset never gets its turn and the assignment © = —1
will not be executed. In this case, termination is thus not guaranteed, and the
property is refuted. If, however, we require unconditional process fairness, then
we are able to establish that

(GF Inc.running A GF Reset.running) = F terminate

where the atomic proposition P.running is valid for process p when it has its
turn. (End of example.)
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Logically speaking, the relationship between the above introduced fairness no-
tions is as follows:

(GFT¥) = (FG® = GFU)) A (FG® = GFU) = (GF® = GF1))

A stronger fairness constraint rules out more paths, and thus allows a subset
of the paths allowed by a weaker fairness constraint. This hierarchy can be
exploited to choose an appropriate form of fairness in the following sense. Try
first to prove the property at hand under the weakest fairness constraint. If
the property is found to be valid, it also holds for any stronger fairness con-
straint. Proving that a system satisfies a property under no fairness constraint
— unconditional fairness — implies that it does so under any fairness constraint.

3.8 Practical Use of PLTL

This section concludes this chapter with a discussion of some important cat-
egories of properties, both from a theoretical as from a practical perspective.
Several classifications of properties do exist; we adopt the following rather clas-
sical one.

A reachability property expresses that some particular situation can be reached.
Example reachability properties are: “a process can enter its critical section”,
or “the coffee machine can produce hot chocolate”, or “the system can always
return to its initial state”. Often a negated reachability property is of inter-
est, expressing that some undesired situation (such as a deadlock) cannot be
reached. Reachability properties are of the type “there exists a path such that
some scenario can be reached”. These properties are hard to formulate in PLTL,
as satisfaction in PLTL by definition ranges over all paths (cf. Definition 3.8)
rather than over a subset of paths. Consequently, negated reachability proper-
ties can be expressed easily, e.g., G = (P@Qcs) states that process P can never
occupy its critical section. The typical syntax of a negated reachability property
is G = ® where ® characterizes the undesirable situation. Reachability proper-
ties like “the system can always return to its initial state” cannot be expressed
in PLTL.

A safety property expresses that, under certain conditions, something never
occurs. Typically, a safety property states that some bad situation may never
occur. A negated reachability property is a safety property and the negation of
a safety property is a reachability property. An example safety property is “the
coffee machine will never provide tea if the user requests coffee”, or “it is never
the case that two processes occupy their critical section simultaneously”. The
operator G describes safety properties, e.g., G = (P,@cs A P,@Qcs) expresses that
processes P, and P, can never occupy their critical section simultaneously. For
expressing conditional safety properties the unless operator W is of importance,
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e.g., the property “as long as the user does not provide a 25 cents coin, the coffee
machine won’t offer coffee” is expressed by — coffee W coin. This should be read
as “the machine does not provide coffee unless a coin is inserted into the ma-
chine”. Recall that this is equivalent to the formula G — coffee V (coinU coffee).
Note that the formula — coffee U coin does not express our intention, as this for-
mulation requires that a coin will be inserted some day, thus not permitting a
behaviour in which never a coin is provided.

A liveness property expresses that, under certain conditions, something will
ultimately occur. Liveness properties are also called progress properties.’ Typ-
ically, a liveness property describes that some good situation will occur in the
end. Example liveness properties are “the coffee-machine will eventually pro-
vide coffee, after issuing a coin” (note the difference with the above safety
property), or “the traffic light will become green”, or “once red, the traffic
light will become green”. The latter two properties are formulated in PLTL by:
F green and G (red = F green). Whereas the unless operator is convenient to
describe conditional safety properties, the until operator is used for conditional
liveness properties, since ® U W is valid if ¥ is will hold eventually. Here, ¥
characterizes the good situation while ® describes the condition under which
this good situation has to be reached. Note that we have:

PUT =FT vV PWT

where the property ® UV can be decomposed into the unconditional liveness
property FW¥ and the safety property ® W .

A deadlock-freeness property expresses that never a situation can be reached
in which no progress is possible. This is of particular interest to reactive
systems, as these typically execute ad infinitum. One is tempted to classify
deadlock-freedom as a negated reachability problem: the deadlocked states are
not reachable. This, however, requires an explicit characterization of the set of
deadlocked states, which is not always easy [22].

A fairness property expresses that, under certain conditions, an event will oc-
cur (or will fail to occur) infinitely often. Fairness has been more extensively
discussed in the previous section.

A classification of properties is not only of academic interest, but is also of high
practical use. First of all, it leads to better structured requirements specifica-
tions and is a vehicle to reduce the number of omissions by checking “what are
the safety properties” and “what are liveness properties”? Secondly, they help
the user to formulate their property in terms of PLTL (or any other logic), as
the different categories suggest — but are not uniquely determined by — certain

®This is, however, sometimes confusing, as for instance the property “the program will
deadlock” is a progress property, although it states that a state can be reached from which
no progress can be made.
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syntactic formats. The latter aspect can be further extended by considering
specification patterns, i.e., a generalized description of a commonly occurring
requirement on the admissable paths that is (i) parameterizable (the pattern
contains holes to be replaced by PLTL-formulas), (ii) high-level (no detailed
knowledge of PLTL is needed) and (iii) is formalism-independent (translation
of patterns to a logical formula can be automated). Table 3.4 lists the most
commonly used specification patterns for PLTL, describes their scope, property
category and their empirically established importance (by considering several
case studies).

pattern category PLTL-formula frequency
response liveness G(® = FY) 434 %
universality — safety G 19.8 %
absence negated reachability G —® 7.4 %
precedence  liveness G(-PWD) 4.5 %
absence G({(® AN T A FO)

= (-9'UT)) 32 %
absence safety G(¥ = G-9) 21 %
existence liveness Fo® 2.1 %

~ 80 %

Table 3.4: Most commonly used specification patterns for PLTL [66]

3.9 Bibliographic Notes

Temporal logic. Temporal logic belongs to the class of modal logics whose
origins go back to the field of philosophy. Although it is hard to point out the
original works, it is clear that the works by Lewis [123] and Prior [154] were one
of the first to use modal logic to give a meaning to the modalities “sometime”
and “everywhere”. The semantics that is most commonly used nowadays is
due to Kripke [112]. The until-operator was introduced in the late sixties by
Kamp [107] who also showed that this operator is more expressive than F and G
alone. The introduction of temporal logic into computer science is by Pnueli in
the late seventies in his seminal paper [151]. Surveys of the use of temporal logic
in computer science include the works by Manna and Pnueli [131], Emerson [67],
and Gotzhein [80]. Besides the specification and verification of properties over
computer systems, temporal logic is used in artificial intelligence to formally
describe the knowledge of agents. This idea is due to Hintikka; a recommendable
introduction can be found in [102, Chapter 5].

PLTL. Gabbay, Pnueli, Shelah and Stavi [78] presented a complete axiomati-
zation for PLTL and a proof of the decidability of its satisfiability problem.
The complexity of deciding the satisfiability problem for PLTL (and some vari-
ants thereof) has been reported by Sistla and Clarke [168]. Gabbay, Pnueli,
Shelah and Stavi [77] showed that the inclusion of past operators — as in the
original proposal by Kamp — does not enlarge the expressiveness of PLTL by
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presenting an algorithm that translates any PLTL-formula with past operators
into an equivalent (but larger) ordinary PLTL-formula. (This result carries
over to CTL and p-calculus.) Lichtenstein, Pnueli and Zuck [125] argued that
past operators are helpful for specification convenience and modular reasoning.
Recently, Laroussinie, Markay and Schnoebelen [120] have shown that PLTL
with past operators is exponentially more succinct than ordinary PLTL. That
is, there do exist properties that can be expressed as a past-PLTL formula of
length n, for which all equivalent formulations in ordinary PLTL are of length
2m,

Assertional verification. Establishing software correctness has been a signifi-
cant research field since the early days of computing. The origins of a sound
mathematical approach towards program correctness can be traced back to Tur-
ing in 1949 [179, 141]. It lasted until the mid 1960s before these initial ideas
resulted in constructive methods for verifying flowcharts [74], a restrictive form
of programs, and — due to the seminal work by Hoare [93] — for verifying while-
programs. This work received a lot of attention, and many Hoare-style proof
systems have been developed since then for various programming language con-
structs. Generalizations of this approach to parallel programs have initially
been developed by Owicki and Gries [146] and Lamport [116], while work on
assertional verification of distributed programs has taken place by several re-
searchers since the early eighties, such as Apt, Francez and de Roever [14].
Overviews of Hoare-style proof systems can be found in the survey papers by
Apt [12, 13]. The book by Apt and Olderog [16] gives an excellent treatment
of assertional verification of sequential and parallel (and distributed) programs.
The work by Dijkstra [63], Gries [81] and others have shown that the proof rules
for a posteriori verification of sequential programs are also quite useful in sys-
tematic program development. The Unity-approach by Chandy and Misra [41]
adopts this approach for parallel programs using a simple variant of temporal
logic.

Assertional verification with LTL. Using a set of proof rules for temporal logic,
assertional verification can be carried out in the same way as the verification
of sequential programs using predicate logic. This was originally proposed by
Pnueli [151], and has been taken up by, amongst others, Hailpern [85] to check
concurrent programs. A tutorial introduction to assertional reasoning based
on temporal logic is given by Udaya Shankar [164]. An extensive treatment
of deductive systems for (first-order and propositional) LTL can be found in
Manna and Pnueli [132]. The disadvantages of the proof verification method
are similar to those for checking parallel systems: proofs are lengthy, detailed,
and tedious, are thus quite labor-intensive, and require a substantial user in-
volvement. An approach for reactive systems for which some tool support is
available, is Lamport’s TLA (Temporal Logic of Actions [118]). This approach
allows one to specify requirements and system behavior in the same notation.

Property classification. The classification of properties into safety and liveness
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properties is due to Lamport [116]. Pnueli pointed out (again in [151]) that in
particular liveness properties require a specification language, such as temporal
logic, to be formalized. The characterization of safety and liveness properties
in temporal logic has received quite some attention in the literature; some ini-
tial work has been done by Sistla [166], and a full characterization has been
given by Manna and Pnueli [130]. For an overview and a more detailed clas-
sification, consult Manna and Pnueli’s book [131, Chapter 4] or the overview
by Sistla [167]. Fairness has been extensively described by Francez [76]. The
practical specification of different types of properties in PLTL (as well as in
branching temporal logic) has recently been described by Bérard et al. [22];
we have largely adopted the description of property classes (cf. Section 3.8)
from [22]. A pattern-based approach towards the specification properties in
temporal logic has been proposed by Dwyer, Avrunin and Corbett [65]. These
authors empirically established [66], by considering over 550 examples of prop-
erty specifications taken from case studies, that indeed most of the properties
fall into a (rather small) set of patterns. More information can be found at:
www.cis.ksu.edu/santos/spec-patterns/

3.10 Exercises

EXERCISE 3.1. Consider the following Kripke structure consisting of four states that
are labelled with atomic propositions from the set {p,q}.

(D) 1a)

{r}

Indicate for each of the following PLTL-formulas the set of states for which these
formulas are valid:

Xp
XXXp
Gp
GFgq
G(pUq)
F(gUp)

SRR

EXERCISE 3.2. Consider the following Kripke structure that consists of four states.
The following atomic propositions are used: r (red), y (yellow), g (green) and b (black).
The model is intended to describe a traffic light that is able to blink yellow.
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)

{o}

{y}
(2)= 3){g9}

(-
{r}

You are requested to indicate for each of the following PLTL-formulas the set of states

for which these formulas are valid:

XXy
XXr
Fy
GFy
Fg
GFg

O Gt W=

®©

11.
12.

G-b
F-b
—yUy
-rUg
-bUb
bU b

EXERCISE 3.3. Suppose we have two users, Peter and Betsy, and a single printer
device Printer. Both users perform several tasks, and every now and then they want
to print their results on the Printer. Since there is only a single printer, only one user
can print a job at a time. Suppose we have the following atomic propositions for Peter

at our disposal:

e Peter.request ::= indicates that Peter requests usage of the printer;

e Peter.use ::= indicates that Peter uses the printer;

e Peter.release ::= indicates that Peter releases the printer.

For Betsy similar predicates are defined. Specify in PLTL the following properties:

1. Mutual exclusion, i.e., only one user at a time can use the printer.

2. Finite time of usage, i.e., a user can print only for a finite amount of time.

3. Absence of individual starvation, i.e., if a user wants to print something, he/she

eventually is able to do so.

4. Absence of blocking, i.e., a user can always request to use the printer

5. (More involved) Alternating access, i.e., users must strictly alternate in printing.

EXERCISE 3.4. Check for the following PLTL-formula whether they are (i) satisfiable,

and/or (ii) valid:

CXXp = Xp
. X(pV Fp) = Fp

= W N =

. GpUFq = G(pUFgq)

.Gp = = X(=p AN G-=p)
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5. Fqg = (pUq)

EXERCISE 3.5. Prove or disprove whether G(® = X&) equals G(® = G®). De-
note in each step of your proof which result or definition you are using, or provide a
counterexample.

EXERCISE 3.6. Check whether the following pairs of PLTL-formula are equivalent
(p and ¢ are atomic propositions). If not, check in which direction the implication
holds. If one of the implications is invalid, provide an example Kripke structure that
demonstrates this.

. XFp&FXp
(FGp)A(FGq)<F(GpAGq)
(pUg)UgepUg

(U A (gUr)&(pUr)

. Gp V Fg&(Gp) vV (pUg)

U W o

EXERCISE 3.7. Check whether the following pairs of PLTL-formula are equivalent
(p,q and r are atomic propositions). If not, check in which direction the implication
holds. If one of the implications is invalid, provide an example Kripke structure that
demonstrates this.

1. FpeXp

. FGgq&GFyg

. XGp&eGXp

(p UgAp Ur)ep U(gAr)
. (GFpAGFq)&GF(pAq)

EXERCISE 3.8. Consider a lift system that services N > 0 floors numbered 0 through
N—1. There is a lift door at each floor with a call-button and an indicator light that
signals whether or not the lift has been called. In the lift cabin there are N send-
buttons (one per floor) and N indicator lights that inform to which floor(s) is sent. For
simplicity consider N = 4. Present a set of atomic propositions — try to minimize the
number of propositions — that are needed to describe the following properties of the
lift system as PLTL-formulas and give the corresponding PLTL-formulas:

1. The doors are “safe”, i.e., a floor door is never open if the cabin is not present
at the given floor.

2. A requested floor will be served sometime.

3. Again and again the lift returns to floor 0.
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4. When the top floor is requested, the lift serves it immediately and does not stop
on the way there.

5. The cabin is motionless unless there is some request.

EXERCISE 3.9. Let ® and ¥ be PLTL-formulas. Consider the following new operators
for PLTL:

1. “At next” ®AX ¥: at the next time where ¥ holds, also ® does.
2. “While” ® W ¥: & holds as least as long as ¥ does.
3. “Before” ® BW: if ¥ holds sometime, ® does so before.

Show that adding these operators to PLTL does not increase the expressivity of PLTL,
i.e., find for each of the above formulae an equivalent (ordinary) PLTL-formula.



Chapter 4

Automata

An important strategy to model check PLTL is based on finite-state automata
that accept infinite words. This chapter introduces automata on finite words,
their relationship to regular languages and some elementary results on such au-
tomata. The main part of the chapter is devoted to Buchi automata, automata
on infinite words, and some algorithms on these automata that are relevant to
model-checking PLTL.

4.1 Automata on Finite Words

Automata are often used in computer science as models to describe the be-
haviour of systems. They consist of a set of states that are connected to each
other by transitions. A state describes some information about a system at a
certain moment of its behaviour. For instance, a state of a traffic light indi-
cates the current colour of the light. Similarly, a state of a sequential computer
program indicates the current values of all program variables together with the
current value of the program counter that indicates the next statement to be
executed. Transitions specify how the system can evolve from one state to an-
other. In case of the traffic light a transition may indicate a switch from one
colour to another, whereas for the sequential program a transition typically
corresponds to the execution of a statement.

4.1.1 Regular Languages

Let X be an alphabet, i.e., a finite set of symbols ranged over by a, b, ¢, and so
forth. Finite words (or strings) are finite sequences over an alphabet, e.g., some
words over ¥ = {a,b} are £ (the empty word), ab and aaabb. A set of words

7
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over an alphabet is called a language, and is ranged over by £ (and primed and
subscripted versions thereof).

Important operations on words are concatenation and repetition. Concatena-
tion takes two words and “glues them together” to construct a new word. It is
denoted by juxtaposition. For instance, the concatenation of the words ba and
aab yields the word baaab. The concatenation of a word with itself is denoted by
squaring, e.g., (ab)? equals abab; this is generalised in a straightforward manner
to arbitrary numbers of concatenations, e.g., (ab)® equals ababababab, i.e., the
word ab 5 times in a row. Repetition (denoted by the Kleene star *) of a word
yields a language, i.e., a set of words which contains zero or more (but finite)
repetitions of it. Formally, for word o we have o* = |J°, o'. For instance,
(ab)* denotes the set { ¢, ab, abab, ababab, ... }. Note that the empty word ¢ is
included. This is precisely the difference with the slight variant of the Kleene
star, denoted T, defined by o™ = |J32, 0%, or, equivalently, o™ = 0* — { ¢ }. For
instance, (ab)™ denotes the set { ab, abab, ababab, ... }.

Concatenation is lifted to languages in a natural way as a point-wise extension
of concatenation on words. The same applies to repetition. For languages
L and L' we have L.L' = {00’ | 0 € L, € L'} and L* = |J°, L* where
L' denotes concatenation of i times £. Thus, for instance, for £ = {a,ab}
and L' = {e,bbb} we have that £.L' equals the language { a,ab, abbb,abbbb }
whereas £2 = { aa, aab, abab, aba }.

Regular languages are an important class of languages. They can be constructed
inductively as follows. A regular language over an alphabet can be built from
the empty set, the set containing the empty sequence, and the sets containing
a single symbol of the alphabet using the operations of set union, concatena-
tion and repetition (Kleene star). Formally, regular languages over alphabet %
satisfy the following rules:

[a—y

. @ and { e} are regular languages over ¥

DN

. {a} is a regular language over ¥, for any a € ¥

3. if £ and L' are regular languages over Y, then so are £.£', LU L' and L*

o

. anything else is not a regular language.

For instance, £L = {a,b}*{b}.{b}.{a,b}" is a regular language over ¥ =
{ a,b} that consists of all words that contain the subword bb. Regular languages
are usually described by reqular expressions, e.g., L is described by the regular
expression (a|b)*bb(a|b)* where | denotes a choice. It states that any word that
belongs to L is constructed as the concatenation of (i) a (possibly empty) word
of as and bs in arbitrary order, (ii) the word bb, and (iii) a (possibly empty)
word of as and bs in arbitrary order.
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4.1.2 Finite-State Automata

In the rest of this book, we will often use regular expressions to describe regular
languages. An alternative way to describe these languages is to use finite-state
automata.

Definition 4.1. (Finite-state automaton)
A finite-state automaton (FSA) A is a tuple (%, S, I,—, F) where:

> is an alphabet

S is a finite set of states

e [ C S is a set of initial states
e — C §x 3 xS isa labelled transition relation, and

e [ C Sis a set of accept states.

Y defines the symbols on which the automaton is defined. The (possibly empty)
set I defines the states in which the automaton may start. Notation: we write
s % s" if and only if (s,a,s’) € —. The basic concept is that the automaton
starts in one of the states in I, and then is feeded with a sequence of symbols
(each called an input symbol) from the alphabet . After reading an input
symbol, the automaton changes state according to the transition relation —.
Intuitively, s %+ s’ denotes that the automaton moves from state s to state s’ on
input symbol a. When all input has been read (and is correct), the automaton
is in one of the states in the set F', the accept states.

Ezxample 4.1.  An example FSA is depicted in Figure 4.1. Here we have ¥ =
{a,b,c}, S = {s1,82,83}, I = {51}, transition function sy -2 s2, s1 - s1,
S9 by S3, S3 N s1 and s3 by sg and set of accept states F' = { s3 }. The drawing
conventions for FSA are the same as for labelled transition systems. Accept

states are distinguished from other states by drawing them with two circles.
(End of example.)

()

b

Figure 4.1: An example FSA
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Definition 4.2. (Run and word of an FSA)

A run of FSA A = (%,S,I,—, F) is a finite sequence of states o = 59 81 ... sy
such that sgp € I and s; % s;,1 for all 0 < i < n for some a; € ¥. Run o is
called accepted by A if and only if s, € F.

A finite word w = agay ... ap—1 € X is accepted by A if and only if there exists
an accepting run o = sg 81 ... s, such that s; % s;,; for 0 <1 < n.

The language accepted by A, denoted L(A), is the set of finite words accepted
by A, ie., L(A) ={w € ¥* | w is accepted by A }.

That is, a run is a finite sequence of states, starting from an initial state such
that each state in the sequence can be reached via the transition relation —
from its predecessor in the sequence. A run is accepting if it ends in an accept
state. If F' = @ there are no accepting runs, and thus £(A) = @ in this case.
An FSA can be considered as an acceptor for the language that contains the
set of words induced by its accepting runs. Note that by definition an FSA
cannot perform any transition when its current state does not have an outgoing
transition that is labelled with the current input symbol. That is to say, if an
automaton is feeded with an input symbol that does not match a label of any
of the outgoing transitions of the current state, the automaton is stuck and no
further progress can be made. This situation can be made explicit by adding
an extra state (“stuck”) to the FSA, and equipping each state with a transition
to that state for each input symbol that it cannot recognise.

Ezxample 4.2. Ezample runs of the automaton in Figure 4.1 are si, $1 S92,
818181, 818283, and S1 8o S3 81 81 S1 82 83. Accepting runs are runs that finish
in the accept state sz, for instance, s1 S2 S3, S1 S1 82 83, and $1 S2 §3 S1 S1 S1 S2 S3-
The accepted words that correspond to these accepting runs are respectively, ab,
cab, and abbccab. The word cca is, for instance, not accepting, since there is
not an accepting run that generates cca. (End of example.)

Each accepted word by our example automaton in Figure 4.1 consists of zero
or more times a symbol ¢, then an a, and one or more bs (to reach the accept
state). This pattern of cs, a, and bs can be repeated a finite number of times
after having consumed at least two bs. Formally, the language accepted by this
automaton is characterized by the regular expression c*ab | (c*abb™)™.

It is not by accident that the language accepted by this automaton turns out
to be a regular language, since Kleene showed that:

Theorem 4.1.
Language L is reqular if and only if there exists an FSA A such that L = L(A).
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Thus for every regular expression (which describes a regular language), there
exists a finite-state automaton that only accepts this regular expression and
nothing else. Given a regular expression, this automaton can be constructed in
an automated manner. Vice versa, algorithms do exist that given a finite-state
automaton construct the regular language it accepts. An automaton may have
several accept states each of which exhibits the acceptance of the set of words
that end in that state. The regular language is determined by simply taking
the union of these sets of words.

As a consequence of the above theorem, languages accepted by finite-state au-
tomata are equally expressive as regular languages. This result also shows the
limitation of FSA, as it entails that for a non-regular language such as, e.g.,
{a™" | n > 0}, there does not exist an FSA that accepts it. Intuitively, this is
not surprising, since in order to be able to recognise this language, one need to
be able to count the number of as so as to be able to determine the number of bs
that need to follow. (This non-regular language is a so-called context-free lan-
guage, whose expressiveness coincides with push-down automata, an extension
of FSA where states are equipped with a stack of input symbols.)

4.1.3 Deterministic Automata

An FSA may be non-deterministic, i.e., it may have several initial states al-
lowing A to start differently, and the transition function may specify various
possible successor states for a given state and a given input symbol. For in-
stance, the example automaton in Figure 4.1 is non-deterministic since the
successor state of state s3 is not uniquely defined if the input symbol is b. In
that situation, the automaton may autonomously decide to either stay in state
s3 (and accept the corresponding word), or to loop back to its initial state. Let
Succ(s,a) denote the set of successor states of state s on input symbol a, i.e.,
Succ(s,a) ={s' | s s}

Definition 4.3. (Deterministic FSA)

FSA A= (%,S,1,—, F) is deterministic if and only if | I| = 1 and |Succ(s, a)| <
1 for all states s € S and all symbols a € 3. Otherwise, A is called non-
deterministic.

Stated in words, a FSA is deterministic if it has a single initial state and if
for each symbol the successor state of each state is uniquely defined. For each
accepted word by a deterministic FSA there is exactly one run that corresponds
to this word. At first sight, this might restrict the expressiveness of deterministic
automata, but this is not the case: for any regular language there exists a
deterministic automaton that accepts it.

Regular languages exhibit some interesting closure properties, e.g., the union of
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two regular languages is a regular language. The same applies to intersection,
concatenation and Kleene star (repetition). Later on in this chapter we will
present the operation on automata that corresponds to the intersection of the
languages they accept. Interestingly enough, regular languages are also closed
under complementation, i.e., if £ is regular over alphabet ¥, then £ = ©* —
L is also regular. Complementation of regular languages corresponds to the
following operation on deterministic automata. For deterministic FSA A =
(%,8,1I,—,F), the FSA A = (2, 8,1, —,S — F) accepts the regular language
L(A). Thus, in order to complement a deterministic automaton we just have to
complement the acceptance condition. As A is deterministic to each input word
exactly one accepting run corresponds. By construction such word will not be
accepted by A. Note that this does not work for non-deterministic automata
A: as such automaton might have several runs that accept a given input word,
it does not suffice that some runs of A to reject (i.e., not accept) the word, but
this should hold for all possible runs. It turns out that in order to complement
a non-deterministic automaton, one first needs to make it deterministic.

Ezample 4.3.  Consider the deterministic FSA depicted in Figure /.2(a). Its

~O0—"~0——Q ~O—-0—"—-0
O O O O
b b

Cc Cc

(a) (b)
Figure 4.2: Complementing a deterministic FSA

language equals ab*c™. For instance, for word abbc there is a single correspond-
ing accepting run, namely s SsS283. The complement of this automaton is
given in Figure 4.2(b). Note that abbc is not accepted by the complemented
automaton. If we apply the same mechanism to the simple non-deterministic
FSA of Figure 4.3(a) we obtain the automaton in Figure 4.3(b). This construc-
tion does, however, not correspond to the complement as, for instance, both
automata accept the word ab. (End of example.)

< XD~ XD

(a) (b)

Figure 4.3: Naively complementing a non-deterministic FSA
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4.2 Algorithms for Automata on Finite Words

This section presents several algorithms for finite-state automata. As we will see
in Chapter 5, modifications of some of these algorithms for automata on infinite
words are instrumental to model-checking PLTL. Algorithms to determinize
non-deterministic FSA, to determine the synchronous product of two FSA, to
carry out a depth-first search, and to check for emptiness are covered.

4.2.1 Determinization

Although deterministic and non-deterministic automata seem at first sight to
be rather different — a non-deterministic FSA can have several runs on a given
input word whereas a deterministic one can have maximally one — it turns
out that there is a very strong relationship between them. Before giving a
precise characterisation of this relationship we need the following concept. Two
automata are called equivalent if they accept the same language:

Definition 4.4. (Equivalence of FSA)
FSA A and A’ are equivalent, denoted A = A'| if and only if L(A) = L(A’).

This notion of equivalence allows to express the relationship between determin-
istic and non-deterministic automata in the following way:

Theorem 4.2.
For each non-deterministic FSA A there exists a deterministic FSA A’ (on the
same alphabet as A) such that A= A’.

Ezxample 4.4. Consider again the example FSA from Figure 4.1. This automa-

C

b
a0 g
\/

c
Figure 4.4: Deterministic FSA that is equivalent to the FSA of Figure 4.1

ton is non-deterministic as state sz has two possible successors on input symbol
b. The FSA depicted in Figure 4.4 is equivalent to our example automaton, but
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function nfsa2dfsa(A : FSA) : FSA;
(* pre: A isthe FSA (X,S5,1I,—,F) *)
begin var S’ I', F', R : set of (set of States),
—' : set of Transitions,
U,V :set of States;
Sl"[,,R’Fl,_)I ::{I}7{I}7{I}7®7®;

while R # @
do let U in R; (* pick an unexplored new state *)
R:=R-U;
for each a € © (* determine the a-successors of U *)
do V := g;
for each s € U do V :=V U Succ(s,a) od,;
if VgS' then S R:=S"UV,RUV fi; (* V is new *)
—' == U{U SV} (* add transition *)
od;
od;
Fr={UeS|FNU#a}; (* determine new accept states *)

return (X,5",I',—' | F');
(* post: A" = (%,5",I',—', F') is a deterministic FSA such that 4 = A" ¥)
end

Table 4.1: Subset construction algorithm

is deterministic. It is constructed from the FSA of Figure 4.1 by introducing
a new state (sq) that has the same capabilities as the former states s3 and s;
together. In this way, the former transitions s3 - s3 and s3 -2 s, are now
represented by a single transition ss by sy, Ttis left to the reader to check that
the two automata indeed accept the same language. (End of example.)

The crux of the transformation of our example FSA into an equivalent deter-
ministic one is the grouping of target states that can be reached from a state by
the same input symbol. In this way, states of the new, deterministic automa-
ton can be considered as subsets of states of the original, non-deterministic
automaton. The construction — originally due to Rabin and Scott — is therefore
also known as the subset construction algorithm. The algorithm starts with the
state I. In each iteration of the algorithm, a set is taken that has not been
considered yet, and all its successors for a given symbol (from the alphabet
Y)) are determined. These successors constitute a single state in the new au-
tomaton. That is to say, for set of states {si,...,s, } and symbol a, the set
of a-successors is the union of the set of a-successors of s; in the original non-
deterministic automaton (0 < i < n). As in principle any subset of states of
the orginal non-deterministic automaton (with n states, say) may yield a state
in the new deterministic automaton, in worst case the number of states in the
resulting deterministic FSA can be exponential: O(2"). In practice, however,
it turns out that this upperbound rarely occurs.

Regular languages and deterministic FSA have the same expressive power, i.e.,
for each regular language a deterministic FSA can be given that accepts pre-
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cisely it, and, reversely, each accepting language by a deterministic FSA is
regular. This does not imply that there exists a unique deterministic FSA that
accepts a given regular language. In general, there may be several equivalent
deterministic FSA. However, for each regular language there exists a unique
minimal deterministic FSA (upto isomorphism) that accepts it. The algorithm
to minimise a given deterministic FSA with n states and m transitions into
its equivalent minimal deterministic FSA is based on partition-refinement and
takes O(m-logn) time in worst case. The details of the algorithm are outside
the scope of this chapter, but are very similar to the bisimulation minimisation
algorithm that is covered in Chapter 14.

4.2.2 Synchronous Product

As stated before, regular languages are closed under intersection. Intersection
of regular languages corresponds to a product construction of automata, i.e., a
parallel composition of FSA in which both automata need to synchronise on all
symbols. Both FSA are thus fully synchronised. This is formally defined by:

Definition 4.5. (Synchronous product of FSA)
For FSA A; = (X, S;, I;, — i, F;), with i=1, 2, the product automaton A; x Ay =
(3,81 x Sa, I x Iy,—, F} X Fy) where —> is the smallest relation defined by:

(s1,82) %5 (5], s5) if and only if 51 %+ s} and so —%5 .

It follows that this product construction of automata corresponds indeed to the
intersection of their accepting languages, i.e., £L(A; X Ag) = L(A1) N L(A2).
This can be seen as follows. First consider £(A; x A2) C L(A1) N L(A2).
Let (so,80) (s1,8)) --. (sn,sl,) be an accepting run of A; x A. Thus, state
(8n, sh,) € F1 x Fy. In order to reach (s, s),) it must be possible to reach s, in Ay
via the run sg s1 ... s, which is an accepting run of Ay since s, € F}. Similarly,
sy 8y ... sl is an accepting run of Ay with s/, € Fy. Thus, any accepting run
of A1 x As is an accepting run of A; when projected on a run of A; for i=1, 2.
For the reverse direction, i.e., £(A;) N L(A2) C L(A; x Ag) the reasoning is
straightforward. Let sg sy ... s, be an accepting run of A; and sj s} ... s}, be
an accepting run of As such that the corresponding accepted words coincide.
By Definition 4.5 it then follows that (sg,sg) (s1,8]) ... (Sn,s),) is an accepting
run of A; x A, that induces the same accepted word.

4.2.3 Depth-First Search

For many applications, such as detecting whether a given automaton contains
a cycle or computing its accept states, a systematic way of visiting all states
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in the automaton is necessary. Such algorithms are called traversal algorithms.
For the purpose of traversal algorithms it is convenient to consider an FSA
A= (%81, —, F) as a directed graph with S as the set of vertices and —
as the edge relation, i.e., there is an edge from s to s’ if and only if there is a
transition s % s’ in A for some input symbol a € 3.

An important characteristic of traversal algorithms is the order in which states
are visited. A frequently encountered visit order is depth-first; the correspond-
ing search algorithm is called depth-first search. The basic depth-first search
strategy is to start with an initial state and searching the entire graph by vis-
iting states as far away from the selected initial state as quickly as possible.
When we represent the visit order by means of a tree, then the states are vis-
ited according to a preorder traversal of the tree. The following example shows
how a depth-first search works.

Figure 4.5: An example finite-state automaton

Ezxample 4.5.  Consider the graph of the FSA as depicted in Figure 4.5 and
suppose we want to determine its accept states. Assume that the visiting order
of searching the automaton equals ADEFBCG, i.e., first state A is visited, then
state D, and so on. The order of depth-first search exploration is FEDGCBA.
This is the order in which the depth-first search is finished in a state. Thus, the
successor states of F' are all explored first, then those of E, and so on. Given
that C', E and F are accept states, the sequence of found accept states equals
FEC, the order of depth-first exploration projected on the accept states. (End
of example.)

The pseudo-code for the depth-first search algorithm is given in Table 4.2.
As long as CurPath is non-empty the first state of that sequence is selected (as
state s), and it is checked whether all its successors Succ(s) = (J, x5 Succ(s,a) =
{s" | Ja.s 2> s'} have been visited before (i.e., are included in the sequence
DfsPath). In that case, state s is removed from CurPath, and the traversal
is continued. Otherwise, the newly encountered state is put in front of both
CurPath and DfsPath, and the traversal is continued. Note that in this case
the selected state s is not removed from CurPath.
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function DepthFirstSearch (so : Vertex) : seq of Vertex;
(* pre: true *)
begin var CurPath : seq of Vertex, (* path from sg to current vertex *)
DfsPath : seq of Vertex; (* visited vertices in dfs order *)
CurPath, DfsPath := (sg), (s0);
while CurPath # ()
do s := head(CurPath);
if Succ(s) C DfsPath then CurPath := tail(CurPath);
else let s’ in Succ(s) — DfsPath;
CurPath, DfsPath := (s')™ CurPath, (s')™ DfsPath
fi;
od;
return DfsPath;
(* post: (1) s < s’ (in DfsPath) if and only if s’ is visited before s, and
(2) sequence DfsPath contains all states reachable from sg *)
end

Table 4.2: Depth-first search traversal of state space

4.2.4 Checking for Emptiness

A fundamental issue in finite-state automata theory is to decide for a given
FSA A whether it is empty, i.e., whether L(A) = @7 This is known as the
emptiness problem. From the acceptance condition, it follows directly that A
is non-empty if there is at least one run that ends in some accept state. FSA
A is non-empty if and only if it has an accept state which is reachable from
some initial state. Let us be more precise about the concept of reachability:
state s’ is reachable from s if there is a sequence sg ... s such that sy = s and
sp = s and s; %5 s;41 for 0 < i < k and input symbol a;. Stated differently,
s’ is reachable from s if s’ € Succ*(s), where Succ® denotes the reflexive and
transitive closure of Succ.

The emptiness problem thus reduces to a graph reachability problem. Algo-
rithmically this means that in order to decide whether FSA A is empty, we
compute the set of states that are reachable from some initial state (for in-
stance by means of a depth-first search algorithm), and check that no accept
state (in F) occurs in this set.

Theorem 4.3.
For FSA A = (%,S,1,—,F), L(A) # @ if and only if there exists s € I and

s' € F such that s' is reachable from s.
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4.3 Automata on Infinite Words

Finite-state automata accept finite words, i.e., sequences of symbols of finite
length. This section considers a variant of FSA that are suitable to accept
words of infinite length.

4.3.1 w-Regular Languages

Let ¥ be an alphabet, i.e., a finite set of symbols (as before). The operations
concatenation and (finite) repetition on words are now extended by infinite
repetition. The infinite repetition of the finite word ab, for instance, equals
ababababab ... (ad infinitum). It is constructed from concatenating the word
ab infinitely many times. We denote this by (ab)¥ (where w denotes the first
infinite ordinal). Note that the finite repetition of a word results in a language,
i.e., a set of words, whereas infinite repetition results in a word. Sets of w-words
are called w-languages. Infinite repetition can be lifted to languages as follows.
For language £ we let LY = { 0% | 0 € L}, i.e., the point-wise extension of ¢ to
sets of words. The result is thus an w-language. For w-word o, inflo) denotes
the set of symbols that occurs infinitely often in o. For instance, for o = bbba®
we have inflo) = {a} and for o = be(ac)® we have inflo) = {a,c}. Note that
for any infinite word o we have inflo) # &: some input symbol has to occur
infinitely often in o, since the alphabet from which ¢ is constructed contains
only finitely many symbols.

An important class of w-languages is the set of regular w-languages. A regu-
lar w-language L is expressed as the finite union of £;.(£})* where £; and L]
are regular languages (for all ¢). Formally, £ = [J!" , £;.(L£})*. For instance,
{aab* } { baa }* is a regular w-language. Like regular languages, w-regular lan-
guages are described by w-regular expressions.

w-regular languages possess a number of interesting properties. For instance, if
L C ¥* is regular then £¥ is w-regular. If in addition, £ C ¥ is w-regular,
then the concatenation L£.L' is w-regular. Furthermore, w-regular languages
possess several closure properties: they are closed under union, intersection
and complementation. (The proof of the latter fact is non-trivial.) Further on
in this chapter we will deal with the intersection of w-regular languages and its
automata-counterpart. Complementation will be dealt with briefly in Chapter
6 as its complexity (on Biichi automata) forms an essential motivation for the
model-checking procedure for PLTL.
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4.3.2 Bichi Automata

Automata play a special role in model-checking PLTL. Since we are interested
in proving properties of infinite behavior, accepting runs are not considered to
be finite, but rather as infinite, while cycling infinitely many times through
accept states. The fact that for model checking we consider infinite behavior
should not surprise the reader as reactive systems typically do not terminate.
Automata with this alternative characterization of accepting run are called
Biichi automata or w-automata. A Biichi automaton (BA, for short) is an FSA
that accepts infinite words rather than finite words. Note that the automaton
itself is still finite: a BA contains only a finite number of states and finitely
many transitions. An BA thus has the same components as an FSA, and only
has a different acceptance condition, the so-called Biichi acceptance condition.
What does it mean precisely to accept infinite words according to Biichi? This
is defined as follows:

Definition 4.6. (Run and word of an BA)

A run of BA A= (%,S,1,—, F) is an infinite sequence of states o = sp s1 ...
such that sg € T and s; —% s;41 for all 0 < i for some a; € X. Run o is accepting
if and only if inflo) N F # @.

The infinite word w = ag a1 ... € X¥ is accepted by A if and only if there exists
an accepting run o = s¢ s1 ... such that s; % s;.1 for 0 < 4.

The w-language accepted by A, denoted L,(A), is the set of infinite words
accepted by A, ie., L,(A) ={w € X¥ | w is accepted by A }.

Since a run of a BA is infinite we cannot define acceptance by the fact that the
final state of a run is an accept state or not. Such final state does not exist.
According to Biichi’s acceptance criterion, a run is accepting if some accept
state is visited infinitely often. Notice that there always exists some state that
is visited by a run infinitely often as we have finitely many states. If F' = @
there are no accept states, no accepting runs, and thus £,(A) = & in this case.

Ezxample 4.6. Consider the BA of Figure 4.6. Note that this automaton

c b

ARG

b

Figure 4.6: An example Biichi automaton
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is equal to the FSA depicted in Figure 4.1. An example run of this BA is
51818181 ..., or shortly, s. Some other runs are (s;s2$3)* sY, 515254 and
(s1 818283)Y. The runs that go infinitely often through the accept state s3 are
accepting. For instance, sy s s§ and (s1 s1 52 53)% are accepting runs. s{ is not
an accepting run as it never visits the accept state, while (s1 s253)* s§ is not
accepting as it visits the accept state only finitely many times. The accepting
words that correspond to these accepting runs are ab® and (ccab)®, respectively.
The language accepted by this BA is c*a (b(c*a | €))¥. So, the BA accepts those
infinite words that after starting with c*a, have an infinite number of b’s such
that in between any two successive b’s the sequence c¢*a might appear but this
does not need to be. (End of example.)

The infinitary language accepted by this example BA is w-regular. Like the
strong relationship between FSA and regular languages, there is a relationship
between BAs and w-regular languages, as the following result by Biichi shows:

Theorem 4.4.
Language L is w-regular if and only if there exists a BA A such that L = L,(A).

Thus, for every w-regular expression (which describes an w-regular language)
there exists a Biichi automaton that only accepts this w-regular expression and
nothing else.

Two Biichi automata are w-equivalent if they accept the same w-language:

Definition 4.7. (Equivalence of Biichi automaton)
BA A and A’ are w-equivalent, denoted A =, A’, if and only if £,(A) = L, (4").

Before continuing with Biichi automata, it is important to realize their subtle
differences with finite-state automata. For instance, it is interesting to consider
more carefully the relationship between L£(A), the set of finite words accepted by
the automaton A, and L£,,(A), the set of infinite words accepted by A according
to the Biichi acceptance condition. This is done in the following example.

Example 4.7.  In this ezample we consider some differences between FSA and
BA. Let Ay and As be two automata. Let L(A;) denote the language accepted
by A; (i =1,2), and L,(A;) its w-language.

1. If Ay and Ay accept the same finite words, then this does not mean that
they also accept the same infinite words. The following two example au-
tomata show this:
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We have L(A1) = L(A2) = {a"™ | n > 1}, but L,(41) = {a¥} and
ﬁw(Az) =@. Thus, A1 = As but Ay #, As.

2. If Ay and As accept the same infinite words, then one might expect that
they would also accept the same finite words. This also turns out not to
be true. The following example shows this:

a a
o_ 0 o_®
a a
A1 A2

We have L,(A1) = L,(A2) = {a¥}, but L(A1) = {a®" | n >0} and
L(A2) ={a®>"t | n>0}. Thus, Ay =, Ay but Ay # As.

3. If Ay and Ay are both deterministic, then Ay = Ay = Ay =, As. The
reverse s, however, not true, as illustrated by the previous example.

(End of example.)

4.3.3 Deterministic Biichi Automata

An important difference between finite-state automata and Biichi automata
is the expressive power of deterministic and non-deterministic automata. As
we have seen before, non-deterministic FSA are as expressive as deterministic
FSA. However, non-deterministic BA are more expressive than deterministic
BA. That is, there do exist non-deterministic BA for which there does not
exist an equivalent deterministic BA. Stated this differently, we have that any
w-language accepted by a deterministic BA is w-regular but the reverse does
hot hold: there do exist w-regular languages for which there does not exist
a deterministic BA accepting it. An example of such w-regular language is
(a | b)*b¥.

We could, for instance, try to transform the non-deterministic BA that accepts
this language — by Theorem 4.4 such automaton should exist — into an equivalent
deterministic BA using the subset construction for FSA. A non-deterministic
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a
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b b

Figure 4.7: A non-deterministic BA for which there does not exist an w-

equivalent deterministic BA

BA A that accepts (a | b)*b” is depicted in Figure 4.7. Note that in the initial
state on input symbols a and b there is either the possibility to move to the
accept state, or to remain in the current state. Naively applying the subset
construction algorithm to this BA yields the BA, A’ say, depicted in Figure 4.8.
Although A’ is deterministic, A and A’ are not w-equivalent. For instance, the
infinite word (ab)“ is accepted by A’, but not by A. To be more precise, we have
that L£,(A") = (a | b)¥, a superset of L,(A). The reason for their difference
is that A’ is always able to recognize a-symbols. Instead, the BA A allows to
decide after an arbitrary (finite) number of as or bs to move to the accept state,
and start to not recognize any a-symbols any further.

Figure 4.8: Deterministic BA obtained by applying the subset construction
algorithm to Figure 4.7

It should not surprise the reader that the subset construction does not work
as non-deterministic and deterministic BA differ in expressiveness. The set of
languages accepted by a deterministic BA is just a subset of the set of w-regular
languages. The fact that there does not exist a deterministic BA that accepts
(a | b)*b* can intuitively be seen as follows. The reasoning is by contradiction.
Suppose that such deterministic BA does exist and assume that the finite se-
quence (a | b)" for some arbitrary natural n has been recognised and that the
next input symbol is b. As the BA is deterministic there are just two possibili-
ties. It may either decide that after this b no as will follow anymore, and move
to a corresponding (accept) state in which it will not be able to recognize any a
anymore. This is, however, not appropriate, as this automaton will not be able
to recognise the input word (a | b)"ba.... Alternatively, the BA could decide
to still be able to allow as to follow. But then — as the BA is deterministic —
the same argument can be repeated for (a | b)"*!, (a | b)"*2, and so on. The
resulting automaton, however, would then not be able to accept, for instance,
the infinite word b“.
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Basically, in order for the BA to decide whether after a b no as will follow, it
has to look arbitrarily far ahead in the input word. As this is not possible, there
is only one way to get around this, and this is by using non-determinism. By
changing the acceptance condition of Biichi, a class of deterministic automata
on infinite words can be defined that characterizes the w-regular languages. Two
kinds of such automata, Muller and Rabin automata, are some of the variants
of BA covered below.

Example /.8. (This illuminating example is taken from [180].) Consider

Figure 4.9: The BA (a) A; and (b) As with A} #,, A,

BA Ay depicted in Figure /.9(a). As there is no run that can visit its accept
state infinitely often, it is clear that this BA does not accept any word, i.e.,
L,(A1) = @. On the contrary, BA Ay (cf. Figure 4.9(b)) accepts the infinite
word a¥, i.e., L,(A2) = {a“}. Thus, A1 and Ay are not w-equivalent. If we
apply the subset construction algorithm to both automata we obtain in both cases
the same BA! Thus, the subset construction algorithm is not able to distinguish
between the two inequivalent BA Ay and As. (End of example.)

4.3.4 Other Automata on Infinite Words

The Biichi acceptance condition on infinite runs is one out of several possibilities
to define when a run is ought to be accepting. Although Biichi automata are
instrumental for model-checking PLTL, we briefly mention here some of the
other acceptance conditions for automata on infinite words. Due to the various
ways in which the acceptance of infinite words can be defined, different variants
of automata over infinite words exist. These automata are christened according
to the scientist that proposed the acceptance criterion: Rabin and Muller. The
acceptance characteristic of the most prominent types of automata over infinite
words are listed in Table 4.3. In the sequel of this section we briefly discuss
these automata. As generalised Biichi automata will play a central role in
model-checking PLTL we treat these automata more extensively.
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Automaton ‘ Accept sets ‘ Accept condition

Biichi FCS inflo)NF # @

Generalised Biichi | F = { F,...,F;} Vi.inflo) N F; # &
where F; C S

Muller idem di.inflo) N F; = F;

Rabin F={(F,G1),...,(Fy,Gg) } | Ji.inflo) N F; = &
where F; C S, G; C S A inflo) NG; # &

Table 4.3: Major types of automata on infinite words

Generalised Biichi Automata

Definition 4.8. (Generalised Biichi automaton)
A generalized Biichi automaton (GBA) A is a tuple (3, S, I, —, F) where the
first four components are the same as for a BA and F C 2.

A GBA is like a BA except that F is a set of accept sets { Fy,...,Fy } for k >0
with F; C S rather than a single set of accept states. Run o = sgs; ... is
accepting for GLBA A if and only if:

inflo) N F; # @ for all 0 < i < k.

Thus, in an accepting run should go infinitely often through at least one state
of each acceptance set F; € F. Note that if 7 = & all runs go infinitely often
through all accept sets in F, so any run is accepting in that case.

Example 4.9.  Consider the GBA depicted in Figure 4.10. We illustrate the
relevance of the choice of F by discussing two alternatives. First, let F consist
of a single set { s1,s2 }, i.e. there is a single acceptance set containing sy and sg.
An accepting run has to go infinitely often through some state in F. Since so
cannot be visited infinitely often, the only candidate to be visited infinitely often
by an accepting run is state s1. Thus, the language accepted by this automaton
equals a (b(a | €))“.

Figure 4.10: An example generalized Biichi automaton

If we now let F consist of { s1} and { sa }, i.e., two accepting sets consisting of
s1 and so, respectively, the GBA has no accepting run, and thus its language is
. Since any accepting run has to go infinitely often through each acceptance
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set, such run has to visit so infinitely often, which is impossible. (End of
example.)

A generalized BA can be transformed into an w-equivalent BA. To transform a
generalized BA A with k acceptance sets into a BA A’, k copies of A are made,
one copy per accept set. Each state s in the BA thus becomes a pair (s,7) with
0 <7 < k. Automaton A’ can start in some initial state (sg,7) where sg is an
initial state of A. In each copy the transitions are as in A, with the only — but
essential — exception that when an accept state in F; is reached in the i-th copy,
then the automaton switches to the (i+1)-th copy.

Definition 4.9. (From a GBA to an BA)
For GBA A = (%,5,I,—,F) with F = { F1,..., F} }, the BA gba2ba(A) =
(3,8, I',—', F') is defined as follows:

S =Sx{i|0<i<k}

I'=Tx{i} forsome 0 <i<k
e —' is the smallest relation defined by:

— for s € F; : (s,i) %' (s',4) if and only if s -2 ¢/
— for s € F; : (s,1) %' (¢, (i+1) mod k) if and only if s %5 &'

F'=F; x {i} for some 0 < i < k.

Since for the definition of the initial and accept states of A" an arbitrary (and
even different) i can be chosen, the automaton A’ is not uniquely determined.

It follows that GBA A and BA A’ = gba2ba(A) are w-equivalent. This can be
seen as follows. For a run of A’ to be accepting it has to visit some state (s, 1)
infinitely often, where s is an accept state in F; in the GBA A. As soon as a
run reaches this state (s,7), the BA A’ moves to the (i+1)-th copy. From the
(i+1)-th copy the next copy can be reached by visiting (s',7+1) with s’ € F;;.
A’ can only return to (s,4) if it goes through all k copies. This is only possible
if it reaches an accept state in each copy since that is the only opportunity to
move to the next copy. So, for a run to visit (s,4) infinitely often it has to visit
some accept state in each copy infinitely often. Given this concept it is not
hard to see that A =, gba2ba(A).

Ezample 4.10.  Consider the generalized BA in Figure 4.11(a). It has two ac-
ceptance sets Fy = {s1 } and Fy» = { sy }. According to Definition 4.9 the states
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(a) (b)

Figure 4.11: A generalized BA with and (one of) its corresponding BA

of the corresponding BA are { so, 1,82 } X {1,2}. Some example transitions in
the corresponding BA are:

(s0,1) % (s1,1) since sop—2>s1 and sp € Fy
(s0,1) %> (s2,1) since sg—2>s9 and sy & Fi
(s1,1) by (s0,2) since s by 50 and s; € By
(s1,2) by (s1,2) since s by sy and s; ¢ Fy
(82,2) % (s2,1) since s9-5 59 and so € Fy

The justification of the other transitions is left to the reader. A possible resulting
BA is depicted in Figure 4.11(b) where the set of initial states is chosen to be
{(s0,1) } and the set of accept states is chosen to be { (s2,2)}. Any accepting
run of the BA must visit (s2,2) infinitely often (sq € Fy). In order to do so it
also has to visit a state labelled with s1 € Fy infinitely often. Thus, an accepting
run of the resulting BA wvisits some state of Fy and some state of Fa infinitely
often. (End of example.)

Muller Automata

A Muller automaton is defined like a generalised Biichi automaton except that
it accepts a run if and only if it goes infinitely often through all states of F; € F,
for some 7. Muller automata and BA have the same expressive power: they both
characterize w-regular languages. An interesting property is that deterministic
Muller automata characterise w-regular languages, i.e., an w-language is regular
if and only if it is recognisable by a deterministic Muller automaton. Recall
that deterministic BA do not have this expressive power as there are w-regular
languages that cannot be recognized by any deterministic BA. The deterministic
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BA (X,S,1,—, F) is w-equivalent to the Muller automaton (%,S, 1, —,F)
where F contains all subsets R C S with RN F # &. The complement of a
Muller automaton (X, S, I, —s, F) is the Muller automaton (X, S, I, —,2% —
F). Unlike Biichi automata, complementation of Muller automata is thus rather
straightforward.

Rabin Automata

A Rabin automaton has a set of pairs of sets of states as acceptance sets: it
consists of X2, S, I, and — (as before) together with a set (Fy,G1),. .., (F), Gk)
for some natural k. A run is accepted if for some 7 (0 < ¢ < k) we have that
states in Fj are visited only finitely often, while there should be some state in
G; that is visited infinitely often. Rabin automata have the same expressiveness
properties as Muller automata: any w-regular language can be recognized by
either a (possibly non-deterministic) Rabin automaton or by a deterministic
one. For any non-deterministic BA with n states there is an w-equivalent Rabin
automaton with 20("1987) states and n accepting pairs (Fj, G;).

Ezample 4.11.  Recall that there is no deterministic BA that accepts the lan-
guage (a | b)* v*¥. However, the deterministic Rabin automaton in Figure 4.12
with the accept set consisting of the single pair ({ sq },{ sy }) accepts this lan-
guage. The Rabin automaton starts in state s, and then remembers the last
symbol it has read, where in state s, the symbol a and in state s, symbol b has
Just been read. As any accepting run of this automaton — according to Rabin’s
criterion — goes finitely often through s, and infinitely often through sy it follows
immediately that its language equals (a | b)* b*. (End of example.)

Figure 4.12: A deterministic Rabin automaton that accepts (a | b)* b

4.4 Algorithms for Biichi Automata

This section presents several algorithms for Biichi automata that are relevant
for model-checking PLTL. Algorithms to determine the synchronous product of
two BA, to transform a GBA into an equivalent BA, and to check for emptiness
are covered.
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4.4.1 Synchronous Product

w-regular languages are closed under intersection, i.e., if £ and £’ are w-regular,
then so is £ N £'. The corresponding operation on BA is synchronous product.
For Biichi automata the procedure for finite-state automata (cf. Definition 4.5)
is, however, not appropriate. In the product construction for FSA, the set of
accept states equals the product of acceptance sets F; and Fy. For BA A; and
Ag this means that A; X A, accepts an infinite word w if there are accepting
runs of Ay and Ay on w, where both runs go infinitely often and simultaneously
through accept states. This requirement is too strong and leads in general to

L,(A1 x Az) C L,(A1) N Ly(A2)

which is not the desired result. This is illustrated by the following example.

Ezample 4.12.  Consider the two Biichi automata

e~ B
Ay Ay

The language accepted by these BA is: L,(A1) = L,(A2) = {a* }. Following
the construction of Definition 4.5 we obtain the BA Ay X As:

(81, 83) (52, 53)

O

a A1XA2

a

O O

(51,84) (52, 584)

which has no accepting run. So, L,(A1 X Ay) = @ # L,(A1) N L,(A2). The
point is that the product automaton assumes that Ay and As go simultaneously
through an accept state, which is never the case in this example since A1 and
Ao are “out of phase” from the beginning on: if Ay is in an accept state, Ay is
not, and vice versa.
Notice that when considered as automata on finite words, then L(A1) = {a®" |
n >0} and L(Az) = {a® ! |n >0} and L(A] x Ay) = @ = L(A1) N L(A3).
(End of example.)
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There is a modification of the product automaton construction on Bichi au-
tomata that corresponds to intersection of w-regular languages.

Definition 4.10. (Synchronous product of Biichi automata)
Let A; = (2,8;,1;,— ;, F;) for i=1,2 be two BA. The product automaton
A ® Ay = (%,S,1,—, F) is defined as follows:

5251X52X{1,2}

I:IIXIZX{I}
o if 53 %3 s} and sy %9 ), then

(i) if s; € Fy then (s1,59,1) - (8], 55, 2)
(ii) if sy € Fy then (s1, s9,2) % (s, s5, 1)

11i) 1n all other cases (si,s2,%) — (57, 89, %) for 1=1,
5i) in all oth ) a5 (5], s, 7) for i=1,2

F:F1XSQX{1}

The intuition behind this construction is as follows. The automaton 4 = 4 ®
Ay runs both A; and Ay on the input word. Thus the automaton can be
considered to have two “tracks”, one for A; and one for As. In addition to
remembering the state of each track (the first two components of a state), A
also has a pointer that points to one of the tracks (the third component of a
state). Whenever a track goes through an accept state, the pointer moves to
another track (rules (i) and (ii)). More precisely, if it goes through an accept
state of A; while pointing to track 4, it changes to track (i4+1) modulo 2.

The acceptance condition guarantees that both tracks visit accept states in-
finitely often, since a run is accepted if and only if it goes through F; x Sy x {1}
infinitely often. This means that the first track visits infinitely often an accept
state with the pointer pointing to the first track. Whenever the first track visits
an accept state (of A;) with the pointer pointing to the first track, the track
is changed (i.e., the pointer is moved to the other track). The pointer only
returns to the first track if the second track visits an accept state (of As). Thus
in order to visit an accept state of A; ® Ay, both A; and A, have to visit an
accept state infinitely often and we have L£,(A; @ As) = L,(A1) N L,(As2).

Ezxample 4.15. Consider the Biichi automata Ay and As from the previous
example. The BA A1 ® Asy is constructed as follows. The set of states equals

{s1,89} x{s3,84} x{1,2}

which yields 2% = 8 states. The initial state is (s1,s3,1). The accept states are
(s1,83,1) and (s1,84,1). The following example transitions can be derived from
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the above definition:

(s1,83,1) %> (89,84,2) since s1 -0 s9 and s3—Lx s4 and s1 € Fy
(81,84,2) %> (s9,83,1) since s1 -9 s9 and sy —Sx s3 and s4 € Fy
(81,83,2) % (89,84,2) since s1 -2 s9 and s3—Lx s4 and s3 & Fy

The first transition follows from rule (i), the second from rule (ii), and the third
rule follows from rule (iii). The justification of the other transitions is left to
the interested reader. The resulting product automaton Ay ® Ao is now:

(s1,83,1) (s1,583,2) (s2,53,1) (s2,83,2)
(s2,84,1 52,54,2) (s1,84,1) (s1,854,2)

where all transitions are labeled with a. Clearly, the w-language accepted by this
product automaton is a¥ which equals L,(A1) N L, (As2). (End of example.)

4.4.2 Checking for Emptiness

The second problem on BA that we consider here is: given a BA A how does one
determine whether A is empty, i.e., whether £,(A) = @7 This is known as the
emptiness problem. From the acceptance condition, it follows directly that A is
non-empty if there is at least one run that goes infinitely often through some
accept state. A BA A is thus non-empty if and only if it has an accept state
which is (i) reachable from some initial state and (ii) reachable from itself (in
one or more steps). Stated in graph-theoretic terms it means that A contains
a cycle reachable from an initial state such that the cycle contains some accept
state. Recall that s’ is reachable from s if there is a sequence sg ... s such
that sop = s and s = s' and s; %5 s;41 for 0 < i < k and input symbol a;.

Theorem 4.5.
Let A= (X,S,I,—,F) be a BA. L,(A) # & if and only if there exists so € 1
and s' € F such that s' is reachable from sg and s is reachable from s'.

This result can be explained as follows. If A is non-empty it is not difficult to
see that there must be a reachable cycle that contains an accept state. In the
other direction the argument is slightly more involved. Suppose there are states
sg € I and s’ € F such that s’ is reachable from sg and s’ is reachable from itself.
Since s’ is reachable from sy there is a sequence of states sgsy ... sp, k > 0,
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function ReachAccept (so : Vertex) : seq of Vertex;
(* pre: true *)

begin var CurPath : seq of Vertex, (* path to current vertex *)
AccReach : seq of Vertex, (* reachable accepting states *)
Visit : set of Vertex; (* visited vertices *)

CurPath, AccReach, Visit := (so), (), &;
while CurPath # ()
do s := head(CurPath);
if Succ(s) C Visit
then CurPath := tail(CurPath);
if s € F then AccReach := AccReach™ (s) fi
else let s' in Succ(s) — Visit;
CurPath, Visit := (s')™ CurPath, Visit U {s"}
fi;
od;
return AccReach;
(* post: AccReach contains accept states reachable from sg in dfs-order *)
end

Table 4.4: Algorithm for determining reachable accept states

and a sequence of symbols ag ... ar_; such that s = s’ (i.e., the sequence
ends in s'), 8; %5 5,11 (0 < 7 < k) for all 4. Similarly, since s’ is reachable

from itself there is a sequence s{, s} ... s, and a sequence of symbols by ... by

such that s{ = s/, = s/, n > 0, and s;%s;_ﬂ (0 € i < n). But, since

s' € F then (sg ... sg_1)(s{ ... s),)* is an accepting run of A on the input word
(ag ... ag—1)(bo ... by)*“. Thus L,(A) contains at least one accepting word,
and hence, is non-empty.

So, to determine whether a given A is non-empty, it suffices to check whether
A has a reachable cycle that contains an accept state. Such a reachable cycle
is also called a — non-trivial, since it must contain at least one edge — maximal
strongly connected component of A. The algorithm that checks whether A
has a reachable cycle that contains an accept state consists of two steps. For
convenience, assume that A has a single initial state sg, i.e., I = {sg }.

1. In the first step all accept states that are reachable from the initial state
are determined. For convenience, the accept states are ordered. This is
performed by the function ReachAccept which is listed in Table 4.4.

2. In the second step it is checked whether an accept state computed in
the first step belongs to some cycle. This is performed by the function
DetectCycle which is listed in Table 4.5.

The main program now consists of return DetectCycle (ReachAccept (sp)).

In a nutshell, the algorithm ReachAccept works as follows. The graph repre-
senting the Biichi automaton is traversed in a depth-first search order. Starting
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function DetectCycle(AccReach : seq of Vertex) : Bool,
(* pre: true *)
begin var CurPath, Accept : seq of Vertex,
Visit : set of Vertex,
CycleFound : Bool,
CurPath, Accept, Visit, CycleFound := (), AccReach, @, false;
while Accept # () A = CycleFound
do s := head(Accept);
Accept, CurPath := tail(Accept), (s)™ CurPath;
while CurPath # () A - CycleFound
do s’ := head(CurPath);
CycleFound := (s € Succ(s"));
if Succ(s') C Visit then CurPath := tail(CurPath)
else let s” in Succ(s') — Visit;
CurPath, Visit := (s'")™ CurPath, Visit U {s" }
fi;
od;
od;
return CycleFound,
(* post: CycleFound = some state in AccReach is member of a cycle *)
end

Table 4.5: Algorithm for determining the existence of an accept cycle

from the initial state s, in each step a new state is selected (if such state exists)
that is directly reachable from the currently explored state s. When all paths
starting from s have been explored (i.e., if Succ(s) C Visit), s is removed from
CurPath, and if s is accepting it is appended to AccReach, the sequence of
accept states reachable from sy. The algorithm terminates when all possible
paths starting from sg have been explored, i.e., when all states reachable from
so have been visited. Notice that all operations on CurPath are at its front; it
is therefore usually implemented as a stack.

The algorithm DetectCycle carries out a depth-first search starting from an
accept state reachable from sy. It terminates if all accept states in AccReach
have been checked or if some accept state has been found that is on a cycle.
Note that elements of AccReach are removed from its front, whereas they were
inserted by function ReachAccept at the back; AccReach is usually implemented
as a first-in first-out queue.

4.4.3 Nested Depth-First Search

Rather than computing ReachAccept and DetectCycle as two separate phases,
it is possible to check whether an accept state is a member of a cycle on-the-fly,
that is while determining all accept states reachable from sy. We thus obtain a
nested depth-first search: in the “outermost” search an accept state is identified
which is reachable from sg, whereas in the “innermost” search it is determined
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function ReachAcceptandDetectCycle (sg : Vertex) : Bool;
(* pre: true *)
begin var PathToAcc, Cycle : seq of Vertex,
Visit, Visit’ : set of Vertex,
AccCycleFound : Bool;
PathToAcc, Visit, AccCycleFound := (so), &, false;
while PathToAcc # () A = AccCycleFound
do s := head(PathToAcc);
if Succ(s) C Visit
then PathToAcc := tail( PathToAcc);
ifseF
then Cycle, Visit' := (s), @;
while Cycle # () A = AccCycleFound
do s' := head(Cycle);
AccCycleFound := (s € Succ(s'));
if Succ(s') C Visit' then Cycle := tail(Cycle)
else let s” in Succ(s') — Visit';
Cycle, Visit' := (s"') ™ Cycle, Visit' U {s" }
fi;
od;

fi;

else let s” in Succ(s) — Visit;

PathToAcc, Visit := (s"") ™ PathToAcc, Visit U {s"}
fi;
od;

return AccCycleFound,
(* post: AccCycleFound = an accept cycle is reachable from state so *)
end

Table 4.6: Algorithm for checking the existence of an accept cycle

whether such a state is a member of a cycle. The resulting program is shown
in Table 4.6.

Now assume we apply this algorithm to the automaton A. An interesting aspect
of this program is that if a cycle is determined in that contains an accept state s,
then a path to that state can be computed easily: sequence PathToAcc contains
the path from the start state sp to s (in reversed order), while sequence Cycle
contains the cycle from s to s (in reversed order). Reversing each sequence and
concatenating them yields the desired path.

The time complexity of the nested depth-first search algorithm of Table 4.6 is
proportional to the number of states plus the number of transitions in the BA
under consideration, i.e., O(| S| + |—]).
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4.5

4.6

Summary

a run is accepted by a finite-state automaton (FSA) if it ends in an accept
state.

FSA accept regular languages, and for each regular language a FSA exists
that accepts it.

for any non-deterministic FSA there exists an equivalent deterministic
FSA; the algorithm is the subset construction algorithm and may yield
an exponential blow-up in the number of states.

the emptiness problem for FSA is reducible to graph reachability.

a run is accepted by a Biichi automaton if it goed through an accept state
infinitely often.

BA accept w-regular languages, and for each w-regular language a BA
exists that accepts it.

BA are different from FSA in many respects:

— deterministic BA are less expressive than non-deterministic ones;
there exist w-regular languages for which no deterministic BA exists
that accepts it.

— neither language equivalence implies w-equivalence, nor the reverse.

— checking for emptiness amounts to nested graph reachability.

a run is accepted by a generalized BA if it goes through all its sets of
accept states infinitely often

for each generalized BA there exists an w-equivalent BA.

Muller and Rabin automata are variants of BA for which deterministic
and non-deterministic automata are equally expressive; complementation
of these automata is rather straightforward (as opposed to BA).
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4.7 Exercises

EXERCISE 4.1. Consider the language that consists of all words over the alphabet
{a,b} such that all finite words have a b-symbol on position n (n > 0) from the right.
Assume that the last symbol is one position from the right. For instance, for n=3 we
have that the word abbaabab is in the language.

1. Construct a non-deterministic FSA that accepts this language with at most n+1
states.

2. Determize this FSA using the subset construction algorithm. Justify the neces-
sity of the (high) number of states in the resulting deterministic FSA.

EXERCISE 4.2. Construct a deterministic BA that accepts the complement of the
language (a | b)* b¥, i.e., the set of w-words in which b occurs infinitely often.

EXERCISE 4.3. Let the alphabet ¥ = {a,b}. Construct a BA A that accepts infinite
words w over ¥ such that a occurs infinitely many times in w and between any two
successive as an odd number of bs occur.

EXERCISE 4.4. Let the alphabet ¥ = {a,b,c}.

1. Construct a BA A that accepts infinite words w over ¥ such that a occurs
infinitely many times in w and between any two successive as an odd number of
bs or an odd number of ¢s occur. Note that between any two successive as either
only bs or only cs are allowed.

2. Repeat the previous exercise, such that any accepting word contains only finitely
many ¢ symbols.

3. Change your automaton from the first exercise such that between any two suc-
cessive as an odd number of either b or ¢ symbols may occur.

4. Same exercise, except that now an odd number of bc and an odd number of cs
must occur between any two successive a symbols.

EXERCISE 4.5. The synchronous product construction of Biichi automata can be
simplified considerably if we assume that in one of the two BA involved all states are
accept states, i.e., F' = S. Define this specialized product construction and compare
the worst-case number of states that are generated by your construction with that of
Definition 4.10.

EXERCISE 4.6. An alternative definition of the synchronous product of two BA is to
define the result as a generalized BA. Define such construction and prove that your
definition is w-equivalent to the construction in Definition 4.10.



Exercises 107

EXERCISE 4.7.  Consider the generalized BA A with ¥ = {a,b}, S = {s1,52},
I={s1}, s1 % sy, s1 -2 so, sy 23 55 and sy 2357 and F} = {s1}and F» = {s2}.
Construct a corresponding BA, i.e., gba2ba(A4). Justify why the resulting BA is w-
equivalent to A.

EXERCISE 4.8. Consider the following generalized BA:

b Q%b O
b

b

with two accept sets Fy = {s; } and Fy = {s2}. Construct the BA that corresponds
to this GBA, i.e., gha2ba(A) and justify why the resulting BA is w-equivalent to A.

EXERCISE 4.9. Construct a deterministic Muller automaton that accepts the language
(a ] b)*b¥. Justify your answer: why is your Muller automaton correct?
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Chapter 5

Automata-based
Model Checking of PLTL

This chapter provides the bridge between the logic PLTL introduced in Chapter
3, and Biichi automata as presented in the previous chapter. It explains the
relationship between these two — at first sight, rather different — formalisms and
details the basic Biichi automata-based model-checking algorithm for PLTL.

5.1 Linking Biichi automata and PLTL

What do Biichi automata have to do with PLTL-formulas? In order to under-
stand this, suppose that we label each transition of a BA with propositional
formulas over some given set AP of atomic propositions. For instance, for
AP = {p,q}, the transition s P24, o' means that the automaton can move
from state s to state s’ on the input expression p A —g¢, i.e., when p holds and
q does not, while transition s 223 s’ means that on any input (pV —p = true)
the automaton moves from s to s’. For the moment we assume that we can
technically establish such labelling by chosing the right alphabet 3 on which the
BA is considered; the precise details will be given later on. For propositional
formulas a; over AP, we have — according to Biichi’s acceptance criterion — that
the word ag a1 ... is accepted if and only if there is an accepting run sg sy ...
such that s; =% s;,1, for any ¢ > 0. Thus, words are now infinite sequences of
propositional formulas.

The key concept is: associate to PLTL-formula ® (defined over AP) a BA that
accepts all infinite words, i.e., sequences of propositional formulas, that satisfy
®. For instance, the word (p A —¢)“ corresponds to a computation in which
it is always the case that p holds and ¢ does not. This word thus satisfies the
formula G (p A —¢). Similarly, the word (—p)*p(p V = p)“ corresponds to a
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computation in which p holds at some point. This word satisfies the formula
F p. The following examples illustrate this idea.

Ezxample 5.1. Let the set of atomic propositions AP = {p} and consider

—d

Figure 5.1: A BA that accepts sequences satisfying the formula G p

the BA depicted in Figure 5.1. As any accepting run of this BA goes infinitely
often through the initial state, the transition labelled with p is taken infinitely
often. The language of this automaton is p*. This coincides with the infinite
sequences of propositional formulas for which the PLTL-formula G p holds, since
by definition of the semantics we have p* |= Gp. (End of example.)

Ezample 5.2.  Consider again the simple set of atomic propositions AP = {p}

M p 0

O

-p

pV —p

Figure 5.2: A BA that accepts sequences sastifying the formula F p

together now with the BA of Figure 5.2. The initial state has two outgoing
transitions. On input p the BA moves to the accept state, in which it stays
permanently. On input —p, the automaton remains in its initial state. In the
accept state any input is recognized without a state change. Accepted words of
this automaton are of the form (—=p)*p(p V —p)*. Thus this BA accepts any
run that at some arbitrary point satisfies p, and anything else afterwards. This

corresponds to the formula F p. (End of example.)
Ezxample 5.3. As a third, and somewhat more complicated example, con-
PN 7q
q N —Tp

Figure 5.3: A BA that accepts sequences satisfying G((¢ A —p)U(p A —q))

sider AP = {p,q} and the BA depicted in Figure 5.3. Any accepting word of
this automaton contains infinitely many occurrences of the propositional for-
mula p N —q, while between any two successive wisits to the accept state a
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transition labelled ¢ A —p may be traversed finitely many times. The accepted
language is thus ((g A =p)*(p A —q))” whose sequences satisfy the formula
G(lg A =p)U(p N —9q)). (End of example.)

These examples show that there exist BA that accept sequences satisfying, for
instance, Gp or Fp. It turns out that for each PLTL-formula ® a BA exists
that accepts exactly the infinite sequences that satisfy ®. In the sequel, we will
see what this result means for the model-checking procedure.

Prior to this we will detail the way in which transition labels can be proposi-
tional formulas over AP. Formally, the alphabet ¥ = 247, Thus, transitions
are labelled with (sets of) sets of atomic propositions.

From these examples we infer that for AP = {p}, { @} stands for the proposi-
tional formula —p, { { p } } stands for the propositional formulap and { &,{p } }
stands for —=p V p (which equals true). Sets of sets of atomic propositions thus
encode propositional formulas. More precisely, sets of subsets of a given set AP
of atomic propositions encode propositional formulas over AP. Formally, if
APq,..., AP, C AP, then the set AP;, for 0 < ¢ < n encodes the formula

ANvn N o-p

pEAP; pEAP;

which we abbreviate by [ AP; | for the sake of convenience. The set { APy, ,... APy, }
for m > 1 with 0 < k; < n now encodes the propositional formula

\/ [APy1=[APy ]V ... V [AP,]
0<g<m

Note that sets of sets of atomic propositions must be non-empty.

Ezxample 5.4. For AP = {p,q,r} the formula p AN —q denotes the set of
subsets {p} and {p,r}, i.e., all subsets of AP in which p occurs and q does
not. Proposition r may or may not be included. A transition s 22295 s' thus

means that the automaton can move from state stos’oneither{ p }oron{ p,r
}. (Endofexample.)

In the sequel we will label transitions of BA with propositional formulas over a
given set AP of atomic propositions.

It turns out that for each PLTL-formula (on atomic propositions AP) one can
find a corresponding Biichi automaton.

Theorem 5.1.
For any PLTL-formula ® o Biichi automaton A can be constructed on the alpha-
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bet = 247 such that L,,(A) equals the sequences of sets of atomic propositions
satisfying ®.

This result is due to Wolper, Vardi and Sistla (1983). The BA corresponding to
® is denoted by Ag. Given this key result we can present the basic scheme for
model-checking PLTL-formulas. A naive recipe for checking whether the PLTL-
property @ holds for a given model is given in Table 5.1. Biichi automata are

1. construct the Buchi automaton for ®, Ag
2. construct the Biichi automaton for the model of the system, Asys

3. check whether L,(Agys) C L,(As).

Table 5.1: Naive recipe for model checking PLTL

constructed for the desired property ® and the model sys of the system. The
accepting runs of Ay, correspond to the possible behaviour of the model, while
the accepting runs of Ag correspond to the desired behaviour of the model. If
all possible behaviour is desirable, i.e. when L, (Agys) C L,(As), then we can
conclude that the model satisfies ®.

5.2 From PLTL to Buchi automata

5.2.1 Normal-form Formulas

In order to construct a BA for a given PLTL-formula ®, ® is first transformed
into normal form. This means that ® does neither contain the operator F nor G,
and that all negations in ® are adjacent to atomic propositions. One can easily
eliminate the occurrences of F and G by using the definitions F ¥ = true U ¥ and
GV = —F = V. To keep the presentation simple we also assume that true and
false are replaced by their definitions. In order to make it possible to transform
a negated until-formula into normal form, the auxiliary temporal operator R
(“release”) is used. From Chapter 3 we recall that this operator is defined by

(—|(I))R(—I\II)E —l((I)U\If).

Its intuitive interpretation is as follows. Formula ® RW holds for path o if ¥
always holds, a requirement that is released as soon as ® becomes valid. Thus,
for instance, the formula false R ® is valid for o if ® always holds, since the
release condition (false) is a contradiction.

Definition 5.1. (Normal-form PLTL-formulas)
For atomic proposition p € AP, the set of PLTL-formulas in normal form is
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defined by:
Su=p|-p|dVE|OAD| XD|OUD| DR,

The following equations are used to transform a PLTL-formula into normal
form:

(@ VVU) = (=®) A (VD)
(@ AT) = (D) V (20D
-X® = X(-d)

- (PUT) = (-®)R(-VD)
- (®PR¥) = (=d)U(-D)

Note that in each of these equations, reading them from left to right, the outer-
most negation is “pushed” inside the formula. Applying these rules recursively,
allows one to push negations until they are adjacent to atomic propositions.

Ezxample 5.5. As an example we derive the normal-form of the formula
- X(r = pUg).
~X(r = pUq)
& { definition of = }
~X(=r VvV (pUq))
& { X & X(-D)}
X(=(=rV (pUq)))
< { predicate calculus }
X(r A =(pUg)
& { definition of R }
X(r A (=p)R(=q)).

As a next example, the interested reader may check that the normal form of Gp
is (g V —=q)Rp. (End of example.)

It is not hard to see that the worst-case time complexity of transforming ®
into normal form is linear in the length of ®, denoted by | ® |. The length
of ® can easily be defined by induction on the structure of @, e.g. | p |= 1,
| X®|=14+|®|and | PUT |=1+4 | @ | + | ¥ |. For the sake of brevity we do
not give the full definition here.



Automata-based
114 Model Checking of PLTL

5.2.2

Definition 5.2. (Closure)
For PLTL-formula @, the closure of ®, denoted closure(®) is defined as the set
of formulas satisfying:

® € closure(®)
e U A U € closure(®) = VU,V € closure(®)

e U Vv U € closure(®) = U,V € closure(®)

XU € closure(®) = VU € closure(®)

VU € closure(®) = U,V € closure(P)

U R € closure(®) = ¥,V € closure(®).

Ezxample 5.6.

(End of example.)

5.2.3 Labelling Sequences
5.2.4 Defining the Automaton

5.2.5 Possible Optimisations
5.3 Model-checking PLTL

This seems to be a plausible approach. However, the problem to decide language
inclusion of Biichi automata is PSPACE-complete, i.e. it is a difficult type of
NP-problem.!
Observe that

['w(Asys) g ['w(A‘I)) = (['w(Asys) N Ew(A_d)) - Q)

'PSPACE-complete problems belong to the category of problems that can still be solved
in polynomial space, i.e. in a memory space that is polynomial in the size of the problem (the
number of states in the Biichi automaton, for instance). Therefore, for these problems it is
very unlikely to find algorithms that do not have an exponential time complexity.
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where A is the complement of A that accepts %% \ £,(A) as a language. The
construction of A for BA A, is however, quadratically exponential: if A has n
states then A has ¢ states, for some constant ¢ > 1. This means that the
resulting automaton is very large. (For deterministic BAs an algorithm exists
that is polynomial in the size of A, but since deterministic BAs are strictly less
expressive than non-deterministic BAs, this does not interest us here.)

Using the observation that the complement automaton of Ag is equal to the
automaton for the negation of ®:

L,(As) =L,(A-s)

we arrive at the following more efficient method for model checking PLTL which
is usually more efficient. This is shown in Table 5.2. The idea is to construct

1.  construct the Biichi automaton for - ®, A-g

2. construct the Biichi automaton for the model of the system, Agys

3. check whether L,(Agys) N Lu(A-o) =@.

Table 5.2: Basic recipe for model checking PLTL

an BA for the negation of the desired property ®. Thus the automaton A -4
models the undesired computations of the model that we want to check. If A,y
has a certain accepting run that is also an accepting run of A - ¢ then this is an
example run that violates ®, so we conclude that @ is not a property of Agy,.
If there is no such common run, then ® is satisfied. This explains step 3 of the
method. Emerson and Lei (1985) have proven that the third step is decidable
in linear time, and thus falls outside the class of NP-problems.

In the sequel we will assume that the automaton Ay, is given. The step from
a programming or specification language to an BA depends very much on the
language considered, and is usually also not that difficult. In the next section
we provide an algorithm for step 1 of the method. Later in this chapter we also
explain in detail how step 3 is performed.

5.3.1 Basic Model-Checking Procedure

Definition 5.3. (From Kripke structure to Biichi automaton)

For Kripke structure K = (S, I, —s, Label) with Label : S — 247 the BA
ks2ba(K) is defined as (3,5, I', —', F) where ¥ = 24P 8" = § U {s} with
s¢ S, I'={s}, F =5 and —' the smallest relation satisfying:

e s ¢ if and only if s’ € I and o = Label(s')
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o s’ %" if and only if s’ — s and « = Label(s").

The basic idea behind this construction is as follows. As indicated earlier,
the alphabet of the BA is the powerset of the set of atomic proposition under
consideration. A new state s is introduced (s ¢ S) that becomes the initial
state of the BA. From this state, transitions are emanating to all initial states
of the Kripke structure. The other transitions are identical to the transitions in
K. All transitions are labelled with the atomic propositions of the target state
of the transition. All states in ks2ba(K') are accept states.

5.3.2

An overview of the different steps of model checking PLTL is shown in Fig-
ure 5.4. The model of the system sys is transformed into a Biichi automaton
Agys in which all states are accepting. The property to be checked is specified
in PLTL — yielding ® —, negated, and subsequently transformed into a sec-
ond Biichi automaton A —¢. The product of these two automata represents
all possible computations that violate ®. By checking the emptiness of this
automaton, it is thus determined whether ® is satisfied by the system-model
sys or not.

Although the various steps in the algorithm are presented in a strict sequential
order, that is, indicating that the next step cannot be performed, until the
previous ones are completely finished, some steps can be done on-the-fly. For
instance, constructing the graph for a normal-form formula can be performed
while checking the emptiness of the product automaton Ay, ® A—g. In this
way the graph is constructed “on demand”: only a new vertex is considered
if no accepting cycle has been found yet in the partially constructed product
automaton. When the successors of a vertex in the graph are constructed,
one chooses the successors that match the current state of the automaton Ay,
rather than all possible successors. Thus it is possible that an accepting cycle
is found (i.e. a violation of ® with corresponding counter-example) without the
need for generating the entire graph Ge. In a similar way, the automaton Ay
does not need to be totally available before starting checking non-emptiness of
the product automaton. This is usually the most beneficial step of on-the-fly
model checking, since this automaton is typically rather large, and avoiding the
entire consideration of this automaton may reduce the state space requirements
significantly.

We conclude by discussing the worst-case time complexity of the model-checking
recipe for PLTL-formulas. Let ® be the formula to be checked and sys the model
of the system under consideration. The crucial step is the transformation of
a normal form PLTL-formula into a graph. Since each vertex in the graph is
labelled with a set of sub-formulas of ®, the number of vertices in the graph
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[Negation of property j

| Model of system (sys) | | PLTL-formula (—¢) |

M
v

| Normal-form formula |

v
Graph
W

Generalised Biichi automaton

{

Biichi automaton (A,ys) | | Biichi automaton (A - ) |

model checker

Product automaton
(Asys ® A~ ¢>)

]
4| Checking emptiness |—

( ‘No’ (counter-example) )

Figure 5.4: Overview of model-checking PLTL

is proportional to the number of sets of sub-formulas of ®, that is O(2%/).
Since the other steps of the transformation of ® into an BA do not affect
this worst-case complexity, the resulting BA has a state space of 0(2"1"). The
worst-case space complexity of the product automaton Ay, s ® A - ¢ is therefore
O(| Ssys | 2|‘I") where S,y denotes the set of states in the BA A,,,. Since the
time complexity of checking the emptiness of an BA is linear in the number of
states and transitions we obtain that

The worst-case time complexity of checking whether system-model sys
satisfies the PLTL-formula ® is O(| Sgys |* x 21®0)

since in worst case we have | Sy, |? transitions. In the literature it is common
to say that the time complexity of model checking PLTL is linear in the size of
the model (rather than quadratic) and exponential in the size of the formula to
be checked.

The fact that the time complexity is exponential in the length of the PLTL-
formula seems to be a major obstacle for the application of this algorithm
to practical systems. Experiments have shown that this dependency is not
significant, since the length of the property to be checked is usually rather short.
This is also justified by several industrial case studies. (Holzmann, for instance,
declares that “PLTL-formulas have rarely more than 2 or 3 operators”.)
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We conclude by briefly indicating the space complexity of model checking PLTL.
The model checking problem for PLTL is PSPACE-complete, i.e. a state space

that is polynomial in the size of the model and the formula is needed (Sistla
and Clarke, 1985).

5.4 Summary

5.5 Bibliographic Notes

5.6 Exercises



Chapter 6

Computation Tree Logic

This chapter introduces Computation Tree Logic (CTL), a prominent branching
temporal logic for specifying relevant system properties. In particular, proposi-
tional CTL is presented, covering its syntax, semantics and (briefly) axiomati-
zation, a comparison to propositional LTL, a discussion about fairness and its
practical usage as a property specification language.

6.1 Introduction

Pnueli [151] has introduced linear temporal logic to the computer science com-
munity for the specification and verification of reactive systems. In Chapter 3,
we have treated one important kind of linear temporal logic, namely proposi-
tional LTL (PLTL). This temporal logic is called linear, because the — qualita-
tive notion of — time viewed to be linear: at each moment of time there is only
one possible successor state and thus each time moment has a unique possible
future. Technically speaking, this follows from the fact that the interpretation
of linear temporal logic-formulas (by the satisfaction relation |) is defined in
terms of computations, i.e., sequences of states. Due to this basis on sequences,
the temporal operators X, U, F and G in fact describe the ordering of events
along a time path, i.e., a single computation of a system.

Paths themselves, though, are obtained from a Kripke structure that has branch-
ing: in such automaton a state may have several, distinct direct successor states,
and thus several computations may start in a state. The interpretation of PLTL-
formulae is lifted to the notion of a state by requiring that a formula ¢ holds
in state s if all possible computations that start in s satisfy ¢. The universal
quantification over all computations that start in s can also be made explicit
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in the formula, for instance:
s = A if and only if o |= ¢ for all paths o starting in s

where A ¢ is a PLTL-formula whose interpretation is defined over states (rather
than paths). In linear temporal logic, we thus can state properties over all pos-
sible computations that start in a state, but not easily about some of such
computations. To some extent this may be overcome by exploiting the du-
ality between universal and existential quantification. For instance, to check
whether there exists some computation starting in s that satisfies ¢ we may
check whether s = A = ¢; if this formula is satisfied by s, then there must be a
computation that meets @, otherwise they should all refute .

For more complicated properties, like “for every computation it is always possi-
ble to return to the initial state”, this is, however, not possible. A naive attempt
would be to require G F start for every computation, i.e., s = A GF start, where
the proposition start uniquely identifies the initial state/ This is, however, too
strong as it requires a computation to always return to the initial state, not
just possibly. Other attempts to specify the intended property also fail, and it
even turns out to be the case that the property cannot be specified in PLTL.

To overcome these problems, in the early eighties another strand of temporal
logics for specification and verification purposes was introduced by Clarke and
Emerson [46]. The semantics of this kind of temporal logic is not based on
a linear notion of time — an infinite sequence of states — but on a branching
notion of time — an infinite ¢ree of states. Branching time refers to the fact that
at each moment there may be several different possible futures. Each moment
of time may thus split into several possible futures. Due to this branching
notion of time, this class of temporal logic is known as branching temporal
logic. The underlying notion of the semantics of a branching temporal logic
is a tree of states rather than a sequence. Each path in the tree is intended
to represent a single possible computation. The tree itself thus represents all
possible computations, and is directly obtained from a Kripke structure by
“unfolding” the automaton at the state of interest. The tree rooted at state s
thus represents all possible infinite computations in the Kripke structure that
start in s.

The temporal operators in branching temporal logic allow the expression of
properties of some or all computations that start in a state. To that end, it
supports an existential path quantifier (denoted E) and a universal path quan-
tifier (denoted A) For instance, the property EF ® denotes that there exists a
computation along which F ® holds. That is, it states that there is at least one
possible computation in which a state that satisfies ® is eventually reached.
This does not, however, exclude the fact that there can also be computations
for which this property does not hold, for instance, computations for which ®
is always refuted. The property AF @, in contrast, states that all computations



Syntax of CTL 121

satisfy the property F®. More complicated properties can be expressed by
nesting universal and existential path quantifiers. For instance, the aforemen-
tioned property “for every computation it is always possible to return to the
initial state” can be faithfully expressed by AGEF start: in any state (G) of any
possible computation (A), there is a possibility (E) to eventually return to the
start state (F start).

The existence of two types of temporal logic — linear and branching temporal
logic — has resulted in the development of two model-checking “schools”, one
based on linear and one based on branching temporal logic. Although much can
be said about the differences and the appropriateness of linear versus branching
temporal logic, there are two main issues that justify the treatment of model
checking based on these different logics:

e The expressiveness of many linear and branching temporal logics is in-
comparable. This means that some properties that are expressible in a
linear temporal logic cannot be expressed in certain branching temporal
logics, and vice versa.

e The traditional techniques for model-checking linear and branching tem-
poral logics are quite different.! This results, for instance, in significantly
different time and space complexity results.

In this chapter, we consider Computation Tree Logic (CTL), a temporal logic
based on propositional logic with a discrete notion of time, and only future
modalities. CTL is an important branching temporal logic that is sufficiently
expressive for the formulation of an important set of system properties. It was
originally used by Clarke and Emerson [46] and (in a slightly different form)
by Quielle and Sifakis [155] for model checking. More importantly, it is a logic
for which efficient, and — as we will see in Chapter 7 — very elegant and simple,
model-checking algorithms do exist.

6.2 Syntax of CTL

The most elementary statements about systems that one can make in CTL
are atomic propositions, as in the definition of PLTL. The finite set of atomic
propositions is denoted by AP, with typical elements p, ¢, and r. We define
the syntax of CTL in the following way:

Definition 6.1. (Syntax of computation tree logic)
Let p be an atomic proposition. Formulas in CTL are either state-formulas or
path-formulas. State-formulas satisfy the following rules:

'Despite some promising unifying developments are taking place [114].
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1. p is a state-formula
If @ is a state-formula, then — @ is a state-formula
If ® and ¥ are state-formulas, then ® VvV WV is a state-formula

If p is a path-formula, then E ¢ and A ¢ are state-formulas

vl wN

Anything else is not a state-formula.
Path-formulas satisfy the following rules:

1. If ® is a state-formula, then X ® is a path-formula
2. If ® and ¥ are state-formulas, then ® U ¥ is a path-formula

3. Anything else is not a path-formula.

CTL distinguishes between state-formulas and path-formulas. Intuitively, state-
formulas express a property of a state, while path-formulas express a property
of a path, i.e., an infinite sequence of states. The temporal operators X and U
have the same meaning as in PLTL and are path-operators. Formula X ® holds
for a path if ® holds at the next state in the path, and ® U ¥ holds for a path if
there is some future state along the path for which ¥ holds, and @ holds in all
states prior to that state. Path-formulas can be turned into state-formulas by
prefixing them with either the path-quantifier E (pronounced “for some path”)
or the path-quantifier A (pronounced “for all paths”). Note that the linear
temporal operators X and U are required to be immediately preceded by E or
A to obtain a legal state-formula. Formula E ¢ holds in a state if there exists
some path satisfying ¢ that starts in that state. Dually, A ¢ holds in a state
if all paths that start in that state satisfy . Like for universal and existential

quantification in first-order logic, we have A p = —E — ¢, for all path-formulas

0.2

Ezample 6.1. Let AP ={x =1, <2,z >3} be a set of atomic propositions.
Ezxamples of syntactically correct CTL-formulas are:

EX(z=1),AX(z=1), andz <2 V z=1
and
E((z <2)U(zx > 3)) and A (trueU (z < 2))
Some example formulas that are syntactically incorrect are:

E(z=1 A AX(z > 3)) and EX (trueU (z = 1))

*Note, however, that = E = ¢ is not a CTL-formula since — ¢ is not a legal path-formula.
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The first is not a CTL-formula since x =1 N AX(z > 3) is not a path-formula
and thus cannot be preceded by E. The second formula is not a CTL-formula
since trueU (x = 1) is a path-formula rather than a state-formula, and thus
cannot be preceded by X. Note that

EX(z=1 A AX(z > 3)) and EXA (trueU (z = 1))

are, however, syntactically correct CTL-formulas. (End of example.)

The syntax of CTL requires that the linear temporal operators X, F, G, and
U are immediately preceded by a path quantifier E or A. If this restriction
is dropped, and we allow an arbitrary PLTL-formula to be preceded by E or
A, then the more expressive branching temporal logic CTL* [46] is obtained.
For instance, E(p A Xq) and A(Fp A Ggq) are formulas in CTL*, but not in
CTL. CTL* can therefore be considered as the branching counterpart of PLTL
since each PLTL sub-formula can be used in a CTL*-formula. The precise
relationship between PLTL, CTL and CTL* will be described in Section 6.5.
We do not consider model-checking CTL* since it is of intractable complexity:
the model-checking problem for this logic is PSPACE-complete in the size of
the system specification [47]. Here, we only consider CTL for which efficient
model-checking algorithms do exist. Although CTL does not possess the full
expressive power of CTL", there is substantial empirical evidence that it is
usually sufficiently powerful to express relevant properties.

6.3 Semantics of CTL

6.3.1 Kripke Structures

As for PLTL, the interpretation of CTL is defined in terms of a Kripke structure.
We recall the following definition and notations:

Definition 6.2. (Kripke structure)
A Kripke structure I is a tuple (S, I, R, Label) where

e S is a countable set of states,
e [ C S is a set of initial states,
e RC S x S is a transition relation satisfying Vs € S.(3s' € S.(s,s') € R)

o Label: S —s 247 is an interpretation function on S.
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(50,0)
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Figure 6.1: An example (a) Kripke structure and (b) a prefix of one of its
infinite computation trees

Definition 6.3. (Path)
A path in Kripke structure K = (S, I, R, Label) is an infinite sequence of states
8081 82 ... such that (s;,s;41) € R for all 7 > 0.

A path is thus an infinite sequence of states such that between successive states
transitions do exist. For path o = sy s;s2... and integer i > 0 we use o[i] to
denote the (i+1)-th state of o , i.e., o[i] = s;,. The set of paths that start in
state s is denoted Paths(s). As each state in a Kripke structure is required to
have at least one successor, it follows Paths(s) # @ for any state s. A state s
for which p € Label(s) is sometimes called a p-state. The path o is called a
p-path if it consists solely of p-states.

For any Kripke structure K = (S, I, R, Label) and state s € S there is an infinite
computation tree with root labeled s such that (s',s”) is an arc in the tree if
and only if (s, s"”) € R. This tree is obtained by unfolding the Kripke structure
at state s. The out-degree of a node in the tree is given by the number of
outgoing transitions in the Kripke structure.

Ezample 6.2.  Consider the Kripke structure of Figure 6.1(a). It consists of
four states with a single initial state sq. A finite prefiz of the infinite compu-
tation tree rooted at state sy is depicted in Figure 6.1(b). This tree is obtained
by unfolding the Kripke structure starting at state sg. For convenience, each
node in the tree consists of a pair indicating the state in the Kripke structure
and the level of the node in the tree. Paths are obtained by traversing the tree
in a downward fashion starting from the root. Ezamples paths are sgsi s2 5%,
5051 (S2.53)Y and so sy (s3s2)"s§. A similar strategy can be followed for state
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s3. One thus obtains for the set of paths that start in state s3:
Paths(s3) = (s5 s2)"s§ U (s3 s2)“.

(End of example.)

6.3.2 Semantics of CTL

The semantics of CTL formulas is defined by two satisfaction relations (both
denoted by =): one for the state-formulas and one for the path-formulas. For
the state-formulas, = is a relation between a Kripke structure K, one of its
states s, and a state-formula ®. We write I, s |= ® rather than ((KC,s), ®) € |=.
The intended interpretation is: I, s = @ if and only if state-formula ® holds in
state s of structure IC. For the path-formulas, |= is a relation between a Kripke
structure K, one of its paths o, and a path-formula ¢. We write IC,0 = ®
rather than ((IC,0),®) € =. The intended interpretation is: K,o |= ¢ if and
only if path ¢ in model I satisfies path-formula ¢. For convenience, we omit
K if it is clear from the context.

Definition 6.4. (Semantics of CTL)

Let p € AP be an atomic proposition, K = (S, I, R, Label) be a Kripke struc-
ture, s € §, @, ¥ be CTL state-formulas, and ¢ be a CTL path-formula. The
satisfaction relation |= is defined for state-formulas by:

sEDp iff  p € Label(s)

sE-® iff not sk @

sE® VU iff (sE®)or(skET)
sEEp iff o |= ¢ for some o € Paths(s)
sEAp iff o = for all 0 € Paths(s)

For path o the satisfaction relation }= for path-formulas is defined by:

ocEXd® iff o[l =@
cE®UY iff F520. (oj]EY A (VO k< j.olk] E D))

The interpretations for atomic propositions, negation and conjunction are as
usual, where it should be noted that in CTL they are interpreted over states,
whereas in PLTL they are interpreted over paths. State-formula E ¢ is valid
in state s if and only if there exists some path starting in s that satisfies .
In contrast, A ¢ is valid in state s if and only if all paths starting in s satisfy
¢. The semantics of the path-formulas is identical (although slightly different
formulated) to that for PLTL. For instance, EX ® is valid in state s if and only
if there exists some path o starting in s such that in the next state of this path,
state o[1], the property ® holds. A (® U V) is valid in state s if and only if every
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Property Formalization in CTL
Possibly the system never goes down EG —down
Invariantly the system never goes down AG — down

It is always possible to start as new AGEF up,

The system only goes down when operational A ((up; V up,) U down)

Table 6.1: Some properties for the TMR system and their formalization in CTL

path starting in s has an initial finite prefix (possibly only containing s) such
that ¥ holds in the last state of this prefix and ® holds in all other states along
the prefix. E(® U W) is valid in s if and only if there exists a path starting in
s that satisties ® U W. As for PLTL, the semantics of CTL here is non-strict in
the sense that the formula ® U V¥ is valid if the current state satisfies W.

Ezxample 6.3. Consider the Kripke structure modeling the TMR system, as

down

Figure 6.2: A Kripke structure of the TMR system

introduced in Chapter 8 (cf. Figure 6.2). Recall that states are of the form s; ;
where © denotes the number of processors that is currently up (0 < i < 3) and j
the number of operational voters (j =0,1). We consider the TMR system to be
operational if at least two processors are functioning properly. Some interesting
properties of this system and their formulation in CTL are listed in Table 6.1.
We consider each of the formulae in isolation:

e State-formula EG — down holds in state s3.1, as there is a path that starts
in that state that never reaches the down-state. An example of such path

e Formula AG —down, however, does not hold in state s3 1, as there is a path
starting from that state that satisfies =G = down, or equivalently F down,
i.e., that eventually goes down. An example of such path is (s31)" sop .. ..

e Formula AGEF ups holds in state s31, as in any state of any of its paths
it 1s possible to return to the initial state, e.g., first moving to state sg
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and then to s31. This property should not be confused with the CTL-
formula AF ups, which expresses that each path eventually will visit the
initial state. (Note that this formula is trivially valid for state s3; as it

satisfies ups.)

o The last property of Table 6.1 does not hold in state s31 as there exists a
path, such as s3;1 52,151,150, --., for which the path-formula (ups V up,)
U down does not hold. The formula is refuted since the path visits state
51,1, a state that neither satisfies down, nor upz, nor ups.

(End of example.)

6.3.3 Auxiliary Temporal Operators

The Boolean operators true, false, A, = and < are defined in the usual
way (see Chapter 3). For instance, PAY = = (=P V Not¥). Given that
F ® = true U ® we define the following abbreviations:

EF® = E(trueU®)
AF ® A (true U @)

EF ® is pronounced “® holds potentially” and AF ® is pronounced “® is in-
evitable”. Since G® = - F = ® and Ay = = E — ¢ we have in addition:

EG(I) = —-AF =@
AG(I) = —-EF =&
AX® = —-EX-d

EG @ is pronounced “potentially always ®”, AG ® is pronounced “invariantly
®” and AX @ is pronounced “for all paths next ®”. The operators E and A bind
equally strongly and have the highest precedence among the unary operators.
The binding power of the other operators is identical to that of the linear
temporal logic PLTL. Thus, for example, (AGp) = (EGgq) is simply denoted
by AGp = EGgq, and should not be confused with AG (p = EGg).

The interpretation of the temporal operators AX ®, EF &, EG &, AF ® and AG ®
can be derived using the semantics of CTL, cf. Definition 6.4. To illustrate this
we derive for EG ®:
s EEG®
< { definition of EG }
sE —AF -
< { definition of F }
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s = = A(trueU - )
< { semantics of = }

- (s = A(trueU - ®))
< { semantics of AU }

- (Vo € Paths(s).(35 2 0.0[j] E =~ ® A (VO <k < j.0[k] [ true)))
& { s [=true for all states s ; predicate calculus }

Jo € Paths(s). (Vj = 0.0[j] E ®)

Thus EG @ is valid in state s if and only if there exists some path starting at s
such that for each state on this path the formula ® holds. In a similar way one
can derive that AG @ is valid in state s if and only if for all states on any path
starting at s the formula ® holds. The formula EF @ is valid in state s if and
only if ® holds eventually along some path that starts in s, and AF @ is valid
if and only if this property holds for all paths that start in s. The derivation
of the formal interpretation of these temporal operators is left to the interested
reader. A schematic overview of the validity of EG, EF, AF and AG is given in
Figure 6.3, where black colored states satisfy the predicate black, while other

Q/E\O /(Z\Q
AN VAN
of NIk |

O Jded e o

EF black EG black

oo O

'
® ° a
A

AF black AG black

Figure 6.3: Example unfolding and the validity of some basic CTL formulae

Ezample 6.4. A Kripke structure K is depicted at the top of Figure 6.4(a),
and underneath the validity of several CTL-formulas is indicated for each state
of K. (For simplicity, the initial states are not indicated.) A state in the model
1s colored black if the formula is valid in that state, and otherwise colored white.
Seven formulas are considered:
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K {p}\O/(p,q} {p}
{q} (a)

EX p o "o -¢ ) AXp . —e—e_)
o o

- ) P60
.\ O/ %Q AGp \O/

o %@ N~ %@
EF (EGp) A(pUq)

E(U(-p A A(=pUq)) .i?

Figure 6.4: Interpretation of several CTL-formulas for a Kripke structure

EGp

e The formula EXp is valid for all states since all states have some direct
successor state that satisfies p.

e AXp is not wvalid for state sy, since a possible path starting at sy goes
directly to state so for which p does not hold. Since the other states have
only direct successors for which p holds, AXp is valid for all other states.

e For all states except state so, it 1s possible to have a computation that leads
to state sg (such as sp s1s§ when starting in so) for which p is globally
valid. Therefore, EGp is valid in these states. Since p & Label(ss) there
18 no path starting at so for which p is globally valid.

o AGp is only valid for s3 since its only path, s%, always visits a state in
which p holds. For all other states it is possible to have a path which
contains so that does not satisfy p. So, for these states AGp is not valid.

e EF (EGp) is valid for all states since from each state another state (either
S0, 81 or s3) can be eventually reached from which some computation can
start along which p s globally valid.

e A(pUygq) is not valid in s3 since its only computation (s§ ) never reaches a
state for which q holds. In state sy proposition p holds until g holds, and
in states s; and so proposition q holds immediately. So, for these states
the formula is true.
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e Finally, E(pU(—=p AN A(=pUq))) is not valid in s3, since from s3 a q-
state can never be reached. For the states sg and s1 the formula is valid,
since state so can be reached from these states via a p-path, —p is valid in
sa, and from so all possible paths satisfy —pUq, since s9 is a g-state. For
instance, for state so the path (sg s2 s1)” satisfies pU(=p A A(=pUgq))
since p € Label(sp), p ¢ Label(sz) and q € Label(s1). For state sy the
property is valid since p is invalid in ss and for all paths starting at so
the first state is a q-state.

(End of example.)

Formulas A (® U ¥) and E (® U ¥) are valid if it is guaranteed that (either for all
or for some paths) eventually a U-state is reached. This is sometimes a rather
strong requirement. A weaker variant of until, the unless operator W, states
that ® holds continuously either until ¥ holds for the first time, or throughout
the path. This operator is defined by:

APWYT) = AGP vV A(PU D)
or equivalently by:

A (dW )

AF =® = A(®UD)

In a similar way, the variant with an existential path quantifier can be defined.
Later on, we will discuss the practical relevance of this operator.

6.4 Axiomatization

In Chapter 3 on linear temporal logic we have seen that rather than a reasoning
on the basis of the semantics, axioms can be used to prove the equivalence of
formulas. These axioms are defined on the syntax of formulas and proofs can
thus be performed at a syntactic level. An important axiom for PLTL is the
expansion axiom for until:

PUT =T V (& A X(@U))

For CTL, axioms similar to the expansion axiom exist. As the linear temporal
operator U can be prefixed with either an existential or a universal path quanti-
fier, we have axioms for E (® U V) and A (® U ¥). These axioms are listed in the
last two rows of Table 6.2. The soundness of these axioms can be proved using
the semantics of CTL. These proofs are similar to the proof of the expansion
axiom for U for PLTL as discussed in Chapter 3, and are left to the reader. A
complete axiomatization of CTL does exist [21, 68], but falls outside the scope
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of this book.

EFG = & v EX(EF®)

AF® = & v AX(AF®)

EG®P = & A EX(EG®)

AGP = & A AX(AGD)
E(@UT) = TV (& A EXE(®UT))
A(@UT) = TV (@ A AXA(RUD))

Table 6.2: Expansion axioms for CTL

The first four axioms of Table 6.2 can be derived from the last two axioms. For
example, we derive for AF ®:
AF @
< { definition of AF }
A (true U @)
< { axiom for A(PU ) }
O Vv (true A AX(A (true U ®)))
< { predicate calculus; definition of AF }
® v AX(AF @)

Using this result, we derive for EG ®:

EGP
< { definition of EG }
-AF =@
< { result of above derivation }
~(=® V AX(AF = ®))
< { predicate calculus }
B A - AX(AF - )
< { definition of AX }
& A EX (- (AF = ®))
< { definition of EG }
o AN EX(EGD)

Similar derivations can be performed in order to derive the axioms for EF and
AG.
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The basic idea behind these axioms is to express the validity of a formula by a
statement about the current state (without the need to use temporal operators)
and a statement about the direct successors of this state (using either EX or
AX depending on whether an existential or a universally quantified formula is
treated). For instance, EG @ is valid in state s if ® is valid in s (a statement
about the current state) and ® holds for all states along some path starting at
s (a statement about the successor states).

The fact that for the expansion axiom for PLTL similar axioms for CTL do
exist seems to suggest that any axiom for PLTL can be lifted to CTL. This is,
however, not true. Consider, for example, the following statement:

F(®VU)=FdVFU
which is valid for any path. The same is true for:
EF(® vV ) = EF® Vv EF T

This can be seen as follows. We first consider the implication from right to left,
and then treat the reverse direction.

e EF® V EF¥ = EF(® V V) is a valid statement. Assume that s =
EF® v EFW¥. Then, without loss of generality, we may assume that
s = EF®. This means that there is some state s’ (possibly s = ),
reachable from state s, such that s’ = ®. But then s’ = ® v U. This
means that there exists a reachable state from s which satisfies ® VvV W.
By the semantics of CTL it now follows s = EF (& Vv ).

e EF(® vV ¥) = EF® Vv EFV is a valid statement. Let s be an arbitrary
state such that s = EF (® Vv ). Then there exists a state s’ (possibly
s = s') such that s = ® vV ¥. Without loss of generality we may assume
that s’ = ®. But then we can conclude s = EF ®, as s’ is reachable from
s. Therefore we also have s = EF® Vv EF V.

However, AF (® V ¥) £ AF® VvV AF ¥ since AF(® V ¥) = AF® VvV AF T is
invalid as shown by the following Kripke structure:

{@} {v}

For each path that starts in state s we have that F(® Vv W) holds, so s &=
AF (® Vv ¥). This follows directly from the fact that each path visits either
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state s’ or state s” eventually, and s’ |= ® V ¥ and the same applies to s”.
However, state s does not satisfy AF® vV AF U. For instance, path s (s")¥
F® but s(s")¥ £ FU. Thus, s £ AFVU. By a similar reasoning applied to
path s (s)“ it follows s = AF®. Thus, s = AF® VvV AF V. Stated in words,
it is neither true that all computations that start in state s eventually reach a

®-state nor that they all eventually reach a W-state.

6.5 Expressiveness of CTL and PLTL

One of the main differences between CTL and PLTL is their expressiveness.
More precisely, there are properties that one can express in CTL, but that
cannot be expressed in PLTL, and vice versa. Formally speaking, the expres-
siveness of CTL and PLTL is incomparable. An extension of CTL, called CTL*,
unifies both logics. The expressiveness of CTL* comprises that of both CTL
and PLTL. In order to treat the type of properties for which CTL and PLTL
differ, we introduce the syntax of CTL* and give an alternative characterization
of the syntax of PLTL, basically formalizing what has been used in the intro-
duction of this chapter. This alternative syntax distinguishes between PLTL
state-formulas and PLTL path-formulas, a distinction that was absent in Chap-
ter 3. The path-formulas are the usual PLTL-formulas. A state-formula is of
the form A ¢ for path-formula . The basic idea is that s = A if and only if
all paths that start in state s satisfy ¢. Thus, a PLTL-formula like red U green
is “translated” into the branching-time formula A (red U green). This implicit
universal quantification over all possible computations is commonly adopted
when comparing branching and linear temporal logics [69]. Moreover, this con-
forms to the concept that a PLTL-formula holds for a state if it holds for all
computations that start in that state. Together with the syntax of CTL, the
syntax definitions of PLTL (in the new style) and CTL* are summarized in
Table 6.3.

CTL* is an extension of CTL as it allows path quantifiers E and A to be arbi-
trarily nested with linear temporal operators such as X and U. In contrast, in
CTL each linear temporal operator must be immediately preceded by a path
quantifier. For example, AXXp is a legal CTL*-formula but does not belong
to CTL. The same applies to the CTL*-formulas EGF p and AGF p.

Comparing the expressiveness of logics by just considering their syntax is not
sufficient, though. For example, the CTL-formula AF AF p is syntactically dif-
ferent from the CTL*-formula AGF p, but expresses the same thing! A state sat-
isfies AGF p if all its computations go infinitely often through a p-state. AFAFp
holds if for any computation eventually a state is reached from which always
a p-state is reached, i.e., we will in any computation visit a p-state infinitely
often. In general, we therefore have to consider whether for some formula ®
stated in one logic L, say, there does not exist an equivalent formula ¥ — that
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PLTL state-formulas @ :=A¢p

path-formulas @:::p‘ i’ ‘ oV p ‘ X | eUep

CTL  state-formulas ®:=p| -® | v & |Ep | Ap
path-formulas ¢ =X | oUD

CTL* state-formulas ®:=p | -® | v & |Ep | Ap

path-formulas ¢ == @ ‘ - ‘ vV p ‘ X | pUep

Table 6.3: Syntax of PLTL, CTL and CTL* by distinguishing state- and path-
formulas

syntactically may differ from @ — in the other logic £'. By means of “equiva-
lent” we intuitively mean “express the same thing”. In the following definition,
we define what equivalence of formulas precisely means.

Definition 6.5. (Equivalence of formulas)
State-formulas ® and ¥ are equivalent if and only if for all Kripke structures /C
and states s:

s = ® if and only if s = U

Note that this definition requires ® and ¥ to be defined using the same seman-
tics = — what else could we say if they would have been defined by two distinct
interpretations? We are now in a position to define formally what it means for
two temporal logics to be equally expressive.

Definition 6.6. (Comparison of expressiveness)
Temporal logic L is at least as expressive as temporal logic £’ if and only if for
any formula ® € £ we have:

JV e L. (VK.Vs. (K,s E @ if and only if K, s E T))

If £ is at least as expressive as £’ and £’ is at least as expressive as £, then £’
and L are said to be equally expressive.

If £ is at least as expressive as £/, but the reverse does not hold, then L is
also called more expressive than £'. In Figure 6.5 we depict the relationship
between the three logics considered as a Venn diagram where each ellipse rep-
resents the set of formulas that can be expressed in a logic. We see that CTL*
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is more expressive than both PLTL and CTL, whereas PLTL and CTL are in-
comparable. Below, examples of formulas are given that show the differences
in expressiveness of each of the regions in Figure 6.5.

Q A (F (pAXp))
Vv

>

— | > AG (EF g)

AR AXD) A(pUq) AG (EF q)

Figure 6.5: Relationship between PLTL, CTL and CTL*

In PLTL, but not in CTL. A (F (pAXp)) is a PLTL-formula for which there
does not exist an equivalent formula in CTL. The proof of this fact can be found
in [69] and falls outside the scope of this work. The formula expresses that each
path eventually reaches a point at which two successive p-states are reached.
The obvious CTL candidates AF (p AEXp) and AF (p A AX p) do not express the
same property. The first formula is actually too weak (i.e., to liberal), whereas
the second one is too strong (i.e., to restrictive).

e To see this, consider AF (p AEXp) and the Kripke structure depicted in
Figure 6.6 on the left (a). We have so = AF(pAEXp), as any path
starting in sy visits a p-state from which another p-state can be reached.
In particular, this holds for the computation (sg s1)“. On the other hand,
however, so = A (F (p AXp)) as the path (sgs1)” never reaches a p-state
that has only p-states as direct successor. Thus, AF (p A EXp) is too weak.

e Now consider AF (p AAXp) and the Kripke structure depicted in Fig-
ure 6.6 on the right (b). All paths that start in sp have a prefix s s; or
S0 3 s4. Clearly, all such paths satisfy F (p A Xp), and so, so = AF (p A AXp).
On the other hand, however, sy = AF (p AAXp) as the path s s; (s2)%
does not satisfy F (p A AXp): state sg has a non p-state as direct successor.
Thus, AF (p AAXp) is too strong.

Another example of a PLTL-formula for which an equivalent formulation in
CTL does not exist is A(GFp = Fgq) which states that if p holds infinitely
often, then ¢ will be valid eventually. This is an interesting fairness property
that occurs frequently in verification. For instance, a typical property for a
communication protocol over an unreliable communication medium (such as a
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{p}%a {p}

L e

{p} {p

—

(a) (b)

2 (o)

Figure 6.6: Kripke structures for A (F (p A Xp))

radio or infra-red connection) is that “if a message is being sent infinitely often,
it will eventually arrive at its destination”.

In CTL, but not in PLTL. The formula AGEFp is a CTL-formula for
which there does not exist an equivalent formulation in PLTL. The property is
of use in practice since it expresses the fact that it is possible to reach a state for
which p holds irrespective of the current state. If p characterizes a state where a
certain error is repaired, the formula expresses the fact that it is always possible
to recover from that error. In fact, we can prove that AG EF p is not expressible
in PLTL. A sketch of the proof is as follows [102]. Let ® be a PLTL-formula
such that A ® is equivalent to AGEF p. Since K, s = AGEFp in the left-hand
figure below (a), it follows that K, s = A ® because A ® is equivalent to AG EF p.
Note that path s“ also satisfies GEF p as state s, the only state on that path,
satisfies EF p. Let K’ be the sub-model of K shown in the right-hand diagram
(b). The paths starting from s in K’ are also paths starting from s in K, so we
have ', s = A®. However, it is not the case that K', s = AGEF p, since EF p
is never valid along the only path s“.

(=) S@—s@{p} @{ﬁp}
(a) (b)

Relationship between CTL* and PLTL. The relationship between PLTL
and CTL* can be expressed as follows [45]: any CTL*-formula ® can be ex-
pressed in PLTL if and only if ® is equivalent to the PLTL-formula A ct1*2pltl(®)
where ctI*2pltl(®) is obtained from ® by eliminating all path-quantifiers. For
instance, for ® equal to AG EF p we have ctI*2pltl(®) = GF. A definition of this
function can easily be given by structural induction on the syntax of CTL*, and
is omitted here. Note that the result yields that AGEF p cannot be expressed
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in PLTL as ctI*2pltl(®) = GF is not equivalent to it.

As a final example of the difference in expressiveness of PLTL, CTL and CTL*
consider the PLTL-formula G F p, which says infinitely often p. It is not difficult
to see that prefixing this formula with an existential or a universal path quan-
tifier leads to a CTL*-formula: A(GF)p and E(GF) p are both CTL*-formulas.
AGF p is equivalent to AGAFp — for any model K the validity of these two
formulas is identical — and thus for A(GF)p an equivalent CTL-formula does
exist, since AGAFp is a CTL-formula. For E(GF)p, however, no equivalent
CTL-formula does exist. This can be seen by considering the following model,
where empty sets of atomic propositions are omitted.

S0 S1 52
-/
Q)
AN

We have sg = E(GF) p since for any state on the path (s9)“ a p-state is eventu-
ally reachable. (Note that this does not mean that we finally should reach that
p-state, though.) However, so = A(GF )p since there is no path starting in sg
such that p is infinitely often valid.

6.6 Fairness and CTL

Recall that fairness assumptions (cf. Section 3.7) are used to rule out com-
putations that are unreasonable for the system under consideration. These
unreasonable computations are the “unfair” ones; the remaining computations
are thus the “fair” ones. In model-checking PLTL one can guarantee that a for-
mula ® only holds for a set of fair computations by imposing an extra premise
on ®. That is to say, one adapts the formula to be checked to the desired
fairness constraint, and verifies the resulting modified PLTL-formula. As there
are different notions of fairness, various distinct constraints can be imposed:
unconditional, weak or strong fairness. For CTL, this (direct) approach does
not work, as most fairness properties cannot be expressed as CTL-formulas.
Therefore, an alternative approach is taken.

To deal with fairness constraints in CTL, the semantics of CTL is slightly
modified such that the state-formulas A ¢ and E ¢ are interpreted over all fair
paths rather than over all possible paths. A fair path is a path that satisfies a
set of fairness constraints. A fairness constraint is defined by identifying certain
sets of states. For instance, for checking absence of individual starvation of a
mutual exclusion algorithm such a fairness constraint could be “process one is
not in its critical section”. Imposing this fairness constraint on paths means
that a fair path must have infinitely many states where process one is not in its
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critical section.

Kripke structures are equipped with fairness constraints in the following way:

Definition 6.7. (Fair Kripke structure)
A fair Kripke structure is a quadruple K = (S, I, R, Label, F) where (S, 1, R,
Label) is a Kripke structure and F C 27 is a set of fairness constraints.

Definition 6.8. (Fair path)
A path o = 59 81 82. .. is called fair if for every set of states F; € F (0 < i < |F|)
there are infinitely many states in o that belong to F;.

Notice that this condition is identical to the condition for accepting runs of a
generalized Biichi automaton (see Chapter 4). Indeed, a fair Kripke structure
is an ordinary Kripke structure that is extended with a generalized Biuchi ac-
ceptance condition. For F = & the requirement that every set F; is visited
infinitely often is vacuously true, and any path is fair in that case. The fair
Kripke structure (S, I, R, Label, &) thus has the same paths as Kripke structure
(S,1, R, Label).

The semantics of CTL in terms of fair Kripke structures is identical to the
semantics given earlier (cf. Definition 6.4), except that all quantifications over
paths are interpreted over fair paths rather than over all paths. Let Pathsy,;,(s)
be the set of fair paths in /C that start in state s. Clearly, Pathsp,(s) C
Paths(s) as paths that do not visit any F; infinitely often are ruled out, while
no new paths are considered. Note that Pathsy,,(s) = @ if all paths starting in
s do not visit all F; infinitely often. The fair interpretation of CTL is defined
in terms of the satisfaction relation = (subscript f denotes fair). (IC,s) =5 ®
if and only if @ is valid in state s of fair Kripke structure K.

Definition 6.9. (Fair semantics of CTL)

Let p € AP be an atomic proposition, K = (S, I, R, Label, F) be a fair Kripke
structure, s € S, ®, ¥ be CTL state-formulas, and ¢ be a CTL path-formula.
The satisfaction relation = is defined for state-formulas by:

skErp ifft  Pathsyr(s) # @ Ap € Label(s)
S):f - iff  not (s |:f D)

sEp® v VU iff (sf=f®)or(sfk=f¥)
skEfEp iff Jo € Pathspy(s).0 =f ¢
skErAp ifft Vo € Pathsf,(s).0 =y ¢

For fair path o, the satisfaction relation =y is defined for path-formulas by:

o XO ifft o[l]Ef @
ol ®UT i 3520 (olj] =, T A (YO E < j.ofk] = 3))
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The clauses for the propositional logic terms are identical to the semantics
given earlier except for atomic propositions. In order to have s = p it is
of importance, besides the fact that s should be labeled by p, whether a fair
path that starts in state s does exist. For the traditional CTL-semantics such
constraint is vacuously true as for each state in a Kripke structure at least one
path does exist. In case of a fair semantics this is no longer the case. For the
path quantifiers E and A the difference lies in the quantifications that are over
fair paths rather than over all paths. The expressiveness of CTL under a fair
interpretation (let us call this fair CTL) is strictly larger than that of CTL, and
is (like CTL) a subset of CTL*. As for CTL, the expressiveness of fair CTL is
incomparable to that of PLTL.

Ezxample 6.5. Consider the Kripke structure depicted in Figure 6.7 (i.e.,
F = &) and suppose we are interested in establishing whether or not IC, sy =
AG (p = AFq). This formula is invalid since the path sg s1 (82 $4)* never goes
through a q-state. The reason that this property is not valid is as follows. At
state so there is a non-deterministic choice between moving either to state s3
or to s4. By continuously ignoring the possibility of going to sz we obtain a
computation for which AG (p = AF q) is invalid, hence:

KC,s0 £ AG(p = AFq)

Usually, though, the intuition is that if there is infinitely often a choice of
moving to sz then sg should be visited in some fair way.

{q}

. . @/50
O—0 ©<
) “"\@

S4

{r}

Figure 6.7: An example Kripke structure

We now modify the Kripke structure shown in Figure 6.7 by defining F =
{F,Fy} where Fi = {s3} and F» = {s4}. The resulting model is named
K'. Let us now check AG (p = AFq) on this fair model, that is, consider the
verification problem K',so =5 AG (p = AFq). Due to the fairness constraints,
any fair path has to go infinitely often through some state in Fy and some state
in Fy. This means that states s3 and sq4 must be visited infinitely often. Paths
like sg s1(s284)* are now excluded, since s3 is never visited along this path.
Thus we deduce that indeed:

K', 59 7 AG(p = AFq)



140 Computation Tree Logic

It is left to the reader to check that a fair Kripke structure K" with F =
{{s3,54}} does not exclude the path sy s1 (s254)”, and hence

K", so ¢ AG(p = AFq)

(End of example.)

Whereas for PLTL fairness constraints are specified as part of the formula to be
checked, for CTL similar constraints are imposed on the underlying model of the
system under consideration, i.e., the Kripke structure. Using a somewhat more
expressive logic like CTL* we can, however, also give a logical characterization
of the kind of fairness in fair Kripke structures. This works as follows. Suppose
®y,...,D, are the desired fairness constraints and ¥ is the state-formula to
be checked for Kripke structure K. Let Ky be equal to K with the exception
that Ky is a fair Kripke structure where the fairness constraints ®4,...,®, are
realized by appropriate acceptance sets F; (0 < i < n, i.e., each acceptance set
F; corresponds to states satisfying ®: F; = {s | s = ®; }. Then checking ¥
on the fair model K amounts to check A ((Vi.GF ®;) = ¥) on the ordinary
(unfair) model K:

K¢, s ¢ ¥ifand only if K, s = A((Vi.GF®;) = )

Note that A ((Vi.GF®;) = ¥) is indeed not a CTL-formula — otherwise we
could have incorporated the fairness constraint into the formula ® (as for PLTL)
— but a CTL*-formula. The intuition is that the formulas GF ®; exactly char-
acterize those paths that visit F; infinitely often.

6.7 Practical use of CTL

This section discusses the practical usage of CTL as a logic to specify relevant
system properties. We do so by considering the classes of properties as distin-
guished in Section 3.8 (and which is adopted from [22]): reachability, safety,
liveness, and fairness properties.

Reachability properties express that some particular situation can be reached.
Reachability properties are of the type “there exists a path such that some
scenario can be reached”, and can be naturally expressed in CTL by EF ® where
® characterizes the set of states to be reached. A negated reachability property
expresses that some undesired situation (such as a deadlock) cannot be reached.
Such property can be expressed by — EF @, or, equivalently, by AG —®. These
(negated) reachability properties do not impose any conditions on the paths
that are traversed until reaching the desired goal states; recall that EF ® =
true U ®. Conditional reachability properties restrict the set of paths that may
be traversed until reaching any of the goal states. An example of such property
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is “it is possible that the system will go down by having at least two processors
being operational up to that point”. Conditional reachability properties can be
naturally expressed in CTL by EU , for instance, E ((up3;Vupy) U down) expresses
the aforementioned property for the TMR system. When reachability applies
to any state, the CTL temporal operators AG (in any state of each path) and
EF (simple reachability) are nested. For instance, the property “it is always
possible for the system to start as new” is formalized by AG EF up;. This can
be applied also to conditional reachability properties, for which AG and EU are
nested. Such properties cannot be expressed in PLTL.

Safety properties express that, under certain conditions, something (usually
“bad”) never occurs. The operator AG is typical for safety properties, e.g.,
AG — (P;@cs A\ P,@Qcs) expresses that processes P and P, can never occupy
their critical section simultaneously. Like for PLTL, conditional safety prop-
erties can be conveniently expressed by the unless operator. For instance, the
property “as long as the user does not provide a 25 cents coin, the coffee machine
won’t offer coffee” is expressed by A (= coffee W coin).

Liveness properties express that, under certain conditions, something will ul-
timately occur. Typically, these properties are expressed in CTL by a nested
combination of AG and AF. For instance, the liveness property “once red, the
traffic light will become green” is expressed by AG (red = AF green). The un-
til operator is used for conditional liveness properties, since ® U ¥ is valid if
¥ is will hold eventually. As we have discussed just above, the liveness (and
reachability) property AG EF up; cannot be expressed in PLTL.

Fairness properties express that, under certain conditions, an event will occur
(or will fail to occur) infinitely often. Such properties cannot be expressed
in CTL as CTL prohibits the nesting of F and G without a path quanti-
fier in between. The only relevant fairness property that can be expressed
in CTL is AGAF ®, but there is neither a CTL-equivalent to EF G® nor to
E(FG®AFGVY¥). Note that the latter formulas are legal CTL*-formulas.

Table 6.4 lists the most commonly used specification patterns for CTL, describes
their property category and their empirically established importance.

6.8 Bibliographic Notes

Branching temporal logics. Various types of branching temporal logic have been
proposed in the literature. They basically differ in expressiveness, i.e., the type
of formulas that one can state in the logic. We mention a few important ones in
increasing expressive power: Hennessy-Milner logic (HML [91]), Unified System
of Branching-Time Logic [21], Computation Tree Logic (CTL [46]), Extended
Computation Tree Logic (CTL* [46]), and Modal p-Calculus [111]. The modal
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pattern category CTL-formula frequency
response liveness AG(® = AFYVD) 434 %
universality — safety AG P 19.8 %
absence negated reachability —EF® 7.4 %
precedence  liveness AGA(—DdW ¥) 4.5 %
absence AG ((& A =T A AFYT)

= A (~3'UD)) 32 %
absence safety AG(T = AG - D) 2.1 %
existence liveness EF ® 21 %

~ 80 %

Table 6.4: Most commonly used specification patterns for CTL [66]

p-calculus is the most expressive among these languages, and HML is the least
expressive. The fact that the modal p-calculus is the most expressive logic
means that for any formula ® expressed in one of the logics mentioned, an
equivalent formula ¥ in the modal p-calculus can be given. CTL* and the p-
calculus can express fairness properties. CTL has been extended with fairness
by Emerson and Halpern [69] and by Emerson and Lei [72].

Theoretical results for CTL and CTL*. Emerson [67] has shown that checking
CTL satisfiability, i.e., checking whether for a given CTL-formula a model does
exist, is in the complexity class EXPTIME. This means that the time complex-
ity of checking CTL satisfiability is exponential in the length of the formula.
For CTL* this problem is double exponential [70], i.e., the time complexity
of checking CTL* satisfiability is double exponential in the length of the for-
mula. A complete axiomatization of CTL has been given by Ben-Ari, Pnueli
and Manna [21] and Emerson and Halpern [68].

Ezxpressiveness of branching versus linear temporal logics. The discussion of the
relative merits of linear- versus branching-time logics goes back to the early
1980s. Pnueli [152] established that linear and branching temporal logics are
based on two distinct notions of time. Various papers [45, 69, 117] show that
the expressiveness of PLTL and CTL are incomparable. A somewhat more
practical view on comparing the usefulness of PLTL versus CTL was recently
given by Vardi [181]. The logic CTL* that encompasses PLTL and CTL was
defined by Clarke and Emerson [46].

6.9 Exercises

EXERCISE 6.1. Let p and ¢ be atomic propositions. Indicate for each of the following
formulas whether or not they are CTL-formulas:

1. AFEGp
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2. AEFp
3. AF(pUEG(p = q))
4. EFAGp

EXERCISE 6.2. Consider the following Kripke structure:

(%] {p7

()————=

444443<ji>

{p,q} {p,7} {r}

Determine for any of the following CTL-formulas which states in this Kripke structure
satisfy it. Motivate your answers.

EGp

AGp

EFAGp
EFE(pUEG(p = q))

- o=

EXERCISE 6.3. Consider the following model that consists of just four states.

{y}

(D= (2) 3) {9}

{r}

{o}

The following atomic propositions are used: r (red), y (yellow), g (green) and b (black).
The model is intended to describe a traffic light that is able to blink yellow. You are
requested to indicate for each of the following CTL-formulas the set of states for which
these formulas are valid.

1. AFy 7. EG —¢g

2. AGy 8 AMBU-D)

3. AGAFy 9. E(®BU-Dd)

4. AFg 10. A(—-bUEFb)
5. EFg 11. A(gUA(yUr))
6. EGg 12. A(=bUDb)

EXERCISE 6.4. Prove that the following CTL-formula are satisfiable and/or valid, or
give a counterexample:
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EGp = AGp
. AGp = EGp
. AFp V AFq = AF(p V q)
.AF(p vV q) = AFp Vv AFgq

EXERCISE 6.5. Prove that the following CTL-formula are valid or give a counterex-
ample:

1. AG(r = (¢ N EXr)) if and only if (r = —AFq)
2. AG(p = q) if and only if (EXp = EXg).
3. A(pUq) = _I(E(_|qU(_|p A _lq)) \ EG—|q)

EXERCISE 6.6. Consider a lift system that services N > 0 floors numbered 0 through
N —1. There is a lift door at each floor with a call-button and an indicator light that
signals whether or not the lift has been called. In the lift cabin there are N send-
buttons (one per floor) and N indicator lights that inform to which floor(s) is sent. For
simplicity consider N = 4. Present a set of atomic propositions — try to minimize the
number of propositions — that are needed to describe the following properties of the
lift system as CTL-formulas and give the corresponding CTL-formulas:

1. The doors are “safe”, i.e., a floor door is never open if the cabin is not present
at the given floor.

2. The indicator lights correctly reflect correctly reflect the current requests. That
is, each time a button is pressed, there is a corresponding request that needs to
be memorized until fulfillment (if ever).

3. The cabin only services the requested floors and does not move when there is no
request.

4. All requests are eventually satisfied.

EXERCISE 6.7. There are several sets of formulae that can be used as a basis to define
CTL. That is to say, various sets of basic operators can be identified such that any
arbitrary CTL-formula can be written in terms of these basic operators. Questions:

1. Show that CTL can be defined in terms of the basic operators EX, EU and AU,
by providing a translation of any CTL-formula into these operators. (EU and
AU denote the combination of a path quantifier with the until operator.)

2. Do the same for the basic operators AG, AX and AU.

EXERCISE 6.8. Give a Kripke structure that shows that the PLTL-formula AFGp
(expressed as CTL*-formula) and the CTL-formula AF AG p are not equivalent.
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EXERCISE 6.9. Let K = (S, P, Label), where S is a set of states, P a set of paths and
Label an assignment of (sets of) atomic propositions to states. Suppose we impose the
following conditions on the set of paths P:

I oeP = oleP.
II (psoeP A p'so’ € P) = pso' € P.

Here 0,0’ are paths, o' is ¢ where the first element of ¢ is removed, and p, p’ are finite
sequences of states.

Questions:

1. Give the intuitive interpretation of constraints I and II.

2. Check whether the following sets of paths satisfy I and II. Motivate your answers.
(a) {abe¥,dbe”}
(b) {abe?,dbe”, be, ¢, be’ e’ }
(c) {aa*b¥}.

Recall that a* denotes an infinite sequence of a’s, and a* denotes a finite (possibly
empty) sequence of a’s.

EXERCISE 6.10. In PLTL we have that for atomic proposition p the formulas XFp
and F X p are equivalent. Check whether this also holds for the CTL-formulas AX AF p
and AF AX p.

EXERCISE 6.11.  Does there exist an equivalent formulation of the CTL-formula
AF AGp (for some atomic proposition) p in PLTL? Give either an equivalent PLTL-
formula and justify why it is equivalent, or, otherwise, provide a counter-example that
shows that such equivalent formula does not exist.

EXERCISE 6.12. Consider the single pulser circuit, a hardware circuit that is part of a
set of benchmark circuits for hardware verification. The single pulser has the following
informal specification: “for every pulse at the input inp there appears exactly one pulse
of length one at output outp, independent from the length of the input pulse”. Thus,
the single pulser circuit is required to generate an output pulse between two rising
edges of the input signal. The following questions require the formulation of the circuit
in terms of CTL. Suppose we have the proposition rise_edge at our disposal which is
true if the input was low (0) at time instant n—1 and high (1) at time instant n (for
natural n > 0). It is assumed that input sequences of the circuit are well-behaved, i.e.,
more that rising edge appears in the input sequence.

Questions: specify the following requirements of the circuit in CTL:

1. A rising edge at the inputs leads to an output pulse.
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2. There is at most one output pulse for each rising edge.

3. There is at most one rising edge for each output pulse.



Chapter 7

Model-Checking CTL

This chapter is concerned with CTL model checking. First, the core recursive
algorithm is presented that is based on a bottom-up traversal of the parse
tree of ®. The theoretical foundations of this algorithm are discussed and an
efficiency improvement to the core algorithm is considered. The generation of
counterexamples is considered and the required adaptations needed to model-
check fair CTL are treated.

7.1 Introduction

The model-checking problem for CTL is to verify for a given Kripke structure
KC, state s € S, and CTL-formula ® whether I, s = ®. That is, we need to
establish whether the formula ® is valid in state s of structure /. In this chapter,
we assume that the state space of a Kripke structure is not only denumerable
(as in Chapters 3 and 6), but also finite. Thus the set S of states in /C is finite.

The basic procedure for CTL model checking is rather straightforward:

e the set Sat(®) of all states satisfying ® is computed recursively, and

e it follows that s |= @ if and only if s € Sat(®).

For a Kripke structure with set of states S we have Sat(®) ={se€ S|sE=o}.
Notice that by computing Sat(®) a more general problem than just checking
whether IC,s = @ is solved. In fact, it checks for any state s in K whether
K,s E @, and not just for a given one. In addition, since Sat(®) is computed
in a recursive way by considering all its sub-formulae, the sets Sat(¥) for any
sub-formula ¥ of ® are computed, and thus K, s = ¥ can be easily checked as
well.

147
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The recursive computation basically boils down to a bottom-up traversal of
the parse tree of the formula ®. For each node of the parse tree, i.e., for each
sub-formula ¥ of ®, the set Sat(V) of states is computed for which ¥ holds.
This computation is carried out level-wise, starting from the leafs of the parse
tree — the nodes that correspond to the atomic propositions — and finishing at
the root of tree, the (only) node in the parse tree that corresponds to ®. At
an intermediate node, the results of the computions of its children are used
and combined in an appropriate way to establish the states of its associated
sub-formula. The type of computation at such node depends on the operator
(e.g., A, EX or EU) that is at the “top level” of the sub-formula treated. By
following this bottom-up procedure, one obtains the set of states for which the
requested formula ® holds at the root of the parse tree.

Before providing a precise description of this algorithm, we first observe that
it is not needed to consider all different operators of CTL. It rather suffices
to consider a set of base operators such that any CTL-formula can be defined
in a combination of these basic operators. An example of such set of base
operators is: EX,EU, EG and the propositional operators. For convenience we
also consider true and false as base operators. The following equations are
essential to translate CTL-formulae in terms of these base operators:

AX® = —EX -
A(dUT) ~(E(=TU~-(® vV ¥)) V EG D)

The validity of these rules can be proven using either the formal semantics of
CTL or its axiomatisation (cf. Chapter 6) and is left as an exercise to the reader.
Recall that, by definition, we have:

EF® = E(trueU®)
AF® = —-EG-®
AG®P = —EF O

Using these five rules, it is not hard to show that any CTL-formula can be
transformed into an equivalent formula that only contains the base operators.
The following translation, denoted by f, will do:

fl) = p fEF®) = E(trueU f(®))
f(=®) = = f(®) f(AF®) = —EG-f(¥)
f@Vv¥) = f(®) Vv f¥) [fECD) = EGf(P)
f(EX®) = EXf(®) f(AG®) = —E(trueU = f(®))
f(AX®) = —EX=f(®) f(E(@UY)) = E(f(®)U[(T))

fE(
fA(@UY)) = = (E(=f(T)U=(f(®) Vv f(¥))) V EG = [f(T))

It thus suffices to give a detailed description of the model-checking algorithm
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for the base operators only; the verification procedure for the other operators
directly follows from that.

We are now in a position to characterise the set of sub-formulae of a CTL base-
formula. The set of sub-formulae of ® is denoted by Sub(®) and is inductively
defined as follows.

Definition 7.1. (Sub-formulae of a CTL-formula)
Let p € AP, and ®,¥ be CTL-formulae. Then

Sub(p) = {p}
Sub(~®) = Sub(®) U { -}
Sub(® V ¥) = Sub(®) U Sub(¥) U {d Vv ¥}
Sub(EX®) = Sub(®) U {EX®}
Sub(EG®) = Sub(®) U {EG®}
Sub(E(®UT)) = Sub(®) U Sub(¥) U {E(®UT)}.

Note that the set of sub-formulae of a state-formula is a set of state-formulas.
In particular, the path-formula ® U W is not a sub-formula of the state-formula
E(®UW).

If we define the length of formula @ to be the cardinality of the set Sub(®), then
the above sketched algorithm in terms of the parse tree of ® can be formulated
as an iterative procedure as follows. One starts with the sub-formulae of length
one, i.e., the atomic propositions, true, and false. In the (i+1)-th iteration of
the algorithm, sub-formulae of length i+1 are considered. The results of the
previous iteration are used, e.g., it is decided that ® V ¥ holds in state s,
if from the previous iteration(s) it follows that either ® or ¥ hold in s. The
algorithm ends by considering the (only) sub-formula of length | ® |, i.e., the
formula @ itself.

The recursive algorithm is given in Table 7.1 and is explained in the following.
The computation of Sat(®) is done by considering the syntactical structure of
®. For ® = true the program just returns S, the entire state space of K, as true
holds in any state. Accordingly, Sat(false) = &, since false is nowhere valid.
For atomic propositions, the labelling Label(s) in the Kripke structure provides
all the information: Sat(p) is simply the set of states that is labelled by Label
with p. For the negation — ® we compute Sat(®P) and take its complement with
respect to S. Disjunction amounts to a union of sets. For EX ® the set Sat(®) is
recursively computed and all states s are considered that can reach some state
in Sat(®) by traversing a single transition. Note that for state s the set R(s)
denotes the set of direct successor states of s, i.e., R(s) = {s' € S| (s,5') € R}.
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function compSat (® : Formula) : set of State;
(* pre: @ is a base CTL-formula *)
begin
switch(®) :
case ¢ = true then return S
case ® = false then return @
case ® € AP then return {s| ® € Label(s) }
case & = = ®; then return S — compSat(®,)
case & = &; V P, then return (compSat(®,) U compSat(P2))
case & = EX®; then return {s € S| R(s) N compSat(®,) # @ }
case & = E(®; U ®P,) then return compSatEU(®,, P2)
case & = EG ®; then return compSatEG(®;)
end switch
(* post: compSat(®) = Sat(®) ={s|s= o} *)

end

Table 7.1: The recursive algorithm for model checking CTL

Some words on a possible implementation are in order. By applying the current
(abstract) algorithm, sub-formulas that occur more than once in ® are consid-
ered as many times as they occur. This may lead to a considerable increase
of the verification run-time. An obvious efficiency improvement is to store the
results of verifying sub-formulae (e.g., as bit-vectors) to avoid recomputations.

For ¢ = E(® U ¥) the specific function compSatEU, see Table 7.2, is invoked
that performs the computation of the set Sat(¢). Recall that a state satisfies
@ if there exists a path starting in s that reaches a W-state by only visiting ®-
states prior to that. Intuitively, the function compSatEU works as follows. As
each U-state obviously satisfies ¢, all states in Sat(®) are initially considered to
satisfy . An iterative procedure is subsequently started that can be considered
to systematically check the state space in a “backwards” manner. In each
iteration, all ®-states are determined that can move by a single transition to
(one of) the states of which we already know to satisfy ¢. Thus, in the i-th
iteration of the procedure, all ®-states are considered that can move to a W-
state in at most 4 steps. Note that if pre is the set of states resulting from the
i-th iteration then the set after the (i+1) — th iteration is determined by:

pre U ({s| R(s) N pre# @} N Sat(P))

where R(s) denotes the set of direct successor states of state s. Termination of
the algorithm intuitively follows, as the number of states in the Kripke structure
is finite. To avoid the re-computation of Sat(®) at each iteration, it is stored
in an auxiliary variable, satphi.

Exzample 7.1. Consider the Kripke structure depicted in Figure 7.1, and
and suppose we are interested in checking the formula EF ® with ® = ((p =
r)A(p # q)). Recall that EF® = E(trueU®). To check EF ® we invoke
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function compSatEU (®, ¥ : Formula) : set of State;
(* pre: ® and ¥ are base CTL-formulae *)
begin var now, pre, satphi : set of State;
now, pre, satphi := compSat(¥), &, compSat(®);
while now # pre
do pre := now;
now :=pre U ({s| R(s) N pre # @} N satphi)
od;
return now;
(* post: compSatEU(®,¥) ={se S|sEE(Q@UT)}*)

end

Table 7.2: Algorithm to determine the states satisfying E (U ¥)

& /O
{pyar} (s @{p}

(sl {a} {p.r}
{a,r} (s 51 {p,q}

Figure 7.1: An example Kripke structure

compSatEU(true, ®). This algorithm recursively computes the set of states sat-
isfying true and those for which (p = 1) A (p # q) is valid. Accordingly, now is
initialised to { s4, S5 }, the only states for which ® holds while satphi equals S,
the set of all states. The set pre is initially empty. This corresponds to the sit-
uation depicted in Figure 7.2(a), where states in the set now are colored black,
and white otherwise. In the first iteration, all states are added that have either
84 or 85 as a direct successor. Thus, state sg is added, cf. Figure 7.2(b). Dur-
ing the second iteration, the only predecessor of sg is added to now, yielding the
snapshot in Figure 7.2(c). After the third iteration, the algorithm terminates
as now equals pre, i.e., there are no further predecessors of ®-states. (End of
example.)

Naively, an algorithm for checking the formula EG ® can be obtained by using
the fact that:

EGP=d A EX(EG®)

and providing an algorithm that is similar in spirit to compSatEU. (Later in this
chapter we will present a more efficient algorithm for checking EG ®.) The thus
resulting function is depicted in Table 7.3. Intuitively, the function compSatEG
works also by a backwards traversal of the state space, but rather starting from
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a
a

(a) (b)

q
4

(c) (d)

Figure 7.2: Example of running algorithm compSatEU(true, (p=r) A (p#q))

a small set of states (like Sat(®) in compSatEU) this function starts from the
entire state space S and iteratively tries to eliminate states that refute EG ®.
In each iteration of the algorithm we only keep those states that satisfy ® and
have at least one outgoing transition to the set of states considered so far.
Termination of the algorithm is again guaranteed by the finiteness of the state
space.

function compSatEG (® : Formula) : set of State;
(* pre: @ is a base CTL-formulae *)
begin var now, pre, satphi : set of State;
now, pre, satphi := S, &, compSat(®);
while now # pre
do pre := now;
now :=pre N ({s | R(s) N pre # @} N satphi)
od;
return now;

(* post: compSatEG(®) ={se€ S|s=EG®} *)
end

Table 7.3: Algorithm to determine the states satisfying EG ®

Ezxample 7.2.  Consider again the Kripke structure in Figure 7.1 and suppose
the formula to be checked is EG q. To that purpose the algorithm compSatEG(q)
is invoked. Initially, the set now equals S, the set of all states, see Figure 7.3(a).
In the first iteration, the set of q-states is determined, cf. Figure 7.3(b). Dur-
ing the second iteration, set of q-states is computed that has at least one oul-
going transition to another q-state. The (single) p-state si that has no direct
q-successor becomes “unlabeled”, i.e., it is not considered any further, cf. Fig-
ure 7.8(c). By continuing this recipe, in the i-th iteration all states have been
unlabeled from which no sequence of length at most i exists that only consists of
q-states. At the end of the third iteration, the sets now and pre are equal and
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the computation is finished, cf. Figure 7.3(d). (End of example.)

B
o

(a) (b)

a
a

(©) (d)

Figure 7.3: Example of running algorithm compSatEG(q)

Although the principle of the presented algorithms is reasonably clear and sim-
ple, establishing their correctness involves some formal fizpoint theory based on
partial orders.

7.2 Foundations of CTL Model Checking

7.2.1 A Primer on Fixed Points

This section briefly presents some results and definitions from basic domain
theory as far as they are needed to understand the fundamentals of model
checking CTL. For more information on domain theory see, for instance, [83,
129]. Let A be a finite set of elements.

Definition 7.2. (Partial order)
A binary relation CC A x A is a partial order if and only if, it is reflexive,
anti-symmetric and transitive. That is, for all a,d’,a” € A:

1. a C a (reflexivity)
(aCd A d Ca) = a=d (anti-symmetry)

2.
3. (aCd AN d Cd") = ald (transitivity).

The pair (A4, C) is a partially ordered set, or shortly, poset. If a Z o' and a' Z a
then a and a’ are said to be incomparable. For instance, for S a set of states,
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it follows that (2%, C), where 2° denotes the power-set of S and C the usual
subset-relation, is a poset.

Definition 7.3. (Least upper bound)
Let (A,C) be a poset and A" C A.

1. a € A is an upper bound of A" if and only if Va' € A’ : d' C a.
2. a € A'is a least upper bound (lub) of A’, written UA’, if and only if

(a) a is an upper bound of A" and
(b) Va" € A.a" is an upper bound of A" = o C a”.

The concepts of the lower bound of A’ C A, and the notion of greatest lower
bound, denoted MA’, can be defined similarly and are omitted here. Let (A, C)
be a poset.

Definition 7.4. (Complete lattice)
(A,C) is a complete lattice if for each A’ C A, UA" and MA’ do exist.

A complete lattice has a unique least element MA = 1 and a unique greatest
element LUIA = T.

Ezample 7.3.  Let S = {0,1,2} and consider (2°,C). It is not difficult to
check that for any two subsets of 2° a least upper bound and greatest lower
bound do exist. For instance, for {0,1} and {0,2} the lub is {0,1,2} and the
glb {0}. That is, the poset (2°,C) is a complete lattice where intersection and
union correspond to I and L. The least and greatest elements of this example
lattice are & and S, respectively. (End of example.)

Definition 7.5. (Monotonic function)
Function F' : A — A is monotonic if for each a,a’ € A we have a C
a' = F(a) C F(d).

Function F' is thus monotonic if it preserves the ordering C. For instance, the
function F(S) = S U {0} is monotonic on (2%, C), as for S’,S" € 2° we have
that F(S) C F(S") if 8" C S".

Definition 7.6. (Fixed point)
For function F : A — A, a € A is called a fized point of F if F(a) = a.

a is the least fixed point of F if for all ' € A such that F(a') = o’ we have
a C a'. The greatest fixed point of F is defined similarly.
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Theorem 7.1.
Every monotonic function over a complete lattice has a complete lattice of fixed
points.

Notice that the lattice of fixed points is in general different from the lattice
on which the monotonic function is defined. The following result is a direct
consequence of Kleene’s first recursion theorem [108].

Theorem 7.2.

Every monotonic function F over a complete lattice (A,C) has a unique least
fized point U;F'(L) and a unique greatest fized point M;F*(T). If A contains
n > 0 elements then

lfp(F) = uiFi(J_) = F”+1(J_) and gfp(F) — |—|in'(—|—) _ Fn+1(—|—)

The least fixed point of monotonic function F' on the complete lattice (A, C) can
thus be computed by the lub of the series L, F(L), F(F(L)),.... This series is
totally ordered under C, that is, F*(L) C F*T!(L) for all 5. This follows from
the fact that L T F(L), since L is the least element in the lattice, and the
fact that F'(L) C F(F(L)), since F' is monotonic. (In fact this second property
is the key step in a proof by induction that F*(1L) T F**!'(L).) The greatest
fixed point can be computed by the glb of the series T, F(T), F(F(T)),..., a
sequence that is totally ordered by F*1(T) C F*(T) for all 4.

In the sequel we are interested in monotonic functions on lattices of CTL-
formulae. Such functions are of particular interest to us, since each monotonic
function on a complete lattice has a unique least and greatest fixed point (cf.
Theorem 7.1). These fixed points can be easily computed (cf. Theorem 7.2) and
such computations form the key to the correctness of functions compSatEU and
compSatEG.

7.2.2 Fixed-point Characterization of CTL

The theoretical underpinning of the functions compSatEU and compSatEG is
based on a fixed point characterization of CTL-formulae. Here, the technique is
to characterize E (® U U) as the least (or greatest) fixed point of a function on
CTL-formulae, and to apply an iterative algorithm — suggested by Theorem 7.2
— to compute such fixed points. To do this basically two main issues need to be
resolved:

1. A complete lattice on CTL-formulae needs to be defined such that the
existence (and uniqueness) of least and greatest fixed points is guaranteed.
The basis of this lattice is a partial order relation on CTL-formulae.
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2. Monotonic functions on CTL-formulae have to be determined such that
E(®UT) and A(® U ) can be characterized as least (or greatest) fixed
points of these functions. For this purpose an axiomatization of CTL is
useful.

These ingredients will be treated in the rest of this section.

A Complete Lattice of CTL-formulae

The partial order C on CTL-formulae is defined by associating with each for-
mula ® the set of states in /C for which ® holds. Thus @ is identified with the
set

[e]={seS|KsE=2}.

(Strictly speaking [ ] is a function of K as well, i.e., [ ]k would be a more
correct notation, but since in all cases K is known from the context we omit
this subscript.) The order C is now defined by:

O C Vifand only if [@] C [V].

C thus corresponds to C, the well-known subset relation on sets. Notice that
[®] C [¥]isequivalent to ® = . Clearly, (2%, C) is a poset, and given that
for any two subsets S1,59 € 2581 N Sy and S; U Sy are defined, it follows
that it is a complete lattice. Here, N is the lower bound construction and U the
upper bound construction. The least element | in the lattice (2°,C) is @ and
the greatest element T equals S, the set of all states.

Since C directly corresponds to C, it follows that the poset (CTL,C) is a
complete lattice. The lower bound construction in this lattice is conjunction:

[e]n[¥]=[® A ¥]
and the upper bound corresponds to disjunction:
[PJU[¥]=[P Vv T].

Since the set of CTL-formulae is closed under conjunction and disjunction, it
follows that for any ® and ¥ their upper bound and lower bound do exist. The
least element L of the lattice (CTL,C) is false, since [false] = @, which is
the bottom element for 2°. Similarly, true is the greatest element in (CTL,C)
since [true] = S.
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CTL-formulae as Fixed Points

Recall from Chapter 6 (cf. Table 6.2) the expansion axiom:
E(QUY)=T Vv (& A EX(E(QUY)))

for existential until-formulae. It states that E(® U ¥) is valid if and only if ¥
is valid in the current state, or the current state satisfies ®, and one of its next
states satisfies E (® U ). The recursive nature of this expansion rule suggests
to consider the formula E (& U V) as a fixed point of the function F' that maps
CTL-formulae onto CTL-formulee, defined by:

F(z)=¥ Vv (& A EX2)

(For simplicity, we do not put ¥ and ® explicitly as parameters of F.) Tt
is straightforward to see that F'(E (® U V)) indeed equals E (® U V) using the
aforementioned expansion axiom.

The functions for the other temporal operators can be determined in a similar
way. In order to explain the model-checking algorithms in a more elegant and
compact way it is convenient to consider the set-theoretical counterpart of F
(this approach has been adopted from [102]). More precisely, [E(®U V)] is a
fixed point of the function Fry : 2° — 29, where F is defined by:

Fpu(2) =[Y] U ([®]1n {seS[R(s) N Z#}).

The following result shows that similar formulations can be obtained for the
other temporal operators:

Theorem 7.3.
For CTL-formulae ® and ¥ we have:

1. [E(@UW)] is the lfp of

Fpu(Z2) =[v] U ([®]n{secS[R(s)NZ#a})

- [A(@UW)] is the Ufp of Fau(Z) =[V] U ([®] N {seS|R(s) € Z})
. [EG®] is the gfp of Fra(Z) =[P N{seS|R(s)NZ#I}
. [AG®@] is the gfp of Fac(Z) =[®] N {s€ S| R(s) C Z}
. [EF®] is the ifp of FEp(Z) =[®J U {se€ S| R(s) N Z# 2}
. [AF®] is the lfp of Far(Z) =[®] U {s€ S| R(s) C Z}

(
(

S v ™. W

(
(

It is not difficult to check using the axioms of Table 6.2 (see page 131) that
for each case the CTL-formula is indeed a fixed point of the function indicated.
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To determine whether it is the least or greatest fixed point is slightly more
involved. Both proof obligations will be dealt with in the following.

Proof of a Fixed-Point Characterization

We illustrate the proof of Theorem 7.3 by checking the case for [E (® U V) ];
the proofs for the other cases are conducted in a similar way and are left to
the interested reader. The proof consists of two parts: we first prove that the
function Fpy(Z) is monotonic on (2%, C), and then we prove that [E (® U ¥)]
is the least fixed point of Fry.

Lemma 7.1. Function Fgy(Z) is monotonic on (2%, C).

Proof: Let Z1,Z, € 2° such that Z; C Z,. It must be proven that Fry(Z;) C
Fru(Zs). We derive:
Fry(Zh)
= { definition of Fgy }
[YJU (@] N{s€S|R(s)NZ £2})
C { Z1 C Zy; set calculus }
[¥]u (@] n{seS|R(s)NZ#2})
= { definition of Fgy }
Fru(Z2). et

This means that for any arbitrary ¥ and ® we have that Fpy(Z1) C Fpy(Z2),
and thus Fgy is monotonic on 2°. Given this result and the fact that (2%, C)
is a complete lattice, it follows by Theorem 7.1 that Fgy has a complete lattice
of fixed points, including a unique least and greatest fixed point.

Lemma 7.2. [E(®UW)] is the least fixed point of Fgy.

Proof: Recall that the least element of (2°,C) is @. From Theorem 7.2 and
the monotonicity of Fgy, it follows that the lfp of Fry equals Fg;;l(@) when
S consists of n+1 states. We now prove that

[E(@UY)] = Fpi' (@) by induction on n.

By definition we have F, (9) = @. For Fry (@) we derive:
FEU(Q)
= { definition of Fgry }
[VJu([@ln{seS|R(s)na#3})
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= { calculus }
[v]u (2] na)
= { calculus }

[v].

Thus Fgr (@) = [ V], the set of states that can reach [ ¥ ] in 0 steps. Now
Fiy(@)
= { definition of Fgry }
[w] U ([@] N {s€5|Rs) N Fro(@) £2))
= {Fpu(o)=[¥]}
[YTu([e]n{seS[R(s)Nn[¥]#2}).

Thus Fry(Fru(9)) is the set of states that can reach [¥] along a path of
length at most one (while traversing [ ®]). By mathematical induction it can
be proven that FEJ&I(Q) is the set of states that can reach [ V] along a path
through [ ®] of length at most k. But since this holds for any k& we have:

[E(@UD)]
= { by the above reasoning }
Uk>o FitH (o)
= { Fip(2) C Fyy (2) }
FiY (o). ged.

Verifying EU and EG

What do these results mean for CTL model checking? We discuss this by means
of an example. Consider ¢ = E(® U V). Since [E(® U ¥)] is the lfp of

Fpo(Z) =[] U ([2] N {s€S|R(s) N Z#2))

the problem of computing Sat(y) boils down to computing the fixed point
of Fgy, which is equal to |, Fir(9). U; Fiy(9) is computed by means of
iteration: &, Fpy(9), Fru(Fru(9)),.... This computation will terminate as,
by Theorem 7.2, there exists some £ such that Fg"U'l(Q) = FE,(@). Then,

Fitt (@) = U, Fip(2).

Intuitively, this iterative procedure can be understood as follows: one starts
with no state. This corresponds to the approximation for which the formula is
nowhere valid, i.e. F; (@) = @. Then we consider Fj;; () which reduces to
[U] (see proof above), and consider all states for which ¥ holds. In the next
iteration we consider F;;(@) and continue in this way until the fixed point
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FLI‘,%U(Q) is reached for some k. This is precisely what the function compSatEU
does. At the beginning of the (i+1)-th iteration we have as an invariant now =
FEFUI(Q) and pre = Fi;;(9). The iterations end when now = pre, that is, when
Fioi (9) = Fiyyy(9).

For EG®, which — in contrast to E(®U¥) — is a greatest fixed point, the
procedure is slightly different. Recall that

Fra(Z)=[2]Nn{seS|R(s)NZ#2}

Greatest fixed points are equal to (), F;(S), which is computed iteratively by
S, FEg(S), FEg(FEg(S)), ... where S D FEg(S) D) FEg(FEg(S)) D .... Intu-
itively, this means that one starts by considering all states and then successively
shrinks the set of states of interest in an iterative manner until the required set
[EG®] is obtained. The initial step corresponds to setting Fo.(S) = S. We
then consider Fi,(S) which equals

[8] N {s €S| R(s) N FRa(S) £ 2}

that is, [®]. In the next iteration, Fz,(S) is determined, i.e., the set of states
from which a path consisting of W-states of length at most one does exist:

[®] N {seS|R(s) n[2]#2)

The set F%(S) characterises the set of states from which a path consisting of
®-states of length at most ¢ does exist. This process continues until the unique
fixed point [EG @] is reached. This is precisely what the function compSatEG
does.

Ezxample 7.4. Consider again the Kripke structure of Figure 7.1. We illustrate
the computation of [EF ((p =) A (p # q))]. This computation is identical to
compSatEU except that Sat(®) equals the entire state space S. The series &,
Frpp(9), FEp(Fpr(9)), ... is computed until o fived point is reached. According
to Theorem 7.5:

Fiii2)=[p=r)Ap£q) ] U{s€S|R(s) N Fyu(Z) £}

We start the computation by:

Fpr(@)=[(p=r)Ap#Q]U{seS|R(s)NS#T}={s4,35}

This corresponds to the situation just before starting the first iteration in the
algorithm compSatEU, cf. Figure 7.2(a). For the second iteration we obtain

= { definition of Fgr }
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[(p=r)Ap#Q] U {scS|R(s) N Fpr(2) # 2}
= {Fer(@) ={ss,s5}=[p=r)Ap#q]}
{s4,85} U{s€S|R(s) N {s4,85} #D}
= { s4 has predecessor { s¢ }; s5 has no predecessors }

{s4,85} U {s6}

= { set theory }

{343 55,56 }

The states that are now colored are those states from which a state satisfying
(p = r)A(p # q) can be reached via a path of length at most one, cf. Fig-
ure 7.2(b).

This result and the fact that the direct predecessors of { s4, S5, 8¢ } are { s¢,s7 },
yields for the next iteration:

Fg'F(Q):{S4,S5} U {36787}:{84735786757}

Intuitively, the state sy is considered in the second iteration since it can reach
a state satisfying (p =) A (p # q) via a path of length two, cf. Figure 7.2(c).

Since there are no other states in IC that can reach such a state, the computation
18 finished. This can be checked formally by computing FéF(Q). The interested
reader can check that indeed Fgn(@) = Fp (D), that is, a fized point has been
reached, cf. Figure 7.2(d). (End of example.)

7.3 On Efficiency

The time complexity of model checking CTL is determined as follows. Assume
that we have a Kripke structure IC = (S, R, L) with N states and M transitions,
i.e., | S| =N and |R| = M. Note that M equals N? in the worst case when
each state has a transition to any other state.

From the simple recursive structure of the main algorithm compSat it follows
that Sat is computed for each sub-formula of @, i.e., | Sub(®)| times. As the
size of Sub(®) is defined as the length of ®, the worst-case time-complexity of
compSat is linear in the size of the CTL-formula ®. The time complexity of
the algorithm compSatEU is determined as follows. N iterations are needed
in worst case, adding a single state to the set now per iteration. To determine
the new value of now, all transitions in R are considered in each iteration. The
time per iteration is thus O(M+N). For the algorithm compSatEU a similar
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reasoning applies. To summarise, the worst-case time-complexity of compSat is
O(®|-N-(N+ M))

Stated in words, our first algorithm for model-checking a CTL-formula is quadra-
tic in the size of the Kripke structure.

7.3.1 An Efficiency Improvement

This time complexity can be reduced by a factor N by following some more
direct, and efficient, procedures for checking EG and EU. Let us first consider
compSatEU. Our first obervation is that it suffices to consider in each iteration
only those states that are added to pre in the previous iteration, and consider
their direct predecessors. By doing so, all incoming transitions of all states
are checked exactly once. In order to make this more explicit, let us add a
variable diff to the algorithm compSatEU of Table 7.2 that keeps track of the set-
difference between now and pre. This yields the algorithm depicted in Table 7.4.
It is not difficult to see that this algorithm computes exactly Sat(E (U ¥)).
By this modification it is prevented to consider the predecessors of a state more
than once. This corresponds to a “backward” breadth-first search of the Kripke
structure under consideration.

function compSatEU, g (®, ¥ : Formula) : set of State;
(* pre: ® and ¥ are base CTL-formulae *)
begin var diff, now, pre, satphi : set of State;
now, pre, satphi := compSat(¥), @, compSat(®);
diff := now — pre;
while diff # @
do pre := now;
now:=pre U ({s| R(s) N diff # @ } N satphi);
diff := now — pre;
od;
return now;
(* post: compSatEU 4(®,¥) ={s€ S|sEE(QUY)} ¥
end

Table 7.4: Revised algorithm to determine the states satisfying E (® U ¥)

Secondly, an alternative, more direct approach is taken for compSatEG. The
concept behind this variant is to check EG® in state s of K = (S, R, L) as
follows:

1. First, consider only states that satisfy ®, eliminate all other states, and
delete all transitions to these eliminated states. This yields a subgraph of
K only consisting of ®-states: K is reduced to K[®] = (S, R, I', L") with
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S' = Sat(®), R = RN (8 x8), I'=InNS5, and L'(s) = L(s) for all
states s € S’, and undefined otherwise. The justification of this step is
that all removed states will not satisfy EG ® — as they do not satisfy ®
themselves — and thus can safely be ignored.

2. Then, determine all non-trivial strongly connected components (SCCs) *
in the graph induced by K[®], i.e., the directed graph with set of vertices
S’ and edges R'. All states in each of such SCC satisfy EG @, as any state
is reachable from any other state, and — by construction — all states satisfy
D,

3. Finally, check whether there is such non-trivial SCC that is reachable
from state s in K[®]. If state s belongs to the reduced model and there
exists such a path then — by construction of K[®] — the property EG ®
is satisfied; otherwise, it is not. This search can be done in a backward
manner.

The resulting algorithm is presented in Table 7.5. Here, the algorithm to com-
pute K[®] is left implicit; it is left to the reader to give an algorithm that
computes this structure with a time complexity that is linear in the size of K.
The algorithm determineSCC computes the set of non-trivial SCCs of the graph
induced by K[®]. This rather standard graph algorithm is based on a depth-
first search and is omitted here (see, for instance [58]). It runs in O(N + M).
In the outermost iteration a backward search is performed starting from the
states in Sat(®). In the innermost iteration all ®-states that are predecessors
of some selected state s € now are added to now and sateg provided they have
not found before. The algorithm terminates if now is empty, indicating that
the backward search has visited all states.

Ezxample 7.5.  Again consider the Kripke structure of Figure 7.1 and formula
EGq. Its reduction Klq] consists of the four states that are labeled with q, cf.
the gray states in Figure 7.4(a). The only non-trivial SCC of this structure is
indicated by the black states, i.e., the states in the set sateg, in Figure 7.4(b). In
the first outermost iteration state s (the uppermost black state) is considered.
Accordingly, its q-predecessor sy is added to now and sateg. As the remain-
ing states in now, state so and s4, have no g-predecessors, in the subsequent
iterations no new states are added to now and the computation finishes, cf. Fig-
ure 7.4(c). (End of
example.)

The correctness of the above algorithm is based on the following result:

! A strongly connected component (SCC) of a directed graph G is a maximal, connected
subgraph of G. Stated differently, the SCCs of a graph are the equivalence classes of vertices
under the “are mutually reachable” relation. A non-trivial SCC is an SCC that contains at
least one transition.
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function compSatEG 4 (® : Formula) : set of State;
(* pre: @ is a base CTL-formula *)
begin var now, sateg, satphi : set of State;
S’ : set of (set of State);
satphi := compSat(P);
for each S’ € determineSCC(K[®])
do now, sateg := now U S’,sateg U S'; od;
while now # &
do choose s € now;
now := now — { s };
for each s’ € satphi N R™1(s)
do if s’ ¢ sateg
then now, sateg:= now U { s’ },sateg U {s'};
od;
od;

return sateg;
(* post: compSatEG,.4(®) ={s€ S|s FEG®} ¥

end

Table 7.5: Revised algorithm to determine the states satisfying EG ®

Theorem 7.4.
For state s in Kripke structure K and CTL-formula ® we have: s = EG ® if and
only if s € K[®] and there exists a non-trivial SCC in K[®] reachable from s.

Proof: “if”: suppose s = EG ®. Clearly, s € K[®], as s = EG® implies s = ®.
Let o be a path in I that starts in s such that ® holds along o; o is thus also a
path in K[®]. As K is finite, o has a suffix p = s, ... s, for £ > 1, representing
a cycle that is traversed infinitely often. As o is also a path in K[®], the states
s1 through s are all in IC[®]. Since p is traversed infinitely often, it represents
a cycle, and thus, any pair of states s; and s; is mutually reachable. Stated
differently, { s1,...,s } is either an SCC or contained in some SCC in K[®].
As o is a path starting in s, these states are reachable from s.

(a) (b)

()

Figure 7.4: Example of running algorithm compSatEG . (q)
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“only if”: suppose s € I[®] and there exists an SCC in K[®] reachable from s.
Let s’ be a state in such SCC. As the SCC is non-trivial, s’ is reachable from
itself by a sequence of length at least one. Let p be such path. By construction
p |E G®. The path from s to s’ followed by p now satisfies G ® and starts in s.
Thus, s = EG ®. qged.

7.3.2 Time Complexity

The time complexity of the revised algorithms is in O(N+M). Thus, we con-
clude that:

Theorem 7.5.

For Kripke structure K = (S, 1, R, Label) with |S| = N and |R| = M, and
CTL state-formula @, the worst-case time-complexity of the model checking
algorithm compSat.g is O (| @ |-(N+M)).

So, the time complexity of model-checking CTL is linear in the length of the
formula and linear in the size (i.e., number of states and transitions) of the
Kripke structure.

Let us compare this complexity bound with PLTL model checking, cf. Chapter
5. Recall that model checking PLTL is exponential in the size of the formula.
Although the difference in time complexity with respect to the length of the
formula seems drastic, a few remarks on this are in order. First, formulae in
PLTL are never longer than, and mostly shorter than, their equivalent formu-
lation in CTL. This follows directly from the fact that for formulae that can
be translated from CTL into PLTL, the PLTL-equivalent formula is obtained
by removing all path quantifiers, and as a result is (usually) shorter (see Chap-
ter 6). In fact, for each Kripke structure & there does exist a PLTL-formula &
such that any CTL-formula - if any — equivalent to E ® (or A ®) has exponential
length! This is nicely illustrated by the following example, which we adopted
from [113].

In summary, for a property that can be specified in both CTL and PLTL, the
shortest possible formulation in PLTL is never longer than the CTL-formula,
and can even be exponentially shorter. Thus, the “advantage” that CTL model
checking is linear in the length of the formula, whereas PLTL model checking
is exponential in the length, is diminished (or even completely eliminated) by
the fact that a given property needs a (much) longer formulation in CTL than
in PLTL.

Ezxample 7.6. Consider the NP-complete problem of finding o Hamiltonian
path in an arbitrary, connected, directed graph G = (V, E) where V denotes
the set of vertices and E C V. x V, the set of edges. Let V. = {wvy,...,v, }.
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A Hamiltonian path is a (finite) path through the graph which visits each state
exactly once and returns in the initial state. (It is a travelling salesman problem
where the cost of traversing an edge is the same for all edges.)

We first describe the Hamiltonian path problem in PLTL. To that purpose, graph
G is transformed into Kripke structure Kg = (S, 1, R, Label) with for 0 <i < n
and atomic propositions p; and q:

state space S =V U {w}, forw gV

initial states I =V

transitions R=F U (S x {w})

labelling Label(v;) = { p; } and Label(w) = {q}.

All vertices of G are states in the Kripke structure. A new state w is introduced,
uniquely identified by atomic proposition q, that is a direct successor of any state
(including w itself). Figure 7.5 shows this construction for (a) an example
directed graph; the resulting Kripke structure is depicted in Figure 7.5(b).

(b)

Figure 7.5: Encoding the Hamiltonian path problem in a Kripke structure

The existence of a Hamiltonian path in a graph can now, for instance, be for-
mulated in PLTL as follows?:

E((FpiA... AFpp) A X"q).

where X°q = q and X*1q = X (X*q) for k > 0. This formula is valid in each
state from which a path starts that fulfills each atomic proposition once. This
corresponds to wvisiting each state v; once (and w infinitely often). Note that
each path satisfying (FpoA ... AFpp) AX"q has a suffix w*, by construction

2This is not a well-formed PLTL-formula since the path quantifier E is not part of PLTL.
However, for E®, where ¢ does not contain any path quantifiers (as in this example) we
can take the equivalent = A = ® where A = ® is a well-formed PLTL-formula according to
Table 6.3.
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of K. The length of the above formula is linear in the number of vertices in
the graph. Graph G contains a Hamiltonian path if and only if oll initial states
of Ka satisfy the PLTL-formula indicated above.

The Hamiltonian path problem can formulated in CTL in the following way.
We start by constructing a CTL-formula g(p1,...,pn) which is valid when there
exists a path from the current state that visits the states for which py...p, is
valid in this order:

g(P1,--,pn) =p1 A EX(p2 A EX(... A EXpy)...).

Because of the branching interpretation of CTL, a formulation of the Hamil-
tonion path problem in CTL requires an explicit enumeration of all possible
Hamiltonian paths. Let I, be the set of permutations on {1,...,n}. There ex-
ists a Hamiltonian path in graph G if and only if all initial states of Kq satisfy
the CTL-formula:

(30 € 1L,,. g(pg, > - - -»pa,)) N (EX)"q.

By the explicit enumeration of all possible permutations we obtain a formula
with a length that is exponential in the number of vertices in the graph.

This does not prove that there does not exist an equivalent, but shorter, C'TL-
formula which describes the Hamiltonion tour problem. However, if a formula
of polynomial length would exist, then we were able to solve an NP-complete
problem in polynomial time, as verifying a CTL-formula takes polynomial time.

(End of example.)

7.4 Model Checking Fair CTL

In order to be able to ignore certain “unrealistic” computations, CTL may be
interpreted with respect to a fair Kripke structure. Recall from Chapter 6 that:

Definition 7.7. (Fair Kripke structure)
A fair Kripke structure is a quadruple K = (S, I, R, Label, F) where (S, I, R,
Label) is a Kripke structure and F C 25 is a set of fairness constraints.

Fairness conditions are thus simply sets of states. A path is fair if and only
if each set of states F; € F is visited infinitely often. Note that the notion of
fairness depends on the chosen sets F;. As F will be clear from the context, we
do not make this dependency explicit in the notations, e.g., we simple write /C
rather than Cr.
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In fair CTL, the formulas are interpreted over all fair paths rather than over
all possible paths. Paths that do not visit some F; infinitely often are thus not
considered for the validity of the formula under consideration. How should we
adapt compSat and its sub-procedures to model-check fair CTL? First, observe
that for all propositional operators, the fair interpretation coincides with the
ordinary semantics of CTL. So, for these operators no modifications have to be
made to the earlier algorithms. The fair interpretations of EX and EU can be
obtained in the following way:

Ef(@U VD) E(®U (¥ A E4G true))

E;X® = EX(® A E;G true)

Here, E; denotes an existential path quantification over fair paths. These equa-
tions can be justified by the fact that a finite path is fair if and only if any
suffix of it is fair. This fact is used in the second equation by adding the
conjunct E;Gtrue, thus requiring that the remaining path after establishing ®
goes infinitely often through the sets in F. A similar construction is used in the
first equation. Due to these equations, formulae Ef(® U ¥) and E;X® can be
checked using the same approach as before given a procedure for dealing with
E;G .

The algorithm to treat the fair counterpart of EG @ is based on the direct, more
efficient, algorithm treated before (cf. Table 7.5). Accordingly, the structure
K[®] is constructed, and the SCCs of its induced graph are determined. The
fairness sets F' in K[®] are defined as { F; N S’ | F; € F} where S’ is the set
of states in K satisfying ®. The only difference is that the SCCs that do not
contain some state in Fj, for some F;, need to be ignored, as within such SCCs
no fair paths will occur. The algorithm determineSCC therefore is followed by
a procedure that rules out the unfair SCCs. (This simple procedure can, of
course, also be integrated with determineSCC.) Checking whether a given SCC
is fair can be done in time that is proportional to the size of the SCC. For the
remaining fair SCCs a backward search is carried out to determine all states
for which such fair SCC is reachable.

The correctness of this algorithm follows from the following result:

Theorem 7.6.

For state s in fair Kripke structure IC and CTL-formula ® we have: s = E;G®
if and only if s € KC[®] and there exists a non-trivial fair SCC in K[®] reachable
from s.

Proof: Similar to the proof of Theorem 7.4 by exploiting the fact that a path
is fair if and only if it has a fair suffix. qged.

The thus obtained procedure to check fair CTL, compfairSat, has the following
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time complexity:

Theorem 7.7.

For fair Kripke structure K = (S, R, I,Label, F) with |S| = N, |R| = M
and | F| = K, and CTL state-formula ®, the worst-case time-complezity of the
model checking algorithm compfairSat.g is O (| @ |-K-(N+M)).

So model-checking fair CTL is K times more expensive than model checking
CTL, where K is the number of fairness constraints. The worst-case complexity,
however, is still linear in both the length of the formula and the size of the
Kripke structure.

7.5 Generating Counterexamples

A major strength of model checking is the generation of counterexamples in
case a formula is refuted. In this section, we discuss a method to generate
counterexamples for fair CTL model checking.

A counterexample is intended to be a (finite or infinite) sequence of states that
indicates why the formula under consideration is refuted. For instance, consider
the formula AGp in the initial state of our running example. This formula is
refuted, and a possible counterexample is s; s3 sg s2 as depicted in Figure 7.6,
since p does not hold in state so. Note that this is a prefix of a path satisfying
- AGp, i.e., EF = p. For formulae of the form AG ®, a counterexample is thus a
sequence that leads to a state for which = ® holds. Similarly, a counterexample
to AX® is a sequence satisfying EX = ®. A counterexample to A(®U ) is a
witness to E(= U U (= (® vV ¥)) V EG = V. In general, a counterexample to a
universally quantified formula is a witness to an existentially quantified formula.
Note that for formulae of the form E ¢ it is impossible to generate sequences
as counterexamples in case the verification fails: E ¢ is refuted if and only if
there is no path that satisfies ¢. However, in case of a successful verification, a
witness for E ¢ can be returned.

The remaining part of this section is devoted to the generation of witnesses for
EG ®. This will be presented for fair CTL, where it is assumed that the fairness
constraints F = { Fy,..., Fy } with & > 0. Since EX- and EU-formulae are
defined in terms of E;Gtrue, the algorithm to determine witnesses for E;G ®
can be extended in a rather straightfoward way so as to generate witness for
EX and EU. A witness for s |= EfG® is a fair path o starting in s such that
® holds in any state along o. As the path is fair, each accept set Fj is visited
infinitely often. Since Kripke structures are finite, paths have a finite prefix
followed by a repetitive finite sequence, representing the (infinite) traversal of
a cycle. This allows witnesses to be represented in a finite way.
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{p,r}

Y {pq}

Figure 7.6: A counterexample for AG p

Ezxample 7.7.  Consider again our running example, cf. Figure 7.1, and as-
sume there is a single accept set Fy = {s3 }. This corresponds to imposing the
fairnes constraint —(q V r). Example witnesses for E;G (p V (¢ = r)) under
this fairness constraint are, for instance, (s1 s3 so s2.1)¥ and (s1 s3 (sg s2)* s1)“.
Although path sy s3 (s s2) satisfies EfG(p V (g =r7)), it is not a legal witness
as it is not fair. (End of example.)

For a given formula E;G ® there may exist several witnesses. Preferably, the
shortest witness is provided as feedback to the user. However, the problem of
finding the shortest witness for a simple formula like E;G true is NP-complete,
and therefore witnesses will be constructed that are short, but not guaranteed
of minimal length. (Recall that for PLTL model checking shortest counterex-
amples can be generated by using a breadth-first search.)

A witness for s |= E;G® is incrementally constructed by successively adding
states to a finite sequence of states. This process starts with the sequence
consisting of state s only, and terminates until a cycle is entirely visited. During
this path construction it must be ensured that a fair path results. This is
guaranteed by only adding states that satisfy E;G ®. The foundations of this
step-by-step construction of the witness are laid down by the following fixed-
point characterisation. [E;G @] is the gfp of the following function:

Fg,6(2) =[®] 0 {s]|¥0 <i<k.R(s) N [E(@Uatsnr)] # 2}

where atgs for set of states S’ is an atomic proposition that holds in any state in
S" and nowhere else; atgs thus represents the set S’. Note that [E (® U atznr,) ]
is characterised as an Ilfp (cf. Theorem 7.3), so [E;G®] is characterised as a
nested greatest fixed point. Intuitively, E;G ® holds in state s if s satisfies ®
and there exists a path starting in s on which ® always holds and for which
each Fj is visited infinitely often.

Let us consider the computation of [EfG®] in more detail. The first ob-
servation is that [E(®Uatzng,)] for fairness constraint F; can be iteratively
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computed using the earlier presented algorithm compSatEU. This yields a se-
quence of approximations BY, B}, BZ,... with B C Bgﬂ where B! is the
set of states from which a state in Z N F; can be reached in at most n steps
while satisfying ®. In the last iteration of the outermost gfp, i.e., when Z
equals [E;G @], the sequence of approximations B; is stored for each fairness

constraint Fj. This is the starting-point for the computation of the witness.

Suppose state s = E;G ®. Due to the fixed-point characterisation given above,
s has some direct successor in [E(®Uatzng,)] for each 0 < ¢ < k. In order
to obtain a short witness, we choose the first fairness constraint that can be
reached from s. More precisely, fairnes constraint F; is considered where i is
such that

n; =min{k | R(s) N B' # @ } (7.1)

is minimal. Suppose state s; € R(s) N Bj*. Since s; € B}’ and B} is an
under-approximation of the set of states [E(® U ((EfG®)Aatp,)], it follows
that starting from s; there exists a ®-path to a state in [(E;G®) Aatp, ] (of
length at most n). By the selection of 7 as the minimal one satisfying (7.1), s;
(and also s) has the shortest path to a state in the accept set F;. As s; is a
successor of s in the witness for E;G @, it follows that s; = EfG ®.

The witness constructed so far is s s;...1;, where s is the state we started, s; is
a direct successor of s in B}, and ¢; is a state in Fj. In the next step, the states
inbetween s; and ¢; need to be determined. This is done in the following way.
Let n > 0 (otherwise states s; and t; coincide). By construction, there exists
a direct successor of s; in Bf‘fl. Accordingly, we arbitrarily select one of the
states in the set R(s;) N BI""'. This procedure is repeated for B2, until BY
is reached, i.e., the state in F; is reached. As a result, the witness constructed
uptil now has the form

7.'L71 n72 0
13 (3 0

.S,

)

n
S8,

S S

where s/ is a state in R*7+!(s) N B! (note that s7 = s; and 0 = #; € F}).
Recall that R%(s) = s and R/*1(s) = R(R/(s)) for 7 > 0. The prefix of the
witness thus leads to a state in the accept set Fj. In order to deal with the other
fairness constraints, the above procedure has to be repeated for the remaining
fairness constraints, until all of them are treated. If we order the fairness
constraints according to the order in which they are encountered during the

above described process, the witness p so far is of the following form:

_ ni 0 n2 0 Ng 0
P=S S ...8 Sy" ...85 ... S ...
constraint I, constraint I constraint Fy,

The last step in completing the witness is to construct a cycle from the final
state of the witness constructed so far (i.e., s9) to s]* along which ® holds. In



172 Model-Checking CTL

this way, it is guaranteed that the witness visits each accept set F; infinitely
often, and thus the witness is a fair path (as required). How to find a ®-path
from the final state of p to its second state? For simplicity, let start denote a
proposition that is valid in s} and nowhere else, and end denote a proposition
true only in state 32. Finding the required cycle thus amounts to constructing
a witness for the formula:

end N EXE (® U start)
Now there are two possible scenarios: the start- and end-state belong to the
same SCC in K[®], or not. In the former case, there exists a path from the end-

to the start-state along which ® holds, and this path can be used to close the
cycle, i.e., to complete the witness p.

Ezxample 7.8.  Consider the Kripke structure depicted in Figure 7.7 with the

Figure 7.7: An example Kripke structure

fairness constraints Fy = { sa2 } and Fy = {s4 }. Suppose we want to generate a
witness for EG true in state so. The process starts in state sg, cf. Figure 7.8(a).
For the outermost fized-point computation we have:

FE G5(8)=[true] N {5 | R(s) N [EFaty, ] N [EF at, ]}

In fact, we have FO = F', so we have reached the fized point after a single
iteration. For [EF ats, ]| we obtain the series BY = @, Bl = {s2}, B? =
{s1,80} B} = {s0,51,52,54 }, etc. Note that the first time a direct successor
of so is “reached” is in B%, i.e., ni(so) = 2. Similarly, for [EF ats, ] the series
BY = @, Bl = {s4}, B2 = {53,814}, B3 = {51,52,53,54}, and so on, is
obtained. The first time a direct successor of so is “reached” is in Bj, i.e.,
na(sg) = 3. As ni(sg) = 2 and na(sg) = 3, the fairness constraint Fy is
“reached” first, and the finite sequence sg s1 so is considered as prefiz of the
witness, cf. Figure 7.8(b).

In order to treat fairness constraint Fs, the above procedure is repeated for
state so, the final state of the witness so far. As a direct successor of state
sy is encountered in the second iteration (i.e., R(sy) N B2 # @) — formally
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no(se) = 2 — the witness is now extended to sg sy S2 83 S4, cf. Figure 7.8(c).
This prefiz visits each fairness constraint at least once.

Finally, a loop is to be constructed from s4 to sy. Since these states belong to
the same SCC, a path within this SCC can be chosen, e.g. s4s1. The complete
witness for EG true in state so is thus sg (s1 82 83 54)%, ¢f. Figure 7.8(d). Note
that this is the shortest counterexample. (End of example.)

Figure 7.8: Step-wise generation of a witness for EG true

If the start- and end-state do not belong to the same SCC, a somewhat more
involved approach is taken. The basis of the remaining approach is the so-called
condensation graph of IC[®]. Such graphs are defined as follows:

Definition 7.8. (Condensation graph)

Let Si,...,Sm, be the set of SCCs of the induced graph of Kripke structure
K = (S,I,R, Label), i.e., G = (S,R). The condensation graph G is the
directed graph with the set of vertices vy, ..., v, such that there is an edge
between v; and v; if and only if ¢ # j and there is an edge in G between some
state in S; and soem state in S;.

In other words, all states in SCC S; are condensed into a single vertex wv;.
It is not difficult to see that condensation graphs are directed acyclic graphs;
otherwise the SCCS are not maximal sub-graphs. In addition, cycles present in
the Kripke structure are contained in an SCC, and therefore, represented by a
single vertex in the condensation graph.

Ezample 7.9. Suppose we add the edge from state s4 to state ss to Figure
7.1. The condensation graph of the resulting Kripke structure consists of two
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vertices: v = { Sp, $1, 82,83 } and w = { s4, S5, S¢,S7 } and a single edge from w
to v. (End of example.)

If the end- and start-state are not in the same SCC, we “descend” in the con-
densation graph of K[®], i.e., we jump from one SCC to the next. In this way,
one eventually either encounters a cycle in some SCC, or ends up in the ter-
minal SCC, i.e., an SCC that cannot be left anymore once entered. Note that
such terminal SCC is guaranteed to exist as the condensation graph is acyclic.
As this last SCC is terminal, it is ensured that it contains a fair ®-cycle.

Only having considered all fairness constraints, it is checked whether there
exists a path leading back to state start. If the SCC is left already before
the last fairness constraint is satisfied, it is impossible to complete the cycle.
To that end, the set of states [ E (EG ® U start) ] is determined once the start-
state is encountered. On leaving this set during the witness construction, it is
known that the cycle cannot be completed, and the entire witness construction
is repeated in the first state that is outside the SCC. The already constructed
prefix to that state is to be retained as finally a witness for the original state s
has to be returned.

7.6 CTL* model checking

Recall that CTL* contains both CTL and PLTL (cf. Chapter 6), that is to say,
for each CTL- or PLTL-formula there exists an equivalent CTL* formula. In
fact, CTL" contains even more: it can express formulae that can neither be ex-
pressed in PLTL nor in CTL. Interestingly enough, a model-checking algorithm
for this logic can be obtained by incorporating a model-checking algorithm for
PLTL into the bottom-up tree traversal procedure & la CTL. In order to ex-
plain the basic concept behind this elegant combination of two model-checking
algorithms, let us recall the syntax of CTL*:

state-formulas <I>:::p| - ‘ OJRVAR Y ‘ Eo | Ap

path-formulas ¢ =@ | i | oV p | X ‘ eUp

Whereas in CTL each linear temporal operator such as X and U must be imme-
diately preceded by a path quantifier, CTL* allows for path quantifiers E and
A to be arbitrarily nested with these operators. Since for CTL* the following
equivalence holds:

A(pE -E-®

it suffices to consider an algorithm for E .
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Like for CTL, the model-checking algorithm for CTL* is based on a bottom-up
traversal of the parse tree of the formula to be checked. Suppose that during
this process we encouter a formula of the form E¢. If Ep is a legal CTL-
formula, the model-checking procedure for CTL is simply applied. Otherwise,
the PLTL model-checking algorithm is used. As ¢ is not guaranteed to be
an PLTL-formula, the model-checking algorithm for PLTL cannot be directly
applied. To that end, a preprocessing of ¢ is performed.

To understand this preprocessing phase, let us introduce the following concepts.
Recall that Sub(®) denotes the set of sub-formulae of ®.3 A sub-formula of ®
is a proper sub-formula if it is a sub-formula different from ®. The set of
proper sub-formulas of ® is thus simply Sub(®) —{ ® }. A sub-formula is called
mazimal if it is not a proper sub-formula of another sub-formula.

Ezample 7.10.  Consider the CTL*-formula E p with ¢ = p AE(qUEXr). The
proper sub-formulae of ¢ are EXr, E(qUEXT) and the atomic propositions.
The path-formula qUEXr is not a sub-formula. E (qUEXr) is a mazimal sub-
formula, whereas EXr is not. (End of
example.)

We now return to model-check E . Due to the bottom-up nature of the al-
gorithm, the states in which any of the (state) sub-formulas of ¢ holds, are
known. This holds in particular for the proper sub-formulae of the form E ¢’.
The basic concept is to replace all maximal sub-formula of E ¢ of this form, say
Epi,...,Epk, by “fresh” atomic propositions, p1,...,pg, say. These proposi-
tions do not occur in ¢ and are such that p; holds in state s if and only if E p;
holds in s. For instance, applying this recipe on E ¢ with ¢ = pAE(qUEXr)
yields E (pAp1). The resulting formula is a PLTL-formula and is fed into a
model-checking algorithm for PLTL. (Recall that Ep = — A -, which is a
PLTL-formula, cf. the alternative syntax of PLTL in Chapter 6). Assuming
that this algorithm returns the set of states in which the formula holds, this
finishes the verification of E . The resulting algorithm is depicted in Table 7.6.

Theorem 7.8.
For Kripke structure IC = (S, R, I, Label) with | S| = N and |R| = M, CTL*
state-formula ® can be model-checked with a time complexity in O (| d |-2N).

3This notion was defined for CTL, but can easily be adapted to CTL*.
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function compSatE (¢ : Formula) : set of State;
(* pre: ¢ is a CTL* path-formula *)
begin if Ep € CTL then return compSat, g (E ¢);
for each maximal sub-formula E ¢; of E¢p
do replace p; by p; in E p;
Sat(p;) := Sat(E ;);
od;
(* let Ep* be the resulting formula *)
return PLTLchecker(E ¢*);
(* post: compSatE(p) ={se€S|sEEp}*)
end

Table 7.6: Algorithm to determine the states satisfying CTL*-formula E ¢

7.7 Bibliographic Notes

CTL model checking. The first algorithms for CTL model checking were pre-
sented by Clarke and Emerson [46] and (for a logic similar to CTL) by Queille
and Sifakis [155], both in 1981. The algorithm by Clarke and Emerson was
polynomial in both the size of the Kripke structure and the length of the for-
mula, and could handle fairness. Clarke, Emerson and Sistla [47] presented an
efficiency improvement using the detection of strongly connected components
and backwards breadth-first search, yielding an algorithm that is linear in both
the size of the Kripke structure and the length of the formula. CTL model
checking based on a forward search has been proposed by Iwashita, Nakata and
Hirose [104]. Emerson and Lei [72] showed that CTL*, that combines PLTL
and CTL, can be checked with essentially the same complexity as PLTL using a
combination of the algorithms for PLTL and CTL. The same authors consider
in [71] CTL model checking under a broad class of fairness assumptions. Practi-
cal aspects of CTL* model checking have been reported by Bhat, Cleaveland and
Grumberg [23], and more recently, by Visser and Barringer [184]. Cleaveland
and Steffen [56] have shown that the alternation-free fragment of the p-calculus
— which is more expressive than CTL — can be checked with the same com-
plexity as CTL, so linear in the size of the formula and the Kripke structure.
Alternative algorithms for this logic have been proposed by, amongst others,
Andersen [11]. Algorithms for generating counterexamples and witnesses origi-
nate from the works by Clarke et al. [50] and Hojati, Brayton and Kurshan [94].
More recent developments are the use of satisfiability solvers to find counterex-
amples up to certain length, as proposed by Clarke et al. [44], and the use of
tree-like counterexamples as opposed to linear ones by Clarke et al. [51].

Global versus local model checking. The algorithms presented in this chapter
compute for a given formula ® the set of all states that satisfy ® in a bottom-up
manner. To do so, in all states all sub-formulae are checked. In this so-called
global model-checking approach, some states may be checked unnecessarily for
some sub-formulae. Alternatively, one could check whether ® holds in one par-
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ticular state, s say. Such local approach typically is pursued in a top-down
manner by evaluating only those sub-formulae that are needed. | This avoids
exploring the parts of the Kripke structure which are irrelevant for the formula
to be checked. Local model-checking algorithms for CTL have first been pro-
posed by Vergauwen and Levi [183] and has later been pursued by Heljanko [90].
The worst-case time complexity of local model checking is identical to global
model checking.

Automata-based CTL model checking. An alternative model-checking approach
for CTL is to use automata over infinite trees (4 la automata over infinite
words for PLTL). Thomas [174] gives a thorough account on the relationship
between CTL and w-regular languages. Any CTL-formula can be transformed
into an automaton over infinite trees, but the size of the resulting automaton
is exponential in the length of the formula, yielding a much more inefficient
algorithm than the fixed-point computation presented in this chapter. Recent
work by Kupferman, Vardi and Wolper [114] significantly improved this situa-
tion by using (weak) alternating tree automata. Such tree automata generalise
nondeterministic tree automata by allowing several successor states to go down
along the same branch of the tree. Based on results of Muller, Saoudi and
Schupp [142], it is shown that the translation of CTL-formulae into alternating
tree automata is linear in the size of the formula. The space complexity of
their algorithm is poly-logarithmic in the size of the Kripke structure. This ap-
proach can also be generalised to CTL* and the p-calculus. To our knowledge,
implementations based on this approach have not been reported yet.

CTL model checkers. Clarke and Emerson [46] reported the first (fair) CTL
model checker, called EMC. About the same time, Queille and Sifakis [155]
announced CESAR a model checker for a branching logic very similar to CTL.
EMC was improved in [47] and constituted the basis for SMV (Symbolic Model
Verifier), an efficient CTL model checker by McMillan based on a symbolic
representation of the state space [133]. Recent variants of SMV are NuSMV [43]
developed by the team of Cimatti et al., and SMV by McMillan et al. at
Cadence Berkeley Laboratories that is focused on compositionality. Both tools
are freely available on the internet. Another symbolic CTL model checker is
VIS [31]. Software tools that support more expressive branching temporal logics
such as the p-calculus are Truth [119] and the Concurrency Workbench [55].

7.8 Exercises

EXERCISE 7.1. Consider the running example of this chapter as depicted in Figure
7.1, and compute the set [EGq] by using the fixed point characterisation of EG.

EXERCISE 7.2. Let K be a Kripke structure, s be a state in this structure, and ®, ¥
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CTL-formulae such that s = ®. Define K' = (K[¥]) [~ (P A ¥)]. Prove or disprove the
following statement:

K,s = E(®U D) if and only if K',s = EF ¥

EXERCISE 7.3. Let Fap(Z)=[®] U {s]| R(s) C Z} for arbitrary CTL-formula ®.
Questions:

1. Prove that Fsp is monotonic on the complete lattice (2°, C).

2. Prove that AF @ is the least fixed point of Flqp.

EXERCISE 7.4. Let Frg(Z) =[®] N {s| R(s) N Z = @} for arbitrary CTL-formula
®. Questions:

1. Prove that Fg is monotonic on the complete lattice (2°, C).

2. Prove that EG @ is the greatest fixed point of Fg¢g.

EXERCISE 7.5. Prove that a path is fair if and only if all its suffixes are fair paths.

EXERCISE 7.6. Consider the following bounded until-operator: formula & US¥¥ holds
for a path if and only if a U-state is reached along the path via ®-states only in at
most k (for natural k) steps. Questions:

1. Give a fixed-point characterisation of the bounded until-formula E (® USk¥).

2. Give an algorithm to model-check such bounded until-formulae on the basis of
this fixed-point characterisation.

3. Suppose the transition relation R of the Kripke structure is given as an incidence
matrix R, i.e., R(i,j) = 1if (s;,s;) € R and 0 otherwise, and suppose Sat(¥) is
represented as a vector iy such that ig (s) = 1if s € Sat(¥) and 0 otherwise. Give
an algorithm to check EFS*¥ and indicate how this algorithm can be generalised
towards verifying E (® USF¥).

EXERCISE 7.7. Assume that the set of states reachable from some initial state is given
(i.e., already computed). Questions:

1. Find an efficient way to verify formulae of the form AG ®, and justify why your
approach is correct.

2. Assume the set of reachable states is computed in an iterative manner, i.e., by
successively computing the set of states reachable within 0, 1, 2, 3 ... steps from
an initial state. How can the verification of AG ® be integrated in this iterative
computation yielding an “on-the-fly” algorithm for checking AG &7
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EXERCISE 7.8.  Consider the following Kripke structure with fairness constraints
F1 = {82,88} and F2 = {86,89}.

Determine a witness for EG true for state so using the step-wise procedure describned
in Section 7.5. Show all intermediate steps in the construction of the witness.

EXERCISE 7.9. The following program is a mutual exclusion protocol for two processes
due to Pnueli (taken from [62]). There is a single shared variable s which is either 0
or 1, and initially equals 1. Besides, each process has a local boolean variable y that
initially equals 0. The program text for process P; (i = 0, 1) is as follows:

10: loop forever do
begin
11: Non-critical section
12: (y;, ) := (1,4);
13: wait until ((y1—; =0) V (s #1));
14: Critical section
15: y; :=0

Here, the statement (y;,s) := (1,7) is a multiple assignment in which variable y; := 1
and s := 1 is a single, atomic step.

The intuition behind this protocol is as follows. The variables yg and y; are used
by each process to signal the other process of active interest in entering the critical
section. On leaving the non-critical section, process P; sets its own local variable y;
to 1. In a similar way this variable is reset to 0 once the critical section is left. The
global variable s is used to resolve a tie situation between the processes. It serves as a
logbook in which each process that sets its y variable to 1 signs at the same time. The
test at line 13 says that Py may enter its critical section if either y; equals 0 —implying
that its competitor is not interested in entering its critical section — or if s differs from
0 — implying that the competitor process P; performed its assignment to y; after pg
assigned 1 to yo.

Questions concerning this mutual exclusion protocol:

1. Model this protocol in SMV, formulate the property of mutual exclusion in CTL
and check this property.

2. Check whether Pnueli’s protocol ensures absence of unbounded overtaking, i.e.,
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when a process wants to enter its critical section, it eventually will be able to do
so. Provide a counterexample (and an explanation thereof) in case this property
is violated.

3. Add the fairness constraint FATRNESS running to the process specification in
your SMV model of the mutual exclusion program, and check again the property
of absence of unbounded overtaking. Compare the obtained results with the
results obtained in the previous question without using the fairness constraint.

4. Express in CTL that each process will occupy its critical section infinitely often.
Check the property (use again the FAIRNESS running).

5. A practical problem with this mutual exclusion protocol is that it is too de-
manding in the sense that it enforces to perform the assignments to y; and s (in
line 12) in a single step. Most existing hardware systems cannot perform such
assignments in one step. Therefore, it is requested to investigate whether any
of the four possible realizations of this protocol — in which the aforementioned
assignments are not atomic anymore — is a correct mutual exclusion protocol.

(a) Report for each possible implementation your results, including possible
counterexamples and their explanation.

(b) Compare your results with the results of your PROMELA experiments with
this exercise in the previous exercise series.

EXERCISE 7.10.

In this exercise you are confronted with a non-standard example for model checking.
The purpose of this exercise is to present the model checker as a solver for combinatorial
problems rather than a tool for correctness analysis. These problems involve a search
(involving backtracking) of optimal or cost-minimizing strategies such as schedulers or
puzzle solutions. The exercise is concerned with Loyd’s puzzle that consists of a N - K
grid in which there are NV - K—1 numbered tiles and a single blank space. The goal
of the puzzle is to achieve a predetermined order on the tiles. The initial and final
configuration of the tiles for N = 3 and K = 3 is as follows:

0610
01010

initial configuration final configuration

Note that there are approximately 4 - (N - K)! possible moves in this puzzle. For N = 3
and K = 3 this already amounts to about 1.45 10% possible configurations.

Questions concerning Loyd’s puzzle:

1. Complete the (partial) model of Loyd’s puzzle in SMV that is given below. In
this model, there is an array h that keeps track of the horizontal positions of the
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tiles and an array v that records the vertical positions of the tiles such that the
position of tile i is given by the pair h[i], v[i]. Tile O represents the blank
tile. Position h[i] = 1 and v[i] = 1 is the lowest left corner of the puzzle.

MODULE main

DEFINE N := 3; K := 3;

VAR move: {u, d, 1, r}; -- the possible tile-moves
h: array 0..8 of 1..3; -- the horizontal positions of all tiles
v: array 0..8 of 1..3; -- .... and their vertical positions

ASSIGN -- the initial horizontal and vertical positions of all tiles

init(h[0]) := 1; init(v[0]) := 3;

init (h[1]) := 2; init(v[1]) := 3;

init(h[2]) := 3; init(v[2]) := 3;

init(h[3]) := 1; init(v[3]) := 2;

init(h[4]) := 2; init(v[4]) := 2;

init(h[5]) := 3; init(v[5]) := 2;

init(h[6]) := 1; init(v[6]) := 1;

init (h[7]) := 2; init(v[7]) := 1;

init(h[8]) := 3; init(v[8]) := 1;

ASSIGN

-- determine the next positions of the blank tile

next (h[0]) := -- horizontal position of the blank tile
case
-- one position right
-- one position left

1 : hlol; -- keep the same horizontal position
esac;
next(v[0]) := -- vertical position of the blank tile
case
-- one position down
-- one position up
1 : v[0]; -- keep the same vertical position
esac;

-- determine the next positions of all non-blank tiles

next (h[1])
case

-- horizontal position of tile 1

esac;

next (v[1])
case

-- vertical position of tile 1

esac;

-- and similar for all remaining tiles
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A possible way to proceed is as follows:

(a) First, consider the possible moves of the blank tile (i.e., the blank space).
Notice that the blank space cannot be moved to the left in all positions.
The same applies to moves upwards, downwards and to the right.

(b) Then try to find the possible moves of tile [1]. The code for tiles [2]
through [8] are obtained by simply copying the code for tile [1] while
replacing all references to [1] to references of the appropriate tile number.
(Unfortunately, SMV does not support arrays to be indexed by variables.)

(¢) Test the possible moves by running a simulation.
2. Define an atomic proposition goal that describes the desired goal configuration

of the puzzle. Add this definition to your NuSMV specification by incorporating
the following line(s) in your NuSMV model:

DEFINE goal := .............. ;

where the dotted lines contain your description of the goal configuration.

3. Find a solution to the puzzle by imposing the appropriate CTL-formula to the
NuSMYV specification, and running the model checker on this formula.

This exercise has been taken from [54].

EXERCISE 7.11. Consider the mutual exclusion algorithm by the Dutch mathematician
Dekker. There are two processes P; and P», two boolean-valued variables b; and b
whose initial values are false, and a variable & which may take the values 1 and 2 and
whose initial value is arbitrary. The i-th process (i=1,2) may be described as follows,
where j is the index of the other process:

while true do
begin b; := true;

while b; do
if £k = j then begin
b; := false;
while k£ = j do skip;
b; := true
end;
( critical section );
k:=7;
b; := false
end
Questions:

1. Model Dekker’s algorithm in SMV.
2. Verify whether this algorithm satisfies the following properties:

3. Mutual exclusion: two processes cannot be in their critical section at the same
time.
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4. Absence of individual starvation: if a process wants to enter its critical section,
it is eventually able to do so.

Hint: use the FAIRNESS running statement in your SMV specification for proving the
latter property in order to prohibit unfair executions (that might trivially violate these
requirements).

EXERCISE 7.12. In the original mutual exclusion protocol by Dijkstra in 1965, another
Dutch mathematician, it is assumed that there are n > 2 processes, and global variables
b,c : array [1...n] of boolean and an integer k. Initially all elements of b and of ¢
have the value true and the value of k£ belongs to 1,2,...,n. The i-th process may be
represented as follows:

var j : integer;
while true do
begin b[i] := false;
L; : if k # i then begin c[i] := true;
if b[k] then k := i;
goto L;
end;
else begin c[i] := false;
for j:=1to ndo
if (j #i A —(c[j])) then goto L;

end
( critical section );
cli] := true;
bi] := true
end
Questions:

1. Model this algorithm in SMV and

2. Check the mutual exclusion property (at most one process can be in its critical
section at any point in time) in two different ways: by means of a CTL-formula
using SPEC and by using invariants. Try to check this property for n=2 through
n=>5, by increasing the number of processes gradually and compare the sizes
of the state spaces and the run time needed for the two ways for verifying the
mutual exclusion property.

3. Check the absence of individual starvation property: if a process wants to enter
its critical section, it is eventually able to do so.

EXERCISE 7.13. In order to find a fair solution for N processes, Peterson proposed in
1981 the following protocol. Let Q[1...N] (Q for Queue) and T'[1...N] (T for Turn),
be two shared arrays which are initially O and 1, respectively. The variables 7 and j
are local to the process with i containing the process number. The code of process i is
as follows:
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while true do
for j:=1to N—-1do

begin
Qli] == J;
T[] =14;
wait until (T[j] #¢ VvV (forall k #i.Q[k] < j))
end;
( critical section );
Q] :=0
end
Questions:

1. Model Peterson’s algorithm in SMV.
2. Verify whether this algorithm satisfies the following properties:

(a) Mutual exclusion.

(b) Absence of individual starvation.



Chapter 8

Timed Automata

This chapter introduces timed automata, a model aimed at representing con-
tinuous-time systems in a symbolic, i.e., mostly finite, way. The ingredients of
timed automata, the semantics in terms of infinite timed transition systems,
and the composition of timed automata are presented. An industrial example
illustrates the use of timed automata to model real-time systems.

8.1 Introduction

The logics we have encountered so far are interpreted over Kripke structures.
These automata describe how a reactive system evolves from one state to an-
other. Timing aspects are, however, not covered. That is, no indications are
given about how long a system will stay in a state, and there are no possibil-
ities to specify that, for instance, a certain transition may only be taken at a
particular time point. However, reactive systems such as device drivers, coffee
machines, communication protocols and automatic teller machines, must react
in time — they are time critical. The behavior of time-critical systems is typ-
ically subject to rather stringent timing constraints. For a train crossing it is
essential that once the approach of a train is detected, it is closed within a
certain time bound in order to halt car and pedestrian traffic before the train
reaches the crossing. For a radiation machine the time period during which a
cancer patient is subject to a high dosis of radiation is extremely important; a
small exceed of this period is dangerous and can cause the patient’s death.

To put it in a nutshell:
Time-critical systems are systems in which correctness depends

not only on the logical result of the computation but also
on the time at which the results are produced.

185
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As timeliness is of vital importance to reactive systems, it is essential that the
timing constraints of the system are guaranteed to be met. Checking whether
timing constraints are met is the subject of model-checking real-time systems.

The essential ingredients for model-checking time-critical systems are (i) a
model description language for such systems, (ii) a property specification lan-
guage, and (iii) model-checking algorithms. This chapter is concerned with
timed automata, a model description language for real-time systems. Timed
automata are an extension of finite-state automata with clocks that are used
to measure the elapse of time. Since their conception, timed automata have
been used for the specification of various types of time-critical systems, ranging
from communication protocols to safety-critical systems. In addition, several
powerful model-checking tools have been developed for timed automata. Chap-
ter 9 treats an extension of the branching temporal logic CTL, called timed
CTL, to specify timing properties over timed automata. Chapter 10 deals with
algorithms for model-checking timed automata against timed CTL-formulas.

This chapter is organized as follows. Section 8.2 introduces timed automata.
Section 8.3 defines the formal interpretation of a timed automaton in terms of a
timed labelled transition system. Section 8.4 deals with the parallel composition
of timed automata. Section 8.5 presents a model of a file transfer protocol using
a network of timed automata.

8.2 Timed Automata

Timed automata are used to model finite-state real-time systems. A timed
automaton is in fact a finite-state automaton equipped with a finite set of real-
valued clock variables, called clocks for short.

Definition 8.1. (Clock)
A clock is a variable ranging over IR™.

In the sequel we will use z,y and z as clocks. A “state” of a timed automaton
consists of the current location of the automaton plus the current values of all
clock variables.!

Clocks may be initialized to zero when the system makes a transition. Once
initialized, they start incrementing their value implicitly. All clocks proceed at
the same rate. More precisely, when time advances a single time-unit, all clocks
will have progressed by a single time-unit. The value of a clock thus denotes
the amount of time that has been elapsed since it has been initialized. Clocks
are used to measure the elapse of time when the timed automaton remains in a,

'Note the deliberate distinction between the terminology location and state.
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location. They can thus be considered as stop-watches that can be started and
checked independently of each other, but they all refer to the same global time
frame (i.e., global clock).

The system may evolve by remaining in a location while time progresses, or
may move from one location to another by taking a transition. Transitions
are assumed to take no time, i.e., transitions are instantaneous. Conditions on
the values of clocks are used as enabling conditions (or guards) of transitions:
only if the clock constraint is fulfilled, the transition is enabled, and may be
taken; otherwise, the transition is blocked. For simplicity, we assume that
enabling conditions only depend on clocks; in real applications, though, they
may also depend on other system variables that are not clocks, cf. the model
in Section 8.5. Inwvariants on clocks are used to limit the amount of time that
may be spent in a location. Enabling conditions and invariants are constraints
over clocks:

Definition 8.2. (Clock constraints)
Let C be a set of clocks with z € C' and ¢ be a natural number. The clock
constraints over C' satisfy the following rules:

1. x < ¢ and z < c are clock constraints
2. If « is a clock constraint, then — « is a clock constraint
3. If @ and B are clock constraints, then a A S is a clock constraint

4. Anything else is not a clock constraint.

The set of clock constraints over C' is denoted by Constraints(C).

Throughout this chapter we use abbreviations such as x > ¢ for = (z < ¢) and
z=cforxz<ec A z2>c and so on. The choice of legal clock constraints is an
important one. One could, for instance, allow addition of constants like z < c+d
for d € IN without problems, but addition of clock variables like in z+y < 3,
would make the model-checking problem undecidable. Also if ¢ could be a real
number like in « < 27, then model-checking a real-time temporal logic that is
interpreted in a dense time domain — as for timed CTL — becomes undecidable.
Therefore, ¢ is required to be a natural. Decidability of the model-checking
problem is not affected if the constraint is relaxed such that ¢ is allowed to be
a rational number. In this case the rationals in each formula can be converted
into naturals by suitable scaling. For instance, the clock constraint = < % can
be changed into z < 2 by multiplying all constants in enabling conditions and
invariants in the timed automaton by a factor seven. In general, we can multiply
each constant by the least common multiple of denominators of all constants
appearing in the enabling conditions and invariants of the timed automaton.
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Definition 8.3. (Timed automaton)
A timed automaton A is a tuple (L, I,C,—, Label, inv) with

L, a non-empty, finite set of locations

e [ C L, the set of initial locations

C, a finite set of clocks
e — C L x (Constraints(C) x 2¢) x L, the transition relation

Label : . — 24P an interpretation function on L

e inv : L — Constraints(C), an invariant-assignment function.

A timed automaton is a Kripke structure equipped with a set C of clocks.
Transitions are labelled with tuples (o, C") where « is a clock constraint on the
clocks of the timed automaton, and C’ C C'is a set of clocks. For (I, «, C,l") € —

we write [ 2S5 I’ The intuitive interpretation of I -2 [’ is that the timed
automaton can move from location [ to location " when clock constraint « holds.
Besides, when moving from location [ to ', any clock in C’ will be reset to 0.
The function Label has the same role as for Kripke structures and associates
to a location the set of atomic propositions that are valid in that location. As
we will see in the next chapter, this function is only relevant for defining the
satisfaction of atomic propositions for timed CTL. Finally, function inv assigns
to each location an invariant that specifies how long the timed automaton
may stay there. For location [, inv(l) constrains the amount of time that may
be spent in [. That is to say, once the invariant inv(l) becomes invalid, the
location [ must be left immediately. If this is not possible — as there is no
outgoing transition enabled — no further progress is possible. As time progress
is no more possible, this situation is also known as a ¢imelock.

The precise interpretation of timed automata will be defined later on. We first
give some simple examples.

For depicting timed automata we adopt the following conventions. Circles de-
note locations and transitions are represented by arrows. Invariants are indi-
cated inside locations, unless they equal ‘true’, i.e., if no constraint is imposed
on delaying. Arrows are equipped with labels that consist of an optional clock
constraint and an optional set of clocks to be reset, separated by a straight
horizontal line. If the clock constraint equals ‘true’ and if there are no clocks
to be reset, the arrow label is omitted. The horizontal line is omitted if ei-
ther the clock constraint is ‘true’ or if there are no clocks to be reset. We will
omit the labelling Label in this chapter. This function will play a role when
discussing the model-checking algorithm only, and is of no importance for the
other concepts to be introduced.
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Figure 8.1: Some timed automata with a single clock and one of their evolutions

Ezample 8.1.  Figure 8.1(a) depicts a simple timed automaton with one clock x
and one location | equipped with a self-loop. The self-transition can be taken if
clock z has at least the value 2, and when being taken, clock x is reset. Initially,
clock = has the value 0. Figure 8.1(b) gives an example execution of this timed
automaton, by depicting the value of clock x versus the elapsed time. FEach
time the clock is reset to 0, the automaton mowves from location [ to location .
Due to the invariant ‘true’ in l, time can progress without bound while being in
[. In particular, a legal behavior of this automaton is to stay in location | ad

infinitum. Formally, L=1={1}, C={z}, ZMM, and inv(l) = true.

Changing the timed automaton of Figure 8.1(a) slightly by incorporating an
mwvariant x < 3 in location 1, leads to the effect that x cannot progress without
bound anymore. Rather, if © > 2 (enabling constraint) and x < 3 (invariant)
the outgoing transition must be taken. This is illustrated in Figure 8.1(c) and

(d).
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Observe that the same effect is not obtained when strengthening the enabling
constraint in Figure 8.1(a) into 2 < x < 3 while keeping the invariant ‘true’
in location [. In that case, the outgoing transition can only be taken when
2 <z <3 - as in the previous scenario — but is not forced to be taken, i.e., it
can simply be ignored by letting time pass while staying in . This is illustrated
in Figure 8.1(¢e) and (f). (End of example.)

From these examples it is clear that clocks are piece-wise continuous real-valued
functions of time where discontinuities may occur when a transition is taken,

cf. Figures 8.1(b), (d) and (f).

Different clocks can be started at different times, and hence there is no lower
bound on their difference. This is, for instance, not possible in a discrete-time
model, where the difference between two concurrent clocks is always a multiple
of one unit of time. Having multiple clocks thus allows to model multiple
concurrent delays. This is exemplified in the following example.

Ezample 8.2.  Figure 8.2(a) depicts a timed automaton with two clocks, x and
y. Initially, both clocks start running from value 0 on, until two time-units have
passed. From this point in time, both transitions are enabled and can be taken
non-deterministically. As a result, either clock x or clock y is reset, while the
other clock continues. It is not difficult to see that the difference between clocks
x and y is arbitrary. An example evolution of this timed automaton is depicted

in part (b) of the figure. (End of example.)
- —- clock z
—— clock
y>2 T /
{ y } 4 ‘ : . /
clock ‘ 3 s
value -7
$>2 ................... /// ........
{z} : /
S
(a) 2 8 10

time — =

(b)

Figure 8.2: A timed automaton with two clocks and a sample evolution of it

Ezample 8.3. Figure 8.3 shows a timed automaton with two locations, named
oftf and on, and two clocks x and y. All clocks are initialized to 0 if the initial
location off is entered. The timed automaton in Figure 8.3 models a switch that
controls a light. The switch may be turned on at any time instant since the light
has been switched on for at least two time units, even if the light is still on. It
may switch automatically off exactly 9 time-units after the most recent time the
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{z.y}
olloPl:

y=9
{z}

Figure 8.3: A timed automaton example: the switch

light has turned from off to on. Clock x is used to keep track of the delay since
the last time the light has been switched on. The transitions labelled with the
clock constraint © > 2 model the on-switching transitions. Clock y is used to
keep track of the delay since the last time that the light has moved from location
off to on, and controls switching the light off. (End of example.)

8.3 Semantics of Timed Automata

The previous examples indeed suggest that the state of a timed automaton is
determined by (i) its current location and (ii) the current values of all clocks. In
fact, timed automata represent labelled transition systems with infinitely many
states, and possibly infinitely many outgoing transitions of a state (i.e., infinite
branching).

8.3.1 Clock Valuations

The values of clocks are formally defined by clock valuations.

Definition 8.4. (Clock valuation)
A clock valuation v for a set C of clocks is a function v : C — IR™, assigning
to each clock z € C' its current value v(z).

Let Val(C') denote the set of all clock valuations over C. A state of A is a pair
(I,v) with [ a location in A and v a valuation over C, the set of clocks of A.

Ezxample 8.4.  Consider the timed automaton of Figure 8.5. Some states of
this timed automaton are the pairs (off,v) with v(z) = v(y) = 0 and (off,v")
with v'(z) = 4 and v'(y) = 13 and (on,v") with v"(x) = 2.7 and v"(y) = 13.
Note that the latter state is not reachable. (End of example.)

Let v be a clock valuation on set of clocks C. For positive real d, clock valuation
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v+d denotes that all clocks are increased by d with respect to valuation v. It is
defined by (v+d)(z) = v(x)+d for all clocks 2z € C. Clock valuation reset z in v,
valuation v with clock z reset, is defined by

(reset x in v)(y) = { g(y) iig i i

Nested occurrences of reset are typically abbreviated. For instance, reset z in
(reset y in v) is simply denoted reset z,y in v.

Ezample 8.5.  Consider the clock valuations v and v' of the previous example.
Valuation v+9 is defined by (v+9)(z) = (v+9)(y) = 9. In clock valuation
reset x in (v+9), clock = has value 0 and clock y reads 9. Clock valuation v’
now equals (reset x in (v+9)) + 4. (End of example.)

We can now formally define what it means for a clock constraint to be valid or
not. This is done in a similar way as characterizing the semantics of a temporal
logic, namely by defining a satisfaction relation. In this case the satisfaction
relation = is a relation between clock valuations (over set of clocks (') and clock
constraints (over C').

Definition 8.5. (Evaluation of clock constraints)
For z € C, v € Val(C), natural ¢ and «, 5 € Constraints(C) we have:

vEz<e iffu(z)<ec
vEz<c iffu(z)<c

vE -« iff v £«

vEa AN iffvEa A vEEL

For negation and conjunction, the rules are identical to those for propositional
logic. In order to check whether z < c is valid in v, it is simply checked whether
v(z) < ¢. The same applies to z < c.

Ezample 8.6.  Consider clock valuation v, v+9 and reset z in (v +9) of the
previous example and suppose we want to check the validity of a = x < 5. It
follows v |= a, since v(z) = v(y) =0. We have v+9 [~ a since (v+9)(z) =9 £
5. It follows that reset x in (v+9) = a. (End of example.)

8.3.2 Timed Transition Systems

The interpretation of timed automata is defined in terms of an infinite transition
system (S,—) where S is a set of states, i.e. pairs of locations and clock
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valuations, and — is the transition relation that defines how to evolve from
one state to another. This transition relation should not be confused with the
transitions in the timed automaton itself! There are two possible ways in which
a timed automaton can proceed: by traversing a transition in the automaton,
or by letting time progress while staying in the same location. The former
is called a discrete transition, the latter a delay transition. A single labelled
transition relation — is used; for discrete transitions the label equals * while
delay transitions are labelled with a positive real number indicating the amount
of time that has elapsed.

Definition 8.6. (Transition system underlying a timed automaton)
Let A= (L,I,C,—, Label,inv) be a timed automaton. The labelled transition
system associated to A, denoted [.A], is defined as (S, I', —) where:

e S={(l,v) € Lx ValC) |v[inv(l)}
o I'={(lp,vp) | lo € T} where vg(z) =0 for all z € C

e the transition relation — C S x (IRT U {*}) x S is the smallest relation
defined by the rules:

1. ) (l’ reset C' in ) if the following conditions hold:

(z,
(a) | ==T1
(b) v = «, and
(c) (reset C"in v) =inv(l")

2. (I,v) — (I,v+d), for positive real d, if the following condition holds:
Vd < d.ov+d | inv(l).

The set of states is the set of pairs (I,v) such that [ is a location of A and
v is a clock valuation over C, the set of clocks in A, such that v does not
invalidate the invariant of [. Note that this set may include states that are
unreachable. For a transition that corresponds to (a) traversing transition e
in the timed automaton it must be that (b) v satisfies the clock constraint of

[ === 1" (otherwise the transition is disabled), and (c) the new clock valuation,
that is obtained by resetting all clocks C’ in v, satisfies the invariant of the
target location I’ (otherwise it is not allowed to be in I'). Idling in a location
(second clause) for some positive amount of time is allowed if the invariant is
respected while time progresses. Notice that it does not suffice to only require
v+d [ inv(l), since this could invalidate the invariant for some d’ < d. For
instance, for inv(l) = (r < 2) V (x > 4) and state (I,v) with v(z) = 1.5 it
should not be allowed to let time pass with 3 time-units: although the resulting
valuation v+3 = inv(l), there is some intermediate valuation, e.g., v+2, that
invalidates inwv(l).
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For a state (I,v) such that v |= inv(l), there are infinitely many outgoing delay

transitions of the form (I, v) 2, as d can be selected from a dense domain.

An execution of a timed automaton corresponds to a path through its timed
transition system.

Definition 8.7. (Path)
A path o is an infinite sequence sg o, 81 21y .. such that S; iy si41 for all
7> 0.

The set of paths starting in a given state is defined as before. Recall a; equals
* for a discrete transition, and a (positive) real number for a delay transition.
In order to “measure” the amount of time that elapses on a path, we introduce:

Definition 8.8. (Elapsed time on a path)
For path o = sy — s; — ... and natural 4, the time elapsed from sg to s;,
denoted A(o,1), is defined by:

A(e,0) = 0
A(o,i+1) = A(U,i)—i-{

0 ifa;,==x
a; ifa;eRT.

A(o, i) is thus the accumulated time that has elapsed since i (delay or discrete)
transitions have taken place.

Ezxample 8.7.  Recall the light switch from Ezample 8.3:

T =2

{2y}

A prefiz of an example path of the switch is

3 * 4 *

o = (off,vy) — (off,v1) — (on,vy) — (on,v3) — (on,vy)

L5 (om, v5) —2» (on,vg) — (om,v7) —= (off, vg) ...

with vo(xz) = vo(y) = 0, v1 = vo+3, vy = reset x,y in vy, vy = vot+4, vy =
reset = in v3, v5 = v4+1, vg = vs+2, v7 = vg+2 and vg = reset x in v7. These
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clock valuations are summarized by the following table:

The transition (off,v1) — (on, vy) is, for instance, possible since (a) there is an
transition from off to on, (b) vi =z > 2 since vi(z) = 3, and (¢) vy = inv(on).
We have, for instance, A(o,3) =7 and A(0,6) = 12.

Another possible evolution of the switch is to stay infinitely long in location
off by making infinitely many delay transitions. Although at some point, i.e. if
v(z) > 2 the transition to location on is enabled, it can be ignored continuously.
Similarly, the switch may stay arbitrarily long in location on. These behaviors
are caused by the fact that inv(off) = inv(on) = true.

If we modify the switch such that inv(off) becomes y < 9 while inv(on) remains
true, the aforementioned path o is still legal. In addition, the light may stay
infinitely long in location off — while awaiting a person that pushes the button
— it must switch off automatically if during 9 time-units the automaton has not
switched from off to on. (End of example.)

true
{z}

Figure 8.4: An example Zeno timed automaton

It is possible that subsequent discrete transitions in a path take place at the
same time. For instance, the timed automaton depicted in Figure 8.4 allows a
path (1,0.7) = (I,0) = (1,0) = (I, 7). .. where moving from location [ to
I" and back takes place in zero time-units. Although this may be convenient for
certain purposes, e.g., when a certain delay is negligible, one typically wants
time to advance at some point since it is counterintuitive, and impossible to
realize, a path in which time never progresses. That is to say, a path like
(1,0) = (I',0) == (1,0) — (1,0)... is not considered to be realistic. A timed
automaton that allows such behavior is called Zeno.

Path o is called time-divergent if lim;_,, A(o,i) = oo. The set of time-divergent
paths starting at state s is denoted Paths™(s). An example of a non time-
divergent path is a path that visits an infinite number of states in a bounded
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amount of time. For instance, the path

21! 272 23 o—k+1
Sop —>S1 —> 82 —>83...8k > Sk41---

is not time-divergent, since an infinite number of states is visited in the bounded
interval [%, 1]. In non-Zeno timed automata such paths are explicitly excluded.

Definition 8.9. (Non-Zeno timed automaton)
A timed automaton A is called non-Zeno if from any of its states some time-
divergent path can start.

8.4 Composing Timed Automata

To enable the composition of timed automata we slightly change the transition
relation of a timed automaton, and allow — besides an enabling condition and
a set of clocks to be reset — an action as label of a transition. Actions are
assumed to be taken from an alphabet . Transitions are now thus labelled
by a triple (a,«,C') with action a, enabling condition « and set of clocks
C’. The addition of actions as labels allows us to specify timed systems in
a compositional manner. The elementary operation on timed automata that
allows to do so is — like for labelled transition systems — parallel composition.

Definition 8.10. (Composition of timed automata)

Let A; be the timed automaton (X;, L;, I;, C;, —;, Label;,inv;) for i = 1,2 with
Ci1 N Cy = @. The composition of A; and Az, denoted A, || Az, is the timed
automaton (21 U 22, Ly x LQ,Il X IQ, Cl U 02, —, Labe], ZTL’U) with

e — is the smallest transition relation defined by the following rules:

— fora e ¥ N Yo

a,a1,C1 / a,a2,Co !
I 1 ly, lo )

(llalZ) a,o1 N\ as,C1UCH R ( /1’l12)
- fOI‘CLEEl\EQ:

I a,a1,C lll
(I, Ip) ~22uC0s (11 1)

—fOI‘CLEZQ\El:

I a,a2,C2 ll2

(I, lp) ~222:C25 (1, 1)
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L] Labe](ll,lz) == Labell (ll) U Labelg(l2)

e inv(ly,la) =invi(ly) A invs(la)

The invariant of a composed location is simply the conjunction of the invariants
of its components. A few remarks on the transition relation are in order; the
other components are defined in a straightforward manner. Two scenarios are
distinguished. If an action a occurs in the alphabet of both timed automata,
then a transition in one automaton can only be taken when both automata are
able to do so. That is to say, in the resulting automaton a transition is obtained
guarded by the conjunction of the enabling conditions of the individual timed
automata (as both transitions need to be enabled). This scenario is covered
by the first item. Besides, the clocks reset in the individual automata are all
reset. Alternatively, if the action a is not in the common alphabet, then the
automaton can take the enabled transition autonomously, i.e., without the need
to synchronize with the other automaton. The cases a € 31\ X2 and a € X9\ X,
are fully symmetric and are covered by the last two items.

Ezxample 8.8.  The parallel composition of the two timed automata at the top

> 2 y<3
{z} {v}
T < I y < o
r>1 ° e true
(1) Ok ()
r=25 y>1
{z} y}

y <10
r <3
= t>1Ay<3 z>1
{CE,:I/} {CE,y}

Figure 8.5: Parallel composition of two timed automata

of Figure 8.5 results in the timed automaton at the bottom of that figure. Tran-
sitions are separately labelled with actions and an enabling condition together
with a set of clocks to be reset. The reader is invited to check the construction.

(End of example.)
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8.5 Philips’ Bounded Retransmission Protocol

To illustrate the use of timed automata we treat the compositional modeling
of part of an infra-red control system (called RC6) that has been developed by
Philips in the late nineties [39].

We focus on the so-called frame exchange protocol which is used to transfer
bulks of data (files) such as Teletext pages between audio/video equipment and
a remote control unit. Since the infra-red communication medium is rather vul-
nerable, data may easily be lost, e.g., if an obstacle is positioned in front of the
television set. In order to avoid the (rather expensive) retransmission of entire
files, files are chopped into small units, called chunks. The successful trans-
mission of a chunk is notified to the sender by means of an acknowledgement
(ack). In absence of an ack, the chunk will be retransmitted. In order to dis-
tinguish retransmitted chunks and new chunks, an alternating bit accompanies
each chunk at transmission. This ensures that a receiver can ignore duplicated
chunks that are transmitted by the sender due to the loss of an ack. If the
number of retransmissions exceeds a certain threshold, it is assumed that there
is a serious communication problem, and the sender aborts the transmission of
the file. Due to this bounded number of retransmissions, the protocol is called
the Bounded Retransmission Protocol (BRP, for short).

The timing intricacies of the BRP are twofold: (i) the sender needs to decide to
retransmit a chunk if its ack has not been received in time, and (ii) the receiver
needs to decide that the transmission has been aborted by the remote sender if
an expected chunk is not received in time.

8.5.1 Service of the BRP

As for many data transfer protocols, the service delivered by the BRP behaves
like a buffer, i.e., it reads data from one client to be delivered at another one.
There are two features that make the behavior more complicated than a simple
buffer. Firstly, the input is a large file (which is modeled as a sequence), which is
delivered in small chunks. Secondly, there is a limited amount of transmissions
for each chunk to be delivered, so we cannot guarantee its eventual successful
delivery. It is assumed that during transmission, chunks will not be garbled
and their order will not be changed. Thus, either an initial part of the file or
the whole file is delivered. Both clients obtain an indication whether the entire
file has been delivered successfully or not.

The file is input via port S;, as a sequence of chunks (di,...,d,) (cf. Fig-
ure 8.6). We assume that n > 0, i.e., the transmission of empty files is not
considered. Ideally, each d; is delivered on the “output” port R,,;. Each chunk
is accompanied by an indication. Thus, pairs (d;,4;) of chunks and indications
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<d17...,dn ((d17i1)7--~a(dk7ik)>

S in

Figure 8.6: Schematic view of the external view of the BRP

are communicated via R,,;. These indications can be either Irs7, Iinvc, Lok,
or Inok. Iok is used if d; is the last element of the file, and Ipgy if it is
the first element and more will follow. All other chunks are accompanied by
I'ne, except that a “not OK” indication (Iyok) is delivered without datum
if something goes wrong. Note that the receiving client does not need a “not
OK?” indication before delivery of the first chunk nor after delivery of the last
one.

The sending client is informed via S,,; after transmission of the whole file, or
when the transmission has been aborted. Possible indications here are Ipgk,
Inok, or Ipg. After an Ipg or an Iyog indication, the sender can be sure,
that the receiver has the corresponding indication. A “don’t know” indication
Ipk occurs if the last chunk has not been acknowledged. In this case, either
the last chunk may be lost, or the ack of the last chunk was lost. Thus, there is
no way to know whether the last chunk d,, has been delivered correctly or not.

8.5.2 Modeling the BRP

I
| |
I Sender S Receiver R :
| |
\ A !
| F G !
| Channel K I

I
| |
| B A !
‘ Channel L - |

I
I

I
I

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 8.7: Schematic view of the internal structure of the BRP

The BRP consists of a sender S and a receiver R communicating through the
lossy channels K and L (cf. Figure 8.7). The actions used for synchronizing the
several components are F', G, A and B. The signatures of the parameters that
are exchanged at synchronization are as follows:
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Synchronization Signature

S; (dy,...,dy) forn >0
Sout is € {Iok,Inok.Ipk }
Rout ((dl,’il),...,(dk,’ik» forogkgn
ij € {IrsT, Iivc, Lok, Inok } for 0 < j <k
F.G (b, V', ab,d;) with b,t',ab € {0,1}, and 0 <i < n
A B ack

Modeling the Channels

Channels K and L are modeled as queues of capacity one with possible loss
of messages. The timed automata of the channels are depicted in Figure 8.8.
Channel K has a single clock u that is reset once a frame (i.e., a chunk and three
additional bits) is received by synchronizing with the sender S (over F'). Two
possibilities now arise: the frame is either lost (upper transition from location
in_transit to start) or is passed onto the receiver R (lower transition). The
maximum latency of the channel is TD time units, for some fixed constant TD.
By the invariant 4 < TD it is guaranteed that location in_transit is left before
the maximum latency has expired. Channel L is modeled in an analogous way.

O<u<=TD O<v<=TD

in_transit in_transit
(u<=TD) (v<=TD)

o .
start (O E:.:(Bst,lst,ablt,d)

start

O<v<=TD
Black

O<u<=TD
G!(fst,Ist,abit,d)

Figure 8.8: Timed automata for channels K and L.

Modeling the Sender

The sender S is modeled by the timed automaton depicted in Figure 8.9. It
has four variables: clock = to keep track of the waiting time for an ack, an
alternating bit ab € { 0,1} to accompany the next chunk to be sent, the sub-
script 4 (0 < @ < n) of the current chunk processed by S, and the number rc
(0 < re < MAX) of retransmissions of the current chunk so far. Constant T1
is the maximum amount of time the sender is willing to wait for an ack, and
MAX is the maximum number of retransmissions allowed.

In location idle, a new file is awaited to be received via S;,. On its receipt, &
is set to one and clock x is reset. Then it starts sending the chunks one-by-
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Sender
rc<MAX
init x==T1
Sin?(dl,....dn) next_frame wait ack F!(i==1,i==n,ab,di)
ir=1 (x<=0) F!(i==1,i==n,ab,di) (x<=TI) x:=0
x:=0 rc:=0 re:=rc+1

M) M)

i==n
Sout!I_OK

e o
B success rC_=_:1\iIAX
(x<=0) ?(==Tl f<_n_
i==n
Sout!T_DK Sp_ué!I,NOK
x:=0 X:=d

error
(x<=SYNC)

Figure 8.9: Timed automaton for sender S.

one over K (via synchronizing over F') to the receiver R. A frame (b,b',ab,d;)
consists of three bits and a datum (= chunk). Bit b indicates whether chunk d;
is the first chunk of the file (i.e., i = 1); bit b’ indicates whether the datum is
the last item of the file (i.e., i = n). The retransmission counter rc is reset as it
is the first transmission of d;. In location wait_ack there are two possibilities:

e an ack is received (via B) within time (i.e., x < T1) and the sender moves
to the success location while flipping ab

e timer z expires (i.e., x = T1); then

— if a retransmission is still allowed (i.e., r¢ < MAX), a retransmission
is initiated with the same alternating bit and counter rc is incre-
mented

— if the maximum number of retransmissions has been reached (i.e.,
r¢ = MAX), the error location is reached and an Ipg or Iyok in-
dication is emitted (via S,,;) depending on whether d; is the last
chunk or not.

For simplicity, it is assumed that the timer x only expires if indeed no ack

is still to come?.

In all cases clock z is reset. If the last chunk has been acknowledged, S moves
from location success to location idle indicating the successful transmission of
the file by emitting Ipx. Otherwise, 4 is incremented while moving to location
next_frame from which the next chunk is transmitted.

2This assumption requires that T1 > 2 x TD + & where § denotes the processing time in
the receiver R.
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Note that in most locations (such as next_frame, error and success) it is not
allowed to delay at all. This is established by resetting clock = on all incom-
ing transitions, and imposing the invariant < 0. Secondly, we remark that
after aborting the transmission of a file (i.e., location error) an additional de-
lay of SYNC time units is incorporated. This delay is introduced in order to
ensure that S does not start transmitting a new file before the receiver has
properly reacted to the abortion. In case of abortion the alternating bit scheme
is restarted.

Modeling the Receiver

The receiver is depicted in Figure 8.10. System variable exp_ab € { 0,1 } models
the expected alternating bit. Clock z is used to keep track of the delay between
the receipt of successive frames, and auxiliary clock w is used to avoid delaying
in locations. Clock z is (re)set by the receiver at the arrival of each new frame.
It times out if the transmission of a file has been interrupted by the sender S.

Receiver first_safe_frame
G?(&bl ,'bN,rab,d) (w<=0)
. z:=
new_file W=0 rab==exp_ab
rbN==1
Rout!(I_OK.,d)
z==TR z==TR exp_ab:=rab

rbN==

N==1
Rout!(I_NOK.*) o

rab==exp_ab
1b1==0, rbN==(
Rout!(I_INC,d)

frame_reported
(w<=0)

z<TR
G?2(rb1,rbN,rab,d)
w:=0

(z<=TR)

[rame())r;,geived

(wz0) rab==exp_ab
rbl==1, rbN==f

exp_ab<>rab Rout!(I_FST,d)

Alack

Alack
exp_ab:=1-exp_ab
z:=0

Figure 8.10: Timed automaton for receiver R.

In location new._file, R is waiting for the first chunk of a new file to arrive.
Immediately after the receipt of such chunk, exp_ab is set to the just received
alternating bit and R enters the location frame_received. If the expected al-
ternating bit agrees with the just received alternating bit (which, due to the
former assignment to exp_ab is always the case for the first chunk) then an ap-
propriate indication is sent to the receiving client, an ack is sent via A, exp_ab
is toggled, and clock z is reset. R is now in location idle and waits for the next
frame to arrive. If such frame arrives in time (i.e., z < TR) then it moves to the
location frame_received and the above described procedure is repeated; if timer
z expires (i.e., z = TR) then in case R did not just receive the last chunk of a
file an indication Iypg (accompanied with an arbitrary chunk “«”) is sent via
R,y indicating a failure, and in case R just received the last chunk, no failure
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is reported.

In most locations, no delay is allowed. This is done ensure that the sender S
does not timeout if an ack is still to come, and that the receiver R does not
timeout if the sender did not abort the transmission. For example, if we would
allow an arbitrary delay in location frame_received then the sender S could
generate a timeout (since it takes too long for an ack to arrive at S) while an
ack generated by R is possibly still to come.

8.6 Bibliographic Notes

Timed Automatae. Incorporating real-time aspects in formal modeling tech-
niques has received a considerable attention in the last two decades. The dis-
tinction between instantaneous activities (like changing a state) and delays,
which model the passage of time, originates from timed extensions of process
algebras such as timed CSP [163], timed CCS [193] and ATP [144]. The result-
ing two-phase behaviour in which discrete phases — a state change due to some
activity — and continuous phases — passage of time — has also been adopted by
Alur and Dill in their original timed automata paper in 1990 [5] (journal version
is published as [6]). Henzinger et al. [92] introduced the idea of invariants into
timed automata and called this safety timed automata. Since the observation by
Alur, Courcoubetis and Dill [4] that reachability properties for timed automata
can be checked in a symbolic manner (cf. Chapter 9), timed automata have been
the central focus of specification and verification approaches for real-time sys-
tems. Various extensions of timed automata have been considered such as, e.g.,
timed automata with edges equipped with deadlines (as opposed to invariants
that are associated with locations) by Bornot and Sifakis [28], timed automata
with drifting clocks — associating an interval to each clock that specifies the
relative speed with respect to an exact reference clock — by Olivero, Sifakis and
Yovine [145], and hybrid automata for describing a mixture of discrete and con-
tinous behaviour of a more general nature [128] by Maler, Manna and Pnueli.
Concerning specification, for instance, D’Argenio and Brinksma [61] defined a
compositional framework based on process algebra for describing safety timed
automata.

Theoretical Results. Like the close link between finite-state automata and lan-
guage theory — the expressive power of finite automata is equivalent to regular
expressions — there is a strong connection between timed automata and timed
languages. Timed languages consist of words that are infinite sequences of
symbols where a real value is associated to each symbol representing its time
of occurrence. Alur and Dill [6] proved that the class of languages accepted
by timed automata is not closed under complementation, and hence no simple
logical charaterisation of this class exists. Alur, Fix and Henzinger [8] con-
sider a subclass of timed automata, so-called event recording automata, that
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is closed under all Boolean operations including complementation. An event-
recording automaton is a timed automaton that contains for every event a clock
that records the time of the last occurrence of the event. Two-way timed au-
tomata [9], timed automata that can move back and forth for reading a word,
are (under the restriction that an input symbol cannot be read infinitely of-
ten) also closed under all Boolean operations. Recently, Asarin, Caspi and
Maler [17] defined timed reqular expressions and proved that, & la Kleene’s the-
orem for finite automata, its expressive power is equivalent to timed automata
(in the sense of [6], i.e., without location invariants). Interesingly, intersection
and renaming are essential operators for timed regular expressions to obtain
this result. As in classical automata theory, the construction of automata from
expressions is rather straightforward, while the other direction, from automata
to expressions, is much more involved. Asarin et al. extend their results to
timed w-regular expressions. Alur and Dill [7] present an algorithm to check
the emptiness of the language accepted by a timed automaton.

8.7 Exercises

EXERCISE 8.1. Consider a simple multi-media communication system that consists
of a Sender, a Receiver and two unidirectional channels, a VideoChannel and an Au-
dioChannel, directed from the Sender to the Receiver. For this exercise we ignore the
AudioChannel and concentrate on the communication of video frames. If the Receiver
receives a video frame, it processes the frame, and then plays the frame on a remote
TV-set. The processing time of the Receiver is exactly 5 time units.

Model the simple video-transfer system for the following types of VideoChannels in
terms of a network of timed automata:

1. a perfect “optimal delay” channel that does neither garble nor lose a frame, and
imposes a fixed latency of 10 time units to each frame;

2. a perfect “anchored jitter” channel that does neither garble nor lose a frame,
and that imposes a latency to each frame such that each frame is delivered to
the Receiver at earliest 2 time units before the perfect delay of 10 time units,
and at the latest 3 time units after the time point of a perfect delay;

3. aperfect “non-anchored jitter” channel that does neither garble nor lose a frame,
and that imposes a latency to each frame such that the time distance between
any two successive frames that are delivered to the Receiver is between 8 and 13
time units;

4. an imperfect “non-anchored jitter” channel with the same timing characteristics
as the previous question, but with the possibility to either lose a frame or garble
a frame;

5. (More involved.) take your model of the perfect “optimal delay” channel and
suppose the clock that regulates the delay of a frame does not have a fixed rate,
but has a fluctuating rate between a minimal rate of % ticks per time unit and
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a maximal rate of 18—0 ticks per time unit. Compare the behavior of this model
with the behavior of your model of a perfect “non-anchored jitter” channel.

6. suppose you are now given a video communication channel that is known to
never garble or lose a message, but has an unknown timing behavior; i.e., it may
be one of the types perfect “optimal delay”, perfect “anchored jitter” or perfect
“non-anchored jitter”. The only available timing information is that frames have
a timing distance of 10 time units if they do not incur any jitter. Give (a set
of) real-time temporal logic formulae that you could use to determine the type
of channel. Assume that you have the model of the Sender and Receiver at your
disposal.

EXERCISE 8.2. Consider the following simple railway system that consists of three
components: a Train, a Gate and a Controller. If the Train gets close to the Gate it
signals this by emitting an approach signal. After a while, it passes the crossing and
when it has passed the crossing it informs the gate that it has exited. The Train takes
5 minutes between signalling its approach and its exiting of the crossing. The Gate
is controlled by the Controller. It may be lowered when it is open or raised when it
is closed. Closing the Gate takes at most 1 minute and opening takes between 1 and
2 minutes. The Controller indicates to lower the Gate when a Train is approaching,
and once the Train has exited the crossing, the Controller will raise the Gate. The
Controller takes exactly 1 minute to respond to the approach signal, and responds to
an exit signal within 1 minute.

Question: model this system as a network of timed automata. Explain your model.

EXERCISE 8.3. Consider the two timed automata depicted below.

N

4

y
{y}

<
VAN
W

——
8
—

/AN
o
8

VAN
o

xr

{z} {y}
(a) (b)

As these automata have a single location only, the state of these automata can be
considered as just a point in the real plane. A point (d,e) (with d,e > 0) then means
that clock = equals d and clock y equals e.

Question: determine what is the reachable state space of each of these automata.
Justify your answers.

EXERCISE 8.4. Consider a system that consists of two processes: Main and Int.
Process Main increments the counter count as long as the global boolean variable flag
is false. When flag is true, the process Main decrements count. When count reaches
zero, process Main jumps to its final location. Process Main performs its actions once
every [L,U] time-units with U > L. The only purpose of process Int is to set the
variable flag to true (once) within maximally W time-units.

Questions:
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1. Model the informally specified system as a network of timed automata.

2. Determine the maximal amount of time it takes before process Main reaches its
final location. Justify your answer.

EXERCISE 8.5. A control system must ensure the safe and correct functioning of a set
of traffic lights at a T-junction between a major and a minor road. The lights will be
set on green on the major road and red on the minor road unless a vehicle is detected
by a sensor in the road just before the lights on the minor road. In this case the lights
will be switchable in the standard manner and allow traffic to leave the minor road.
After a suitable interval the lights will revert to their default position to allow traffic
to flow on the major road again. Once a vehicle is detected the sensor will be disabled
until the minor-road lights are set to red again. A sketch of the T-junction is provided
below.

Lights

Minor road

Major road

Questions:

1. First we ignore all timing issues involved and concentrate on the qualitative
aspects of the behavior of the traffic lights. Model the above system as a network
of (timed) automata. For convenience, you may assume that the two major-road
lights are fully synchronized and can be modeled as a single light. Complement
your system model by adding a process that regulates the arrival of cars in the
minor road.

2. Adopt your model so as to incorporate the following timing constraints. Deal
with each timing constraint separately so as reduce the complexity. Indicate for
each timing constraint the necessary adaptations to your untimed model:

(a) a minor-road light stays on green for 30 seconds
(b) all interim lights stay on for 5 seconds

(c) there is a one second delay between switching one light off and another on
(e.g. switching from red to amber)

(d) the major-road lights must be on green for at least 30 seconds in each cycle

(e) (More involved.) but must respond to the sensor immediately after that.
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(Hint: use urgent locations and urgent channels whenever appropriate; in case
of urgent channels, make sure there are no timing constraints on the communi-
cation via that channel, and that the location invariant of locations where such
transitions emanate are non-restrictive.)

3. We extend the T-junction in the following way. Suppose there is a pedestrian
crossing a short distance down the minor road but beyond the sensor. There is
a button on each side of the road for pedestrians to indicate they wish to cross.
The crossing should only allow people to cross when the ‘minor lights’ are set to
red in order to minimize waiting times for traffic on the minor road. The new
situation is sketched below.

Crossing Button

o

——i

Minor road

—

|
|
|
|
|
l
Major road
Extend your timed model of the previous question in order to cope with this new
situation.

4. Does the crossing indeed only allows pedestrians to cross when the ‘minor lights’
are set to red?
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Chapter 11

Symbolic Model Checking

This chapter deals with CTL model checking using symbolic representations of
boolean functions. Reduced ordered binary decision diagrams are introduced
as such representations, and various operations on these data structures are
discussed. It is shown how these data structures can be employed for CTL
model checking.

11.1 Introduction

The various algorithms for model checking, like for PLTL and CTL, all are
based on a system description in terms of a Kripke structure IC. This structure
needs to be kept in memory in order to perform the necessary computations.
Different types of data structures can be employed to store the model K in
computer memory. Consider K = (S, I, R, Label) with S = {s1,...,sy } such
that states are labeled with atomic propositions aq,...,ax, say. A simple
representation of this Kripke structure is to identify the states by numbers,
represent the set of initial states I as boolean vector i, use a boolean matrix
R of cardinality N-N to represent the transition relation R, and a boolean
matrix L of cardinality IV-K to represent the state-labeling Label. Bit-vector
1 represents the characteristic function for I, i.e., i(k) = 1 if state k € I, and
equals 0 otherwise. Similarly, R and L are the characteristic functions of R and
Label, respectively:

L 1 if s; € R(s;)
Rsi,sj) = {0 otherwise

213

state-space
explosion?
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and

L(si, a;) 0 otherwise

{ 1 if a; € Label(s;)

As the matrices R and L typically contain a relatively high number of elements
that are equal to zero, data structures for sparse matrices such as (arrays of)
linked lists can be used. The same applies to the bit-vector to represent I.
Since all components of a Kripke structure are explicitly stored, this scheme is
referred to as an ezplicit state-space representation.

Ezxample 11.1. Consider the Kripke structure depicted in Figure 11.1. It

a

7 - 51;—>

{a.b} ’
Figure 11.1: An example Kripke structure

consists of four states, named sy through ss, and has as labels propositions of
the set {a,b}. Suppose we identify state s; by number i, proposition b by 0,
and a by 1. The vector i representing the set of initial states, and the matrices
R and L are given by:

and R = and L=

|,
Il
S = O =
= o O O
O = =
)
_ = O
— -0 O
o = O

For instance, i(0) = 1 represents that sg is an initial state, R(1,2) = 1 repre-
sents that state sy is a direct successor of s1. L(2,0) = 1 represents the fact
that state so is labeled by b while L(2,1) = 0 means that ss is not labeled with
a. (End of example.)

The total space consumption of this state space representation is N-(N+K)+ N
bits. The basic concept that underlies symbolic model checking is to replace
the explicit state-space representation by a symbolic, and, in most cases, more
compact representation. Although the term ”symbolic” in principle refers to
any technique to store states and transitions symbolically, often a particular
method is referred to, namely the use of so-called binary decision diagrams,
BDDs for short. These data structures have originally been used by Akers [2, 3]
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and Lee [121] to represent boolean functions — such as hardware circuits — in
a compact way. As decision diagrams are a very natural data structure, it
is difficult to track their origin. Observe that the representation of Kripke
structures above is based on boolean functions, in particular, boolean vectors
(functions with one parameter) and matrices (functions with two parameters).
In addition, it turns out that all operations needed for CTL model checking such
as set manipulations and fixed-point computations can efficiently be supported
by BDDs. In particular, the set Sat(®) of states satisfying ® that is central to
verifying CTL-formulae can be represented in a (mostly) very compact way.

Although BDDs cannot guarantee to avoid state-space explosion in all cases,
they provide a compact representation for several systems, allowing these sys-
tems to be verified — systems that would be impossible to handle using explicit
state enumeration methods. Experience shows that in particular synchronous
hardware circuits are well-suited to be represented using BDDs in a compact
way. All basic operations (such as set manipulations or projection) on BDDs
have a low time complexity, and are relatively easy to implement. In addition,
BDDs are applicable to all finite Kripke structures, and are not tailored to a
specific set of such structures.

11.2 Representing Boolean Functions

11.2.1 Kiripke Structures as Boolean Functions

To introduce the use of binary decision diagrams, let us consider how Kripke
structures can be encoded using boolean functions. Consider again (S, I, R,
Label) with N states. Assume that each state is uniquely labeled, i.e., for any
states s, s’ if Label(s) = Label(s') then s equals s’. Note that this assumption
does not impose any restriction: each Kripke structure can be modified by, for
instance, extending the set of atomic proposition with proposition ats for any
state s, and adding the new atomic proposition ats to the labeling of state s
only, i.e., ats € Label(s), and ats ¢ Label(s') for any state s’ different from s.
Clearly, then for any states s,s’, Label(s) = Label(s") implies s = s’. Suppose
that after this possible transformation, states are uniquely labeled with the
atomic propositions ay,...,ax, and assume there is a fixed total ordering on
these propositions such that a; < as < ... < ag.

A state will be represented by a bit-vector of length K. More precisely, state s is
represented by [s] = (b1, be,...,bx) such that b; equals 1 if atomic proposition
a; € Label(s) and 0 otherwise. Alternatively, each state is represented by a
boolean function over the boolean variables x; through z g as follows:

] AN xy Ao N x)
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where the term z; equals z; if a; € Label(s), and —z; otherwise. Formally,
each state s is described by a boolean function f, say, that takes K boolean
variables and K boolean values as argument such that:

fs((I,‘l,...,xK;bl,...bK):(II){ VAN AN LE}((

where z; equals z; if b; equals one, and —x; otherwise. For example, when
we assume that b < a in the previous example, then for state so we have
[s2] = (1,0), or fs,(z1,22;1,0) =21 A = z9.

The set of initial states I can be considered as an unary relation over the set
of states, returning 1 if a state is initial, and 0 otherwise. The characteristic
function of I, denoted fr, may be represented by a simple truth table, or, alter-
natively, by a boolean function. For instance, the following boolean expression
represents the characteristic function corresponding to I = {sq,...,s, }:

fsl(xl,...,q,‘[(;bl,...,b[() V ...V fsn(fL‘l,...,xK;bl,...,bK)
Note that this expression is in disjunctive normal form.

The successor relation R is a binary relation over {0, 1 }K , i.e., over bit-vectors
of length K, such that [s] is related to [s'] if and only if (s,s’) € R. The
characteristic function of R, denoted fr, may, for instance, be described by a
truth table, or, alternatively, by a boolean function in disjunctive or conjunctive
normal form. For instance, the following boolean expression represents that
s9 and sz are both direct successors of s; in our running example, ie., R =

{ (Sla 32), (81, 83) }:

(fsr (w1, 2301,02) A fo, (], 255 b1, b2))
Vo (fo (w1, m2501,02) A fog (o, 2551, 02))

Here, the boolean variables 1 and 9 are used to encode the source state of a
single transition while their primed variants are used to encode the target state.
Note that this expression is also in disjunctive normal form.

There is no need to represent the function Label explicitly anymore as the en-
coding of states as bit-vectors, or equivalently, as boolean functions, is implicitly
based on this labeling.

Ezample 11.2. Consider again the Kripke structure of Figure 11.1. First
observe that in this example all states are uniquely labeled, so no additional
atomic propositions have to be considered. Assume the atomic propositions in
{a,b} are ordered as b < a. The states are then represented by:
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state | bit-vector boolean function

S0 (0,0) R ANANRE 2
S1 (0, ].) gl /\5132
S9 (1,0> 1N\ 7 X2
S3 (1, ].) I /\5132

The set of initial states I = {so,s2} is represented by the truth table such
that fr({(0,0)) = 1 and f1((1,0)) = 1 and 0 otherwise, or equivalently, by
fr(z1,29) = (mx1 A =me) V (21 A —x2). The latter can be simplified to — o
by straightforward formula manipulation.

The characteristic function of the successor relation R is listed by its truth table:

0,0 | 0 1 0 1
0,1 | 0 1 1 0
(1,0) | 0 1 1 1
1,1) | 1 0 1 1

For example, the fact that state sy is a successor of sy follows from fr([s2],[s1])
=1, that is, fr((1,0),(0,1)) = 1. A representation of fr in disjunctive normal
form can simply be obtained from the above truth table by “listing” all entries
equal to one in the table, e.g., in a row-wise fashion starting at the uppermost
row:

[r(z1, 0,2}, ) = (mz1 A —zo A -z A Zh)
(mz1 A —xzo A 2| A )
(mz1 A zg A2 N —dh)

<< <LK

(1 AN zo A 2} N )

We have fr(z1,z2,2),24) = 1 if and only if (s,s") € R with [ s] = (z1,z2) and
[s'] = («),2,). The first disjunct represents that s1 is a successor of sp, the
second disjunct that s3 is a successor of sg, and so on. (End of example.)

11.2.2 Binary Decision Trees

Boolean functions like the transition relation before can be either represented by
a truth table, listing all possible inputs and corresponding output, or a boolean
expression in conjunctive or disjunctive normal form. Alternatively, a rooted
binary decision tree (BDT, for short) can be used. A BDT is a binary tree in
which each leaf v is labeled with a boolean constant val(v) which is either 0 or
1. Other vertices are augmented with a boolean variable var(v) and have two
children: left(v) and right(v). The labeling of vertices with boolean variables
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is done in such a way that on each path from root to a leaf, the variables are
encountered in the same order.! The left child of a non-leaf corresponds to the
case that the value of var(v) equals zero; the right to the case that var(v) equals
one:

if var(v) = 0 then goto left(v) else goto right(v) fi
Leafs are often called terminals and other vertices are referred to as nontermi-
nals. In the representation of a BDT, edges to left children (zero) are drawn as
dotted lines, while edges to right children (one) are represented by solid lines.

As BDTs are drawn from top to the leafs, the direction from edges is clear and
therefore edges are drawn as lines rather than as arrows.

Figure 11.2: A binary decision tree representing fr

Ezample 11.3. The binary decision tree that represents the set of initial
states of the Kripke structure in Figure 11.1 is depicted in Figure 11.2. The
ordering of the wvariables on any path from the root to any leaf is x1 < 3.
The binary decision tree of the characteristic function fr(z1,z9,z),z,) of the
previous example is given in Figure 11.3. The ordering of the variables on any
path from root to any leaf is x1 < zo < x| < . (End of example.)

001 [0 (O] ﬁ mnjnnbn

Figure 11.3: A binary decision tree representing fr

The function value f(z1,...,2,) for a given assignment to the arguments
through z,, is determined by traversing the BDT starting from the root, branch-

!Strictly speaking, we should call these data structures ordered BDTs due to this property.
Originally, BDTs do not obey this ordering requirement.
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ing at each vertex based on the assigned value of the variable that labels the ver-
tex. This process is continued until a leaf is reached. The value of the thus en-
countered leaf is the function value. For instance, to determine fr((1,0), (0,1))
in Figure 11.3, we instantiate the variables z; := 1, 23 := 0, ] := 0 and 2}, := 1
and traverse the tree accordingly from root to leaf. The resulting path is: go
right, go left, go left, and, finally, go right. This results in a terminal vertex with
value 1. We thus establish that (0,1) (state s1) is a successor of (1,0) (state
s2) as the function value fr((1,0), (0,1)) equals one. This is also denoted as

rlr1 :=1,20 := 0,2} := 0,2}, :=1] = 1.
fr[ 1 2

In a similar way, we can establish in Figure 11.2 that f;((0,0)) equals one
confirming that (0,0) (state sp) is an initial state.

A few remarks on BDTs are in order. BDTs are not very compact; in fact the
number of leafs is identical to the size of the truth table of f. That is, a BDT for
function f with n arguments has 2" leafs. A major reason for this exponential
size is that BDTs contain quite some redundancy. For instance, rather than
representing all leafs separately, all leafs with value one (zero) could be collapsed
into a single leaf, and the pointers of vertices to these leafs (in Figure 11.2
the vertices labeled with z3) adjusted accordingly. A similar scheme can be
employed for other subtrees, e.g., the vertices labeled with x5 in Figure 11.2
have isomorphic subtrees and could be collapsed. In the next section, we will
see that the avoidance of such redundancies is one of the key ideas behind
BDDs. Finally, remark that the size of a BDT does not change if we would
change the order of the variables occurring in the tree when traversing from
the root to a leaf. For instance, one could change the current variable ordering
z1 < g <} < x4 in Figure 11.3 into z; < z{ < z9 < x5, without affecting the
size of the BDT. A similar effect occurs for the truth table representation. It
is left to the reader to verify this.

Given a BDT, one may wonder which boolean function it represents. Each
vertex in a BDT in fact represents a boolean function:

Definition 11.1. (Function represented by a BDT-vertex)
Let B be a BDT and v a vertex in B. The boolean function fg(v) represented
by vertex v is defined as follows:

e for v a terminal vertex fg(v) = val(v), and

e for v a nonterminal vertex:

fe(v) = (var(v) A fg(right(v))) V (—var(v) A fe(left(v))).

The function represented by a BDT is fg(v) where v is the root of the BDT, i.e.,
the top-vertex without incoming edges. In the sequel we denote the function
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denoted by B simply by fg. The value of fg for assignment x| := by,...,z, =
by, for b; € {0,1}, equals fg[x1 :=by,..., 2y := by)].

Example 11.4.  The boolean function represented by the BDT in Figure 11.2
s defined by:

(—|(II1/\ —|£E2/\1) \Y (—|(II1/\(II2/\0) V ((I,‘l/\ —|£E2/\1) V (xl/\xz/\O)

It is straightforward to see that this represents fr(z1,z2). The boolean function
represented by the BDT in Figure 11.3 is obtained in o similar way:

(—|£E1 AN —xg A _IIll A _IIIQ A 0)
Vo (mz A mxe Az A b AL
Vo (mxzp A mzg Az A —zh A D)
Vo (mz A mme Az Az A D)
Voo

Voo(z1 ANz Az A xzh AT

which corresponds to the characteristic function fr(z1, 9,2, z,) of the succes-
sor relation R. (End of
example.)

Definition 11.1 is inspired by the so-called Shannon expansion for boolean func-
tions. This expansion allows to rewrite function f : {0,1}" — {0,1} by:

flzy,...,xp) =(x1 A flzr:=1]) V (mx1 A flz1:=0])

where f[z; := 1] stands for the function f(1,zs,...,z,) and flz; := 1] is a
shorthand for f(0,xs,...,z,). Alternatively,

f(z1,...,z,) =if 1 then f[z; := 1] else f[z; :=0]fi
It is, of course, possible to expand f not only with respect to z;, but with
respect to any variable x; through x,. In general, expansion with respect to

variable z; is:

flz1,...,zn) = (z; A flz;:=1]) V (mnx; A flz;:=0])
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11.3 Reduced Ordered Binary Decision Diagrams

11.3.1 Binary Decision Diagrams

In a binary decision diagram (BDD) the redundancy that is present in a deci-
sion tree is reduced. A binary decision diagram is a BDT in which isomorphic
subtrees are collapsed and redundant vertices — also called “don’t care” vertices
— are omitted. Stated in terms of boolean expressions, BDDs are represen-
tations in which equivalent boolean sub-expressions are uniquely represented.
A vertex is considered redundant if the truth variable of its boolean variable
is irrelevant for the truth value of the function represented by the BDD. For
instance, the vertex labeled with x; in Figure 11.2 is a redundant vertex: ir-
respective of selecting its left or right branch, the function value is only deter-
mined by xo. This conforms to the fact that the boolean function it represents,
(mxz1 A —x2) V (z1 A —x2) is equivalent to —xo.

The resulting structure is no longer a tree, but a directed acyclic graph.

Definition 11.2. (Rooted directed acyclic graph)

A directed acyclic graph (dag, for short) G is a pair (V, E) where V is a set
of vertices and £ C V x V a set of edges, such that G does not contain any
cycles 2. A dag is rooted if it contains a single vertex v € V without incoming
edges, ie., {v e V| (v,v) e B} =@.

Let X = {z1,...,2, } be a set of boolean variables and < a fixed total order
on X such that z; < z; or z; < z; for all 4,5 (¢ # 7). The pair (X, <) is a
totally ordered set.

Definition 11.3. (Ordered binary decision diagram)
An ordered binary decision diagram (OBDD, for short) over (X, <) is a rooted
dag with non-empty vertex-set V' containing two disjoint types of vertices:

e each nonterminal vertex v is labeled by a boolean variable var(v) € X
and has two children left(v), right(v) € V

e cach terminal vertex v is labeled by a boolean value val(v),

such that for each nonterminal vertex v € V and each vertex w:

w € { left(v), right(v) } = (var(v) < var(w) V w is a terminal).

2A cycle is a finite path vy ...v, with v; € V, n > 1, v, = v1, and (vi,vi41) € E for i < n.
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The functions left and right define the edges of the graph, left defines the
dotted edges while right defines the solid edges. The (ordering) constraint
on the labeling of the nonterminals requires that on any path from the root
to a terminal vertex, the variables respect the ordering <. This constraint
also guarantees that an OBDD is a directed acyclic graph: as the order strictly
decreases when going from a nonterminal vertex to its descendants, there cannot
be a cycle. For nonterminal v, the edge from v to left(v) represents the case that
var(v) = false (=0); the edge from v to right(v) represents the case var(v) = true
(=1). Note that, by definition, each BDT is an OBDD.

Ezample 11.5. Let X = {x1,z,2), 24} with ordering 1 < z9 < 2} <
xh. An example OBDD of the characteristic function fr over (X,<) of our
running example is given in Figure 11.4. Observe that compared to the BDT
of Figure 11.3 several isomorphic subtrees rooted at vertices labeled with x| are
collapsed. (End of example.)

Figure 11.4: A binary decision diagram representing fr

Typically, OBDDs that are identical up to, e.g., mirroring of certain subtrees
are not distinguished. Such structures are called isomorphic. OBDDs B and
B’ over (X, <) are isomorphic if and only if their root vertices are isomorphic.
Vertices v in B and w in B’ are isomorphic, denoted v = w, if and only if there
exists a bijection, H, say, from the vertices of B to the vertices of B’ such that:

1. if v is a terminal, then H(v) = w is a terminal with val(v) = val(w)

2. if v is a nonterminal, then H(v) = w is a nonterminal such that var(v) =

var(w), H (left(v)) = left(H (v)) and H (right(v)) = right(H (v)).

Testing whether two ROBDDs are isomorphic can be done in linear time due
to the labels (0 and 1) of the edges.
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11.3.2 Reduced OBDDs

An ordered BDD may still contain some redundancy. For instance, the two
subtrees of the leftmost nonterminal labeled with ) in the OBDD in Figure 11.4
are isomorphic and could be collapsed. In fact, the value of variable z/ in this
case is irrelevant, and the nonterminal vertex can be safely removed. In order
to obtain more compact representations, reduced OBDDs are considered.

Definition 11.4. (Reduced OBDD)
OBDD B over (X, <) is called reduced if the following conditions hold:

1. for each terminal v, w: (val(v) = val(w)) = v =w
2. for each nonterminal v: left(v) # right(v)

3. for each nonterminal v, w:

(var(v) = var(w) A right(v) = right(w) A left(v) = left(w)) = v=w

The first constraint does not allow identical terminal vertices, thus at most two
terminal vertices are allowed. The second constraint states that no nonterminal
vertex has identical left and right children and the last constraint forbids vertices
to denote isomorphic sub-dags. A reduced OBDD is abbreviated as ROBDD.
The boolean function represented by a ROBDD is obtained in the same way as
for BDTs, cf. Definition 11.1.

Ezample 11.6.  The BDD of Figure 11.J is an OBDD over (X, <), but not
an ROBDD. For instance, the two subtrees rooted at the vertex labeled with
in the leftmost subtree are isomorphic, and the top-vertices of these subtrees
violate the last constraint of Definition 11.4. (End of example.)

Definition 11.4 suggests three possible ways to transform a given OBDD into a
reduced form:

e Removal of duplicate terminals: if an OBDD contains more than one
terminal labeled 0 (or 1), redirect all edges that point to such vertex to
one of them, and remove the obsolete terminal vertices, cf. Figure 11.5(a).
Accordingly, a single terminal vertex with 0 (and 1) remains.

e Removal of redundant (“don’t care”) nonterminals: if both outgoing edges
of a nonterminal vertex v point to the same vertex w, then eliminate v
and redirect all its incoming edges to w, cf. Figure 11.5(b).
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e Removal of duplicate nonterminals: if two distinct nonterminal vertices
v and w are equally labeled and are roots of isomorphic ROBDDs, then
eliminate v (or w), and redirect all incoming edges to the other one, cf.
Figure 11.5(c).

Q

Q Q ecomes
N b
o] [o]

(a)

becomes

v Q w
\Q becomes

,

Figure 11.5: Steps to transform an OBDD into reduced form

For convenience, sometimes the convention is adopted to omit the 0-terminals
and all edges pointing to it. An OBDD is reduced if none of the possible
reduction steps above can be applied anymore. The transformation of an OBDD
into an ROBDD can be done by a bottom-up traversal of the directed graph in
time that is linear in the number of vertices in the OBDD. This transformation is
further described below. A natural question that arises when applying the above
transformations is whether the resulting ROBDD will be unique, or whether
there will be several possible resulting ROBDDs representing the same boolean
function? This question can be answered affirmative by the following result
which is due to Bryant [35]. Given a total ordering on the boolean variables,
there exists a unique ROBDD (up to isomorphism) that represents a boolean
function:

Theorem 11.1.
Let X = {x1,...,x, } be a set of boolean variables and < a total ordering on
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X. For ROBDDs B and B’ over (X, <) we have:

(fs = f') = B and B' are isomorphic.

Proof: This result is proven by induction on the number of boolean variables
n. Let fB = fgr = f and assume z1 < ... < zy,.

Base case: if n=0, then either f =0 or f = 1. It is not difficult to see that the
only ROBDD representing f = 0 consists of a single vertex labeled with value
0. Similarly, the only ROBDD representing f = 1 consists of a single vertex
labeled with value 1. Clearly, if B and B’ represent the same constant function,
they are isomorphic.

Induction step: Suppose that for any boolean function with less than & argu-
ments, k > 0, the result holds, and consider f(z1,...,z). Let ¢ be the minimum
index such that f depends on z;. Let fo = flz; := 0] and f1; = f[z; := 1]. As
fo and fi; both depend on less than k£ arguments, they are — by the induction
hypothesis — represented by isomorphic ROBDDs. Let B and B’ both represent
f, v be a nonterminal in B such that val(v) = z; and v' be a nonterminal in B’
with val(v') = z;. Note that fg(v) = fer(v') = f, as f is not depending on z;
through z;_1. The subgraphs rooted by left(v) and left(v') both denote fy, and,
by the induction hypothesis, there is an isomorphism, Hj, say, relating their
vertices. By a symmetric argument, H; is an isomorphism relating right(v) and
right(v"). Let H be a mapping from vertices in B to vertices in B’ defined by:
v’ ifw=wv
H(w) =< Hp(w) if wis a vertex in left(v)
Hy(w) if wis a vertex in right(v)

It is straightforward to see that H is a function that maps terminals in B onto
isomorphic terminals in B’, and nonterminals in B onto isomorphic nonterminals
in B’. It remains to be checked that B and B’ have isomorphic roots. Note
that B (and B’) contain only one vertex labeled with z;: if there would be
another vertex than v (and v') then the subgraphs rooted at these vertices are
isomorphic, contradicting that B (and B’) are reduced. Suppose there is some
vertex w in B with var(w) < var(v) = x;, and no other vertex wu, say, such that
var(w) < var(u) < var(v). As z; is the smallest variable (in the ordering <) on
which f depends, f does not depend on var(w), and therefore, the subgraphs
rooted at left(w) and right(w) are isomorphic to the subgraph rooted at v.
This, however, contradicts the fact that B is reduced. So, such vertex w does
not exist, and v is the root of B. BY a symmetric argument it follows that v’ is
the root of B’. As H (defined above) relates v and v it follows that the roots
are isomorphic. ged.

As a result, several computations on boolean functions can be easily decided
using their ROBDD representation. For instance, to decide the equivalence of
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two boolean functions it suffices to check whether their ROBDDs are similar,
i.e., isomorphic. Thus, the check whether a boolean function is always true (or
false) for any variable assignment of boolean values to its variables, amounts
to simply check equality of its ROBDD with a single terminal vertex labeled
1 (or 0), the ROBDD that represents true (or false). Furthermore, to test
the satisfiability of a boolean function f — does f(z1,...,x,) = 1 for some of
the assignments to its variables? — amounts to check whether its ROBDD is
not equal to the ROBDD with a single terminal vertex labeled 0. Such check
can be performed rather efficiently. For boolean expressions this satisfiability
problem is NP-complete by Cook’s theorem. Note that it is assumed that an
ROBDD-representation is at our disposal and obtianing this might not be easy!

Another consequence of this theorem is that when we apply the three reduction
rules listed before to an OBDD until no further reductions are possible, then
we are guaranteed that always the same resulting reduced OBDD is obtained.
In particular, the order in which the several reductions are applied is irrelevant.

Ezample 11.7.  Consider again our running ezample and X = { z1,x2 } with
x1 < x9. The BDT over (X, <) representing fr, the characteristic function of
the set of initial states, consists of 7 vertices, cf. Figure 11.2. It is evident that
only the value of boolean variable xo is relevant to decide the value of fr. The
ROBDD over (X, <) thus consists of just a vertex labeled x5 that has a one-leaf
as left child, and a zero-leaf as right child:

Let X = {x1,m0,2),2h } with ©1 < z9 < 2} < xb. The BDT over (X, <)
that represents the characteristic function fr consists of 2°—1 = 31 wvertices,
cf. Figure 11.3. The ROBDD over (X, <) representing fr is depicted in Fig-
ure 11.6(a). Since the BDT contains a substantial degree of redundancy (as
argued before), the size of the ROBDD is significantly smaller; it only consists
of 10 wvertices. Notice that for some evaluations of fr, the value of a variable
might be irrelevant, e.g., fr({0,0),(0,1)) is determined without using the fact
that variable = equals 0. This is reflected in the ROBDD by the fact that no
vertez labeled with x| is encountered on determining the value fr((0,0), (0, 1)).

(End of example.)

11.3.3 Constructing a Reduced Ordered BDD

There are basically two ways to generate an ROBDD from a boolean expression:
either an OBDD is constructed and subsequently reduced by applying the re-
duction rules listed before, or an OBDD is constructed and reduced on-the-fly,
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(a) ordering z; < 2 < x} < x5 (b) ordering 1 <' ) <’ w2 <’

Figure 11.6: Two ROBDDs (for different variable orderings) representing a
transition relation

i.e., reduced during construction.

In the latter approach, typically, a hash table, called “unique table”, is main-
tained which contains all currently existing OBDD vertices. A table entry for
a vertex stores all necessary information such as the identifier of its boolean
variable, and references to (the identities of) its two children vertices, cf. Ta-
ble 11.1. Reference counters are used to keep track of the number of references
to a vertex. This information is used to remove (non-root) vertices from mem-
ory once their reference counter equals zero. On creating a new BDD vertex
it is checked by a simple table look-up whether the unique combination of its
variable identifier together with the identifiers of its children already appears
in the table. If not, the corresponding item is inserted into the hash table;
otherwise, it is not. In the sequel, we will assume that this implementation
scheme is used.

vertex | var | left | right
#0 n/a | n/a | n/a
#1 n/a | n/a | n/a
#2 3 | #0 | #1
#3 3 | #1 | #0
#4 2 | #2 | #3
#5 2 | #2 | #1
#6 2 | #3 | #1
#7 1 | #0 | #4
#8 1 | #5 | #6
#9 0 | #7 | #8

Table 11.1: Example of a unique table for an ROBDD where variable x1, zo,
z} and 2, are indicated by 0 through 3, respectively

An alternative approach is to generate an OBDD and then reduce it. This is
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done using the operation REDUCE. For the sake of completeness, we describe
this operation here. Given OBDD B over (X, <), the operation REDUCE(B)
returns a reduced OBDD B’ over (X, <) such that fg = fg/. Suppose X =
{z1,...,2z, }. The algorithm REDUCE traverses the OBDD B in a bottom-
up fashion starting from the terminal vertices. Each terminal vertex v with
val(v) = 0 is labeled with id(v) = #0; similarly, all one-terminals are labeled
by #1. On encountering a nonterminal vertex, v, say, an identifier id(v) is
assigned in such a way that vertices representing the same boolean function are
equally labeled. For vertices at level k, this works as follows. Suppose we have
labeled all vertices up to level k, i.e., all terminals and all nonterminals that
are at level m > k. The label of vertex v is now determined as follows:

o If id(left(v)) = id(right(v)), then v is a redundant vertex — as it represents
the same boolean function as its children — and thus obtains the same
identifier.

e If there is another vertex w that is labeled with var(v) and, moreover,
id(left(w)) = id(left(v)) and id(right(w)) = id(right(v)), then v and w
represent the same boolean function, and v gets the same identifier as w.

e If none of these cases apply, we assign the next unused identifier to v.

The worst case time-complexity of REDUCE is O(|B|-log|B|) where |B| de-
notes the number of vertices in OBDD B.

Ezxample 11.8.  The left part of Figure 11.7 depicts an ordered BDD that is not
reduced. The identifiers assigned to vertices in the way explained above (where
at each level vertices are labeled from left to right) are indicated next or beneat
the vertex. The corresponding reduced OBDD is depicted in the right part of
Figure 11.7. (End of example.)

#0 #1 #0 #1  #1 #0 #1 #1

Figure 11.7: Reducing an ordered BDD (left) into a reduced OBDD (right)
using the procedure REDUCE
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11.3.4 Variable Ordering

The size of an ROBDD strongly depends on the ordering of the boolean vari-
ables. This is illustrated by the following example.

Ezample 11.9.  Figure 11.6(b) depicts the ROBDD representing the character-
istic function fr of our running example, using a different variable ordering:
1 < 2 <" x9 <" 2}, This ROBDD over (X,<') consists of 8 vertices and thus
exploits the redundancy in the BDT of Figure 11.3 in a more optimal way than
the ROBDD in Figure 11.6(a). This is, for instance, illustrated by considering
the path in order to determine the value of fr((1,1),(1,1)): in the ROBDD
of Figure 11.6(a) three vertices are visited in order to determine this function
value, whereas in the ROBDD of Figure 11.6(b) only two vertices are needed.

(End of example.)

For representing the transition relation of Kripke structures, experiments have
shown that an ordering on the variables in which the bits representing the source
and target of a transition are alternated, provides rather compact ROBDDs.
Thus, for [s] = (b1,...,b,) and [s'] = (b,..., b)) an effective ordering of the
boolean variables is:

T <T) <z <Th<...<zTH <7

or its symmetric counterpart =} < z; < ... < ], < z,. This ordering scheme
has been applied in Figure 11.6(b). The more naive ordering in which all bits
encoding the source state precede the bits encoding the target state is:

L1 < .. <Tp <y <...<Yn
and is applied in Figure 11.6(a).

For larger examples, the differences in BDD-size can be substantially larger than
in the previous example. Examples do exist for which under a given ordering an
exponential number of vertices are needed, whereas under a different ordering of
the variables only a linear number of vertices is needed. Moreover, there do exist
boolean functions that always have exponential-size ROBDDs: regardless of the
variable ordering, the ROBDD representing the function H,, : {0,1}" — {0,1}
defined by H,(z1,...,%,) = 2 with 0 < k < n where k is the number of ones
in the input and xy = 0, is exponential in n. H,(x1,...,z,) yields a bit position
where x;, is the number of ones in the input. For instance, for n = 4 we have
H4(0,0,1,0) =0, as k =1 and 1 = 0 and Hy(1,1,1,0) = 1 as kK = 3 and
r3 = 1.

Ezxample 11.10.  Consider the following boolean function that takes 2n param-
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(a) 11 < w2 < a3 <y1 <y2<ys3 (b) z1 <y1 <22 <y2 <3< Y3

Figure 11.8: Two reduced OBDDs representing the same boolean function

eters:

[z, o gty yyn) = (11 <= y1) A ... A (2, <= yn)

This function compares two n-bit input vectors. Under the variable ordering
1 < ...<xp <y; <...<ypn, the ROBDD representing f consists of 3-2™ — 1
vertices. That is, the size of the ROBDD is exponential in the number of boolean
variables. Under the variable ordering 1 < y1 < ... < xp, < ypn, however, the
ROBDD representing f has a size that is proportional to n, i.e., more precisely,
it has 3-n+2 vertices. This is illustrated for n=3 in Figure 11.8 where it should
be noted that the 0-terminal is omitted to simplify the picture.

An intuitive explanation for this dramatic difference in size is given by the ma-
triz representation of f((z1,z2,23), (y1,y2,y3)) and f((z1,y1,72), (Y2, 73,Y3)),
where the order of the six arguments corresponds to the variable orderings. For
the former function, we have that all diagonal elements equal one whereas all
other elements are zero, yielding no possibilities for reductions. For the latter,
however, the one-values are more scattered around the matriz, allowing possible
reductions. These effects are illustrated by the following matrices:

S ~ S S ~ S ™~ ~ S ™~ S S ~ S ~ ~

T 2T I T == = T 2T I T = X =
poo 1 0 0 0 0 0 0 0 goo 1 o0 0 0 1 0 0 0
por 0 1 0 0 0 0 0 0 oor 0 o0 o0 1 0 0 0 1
o100 o0 1 0 0 0 0 0 oro 0 o0 o0 o0 0 0 0 0
woy0 o0 o0 1 0 0 0 0 w0 o o0 o0 o0 0 0 0
potrr {0 0 o0 0 1 0 0 0 grr {0 o0 0 0 0 0 0 0
11700 o0 o0 o0 0 1 0 0 11701 o0 0 0 1 0 0 0
w10 o0 o0 o0 0 0 1 0 010 o0 o0 o0 0 0 0 0
1110 o0 0 o0 0 0 0 1 1110 o0 o0 1 0 0 0 1

r <x2<T3 <y <y2<ys T <yr<zre<y2<r3<ys
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(End of example.)

Can we not just determine the variable ordering that gives rise to the small-
est ROBDD? Unfortunately, this optimal variable ordering problem is NP-
complete:

Theorem 11.2.
The optimal variable ordering problem for ROBDDs is NP-complete.

Most model checkers based on a symbolic representation of the state space
using ROBDDs apply heuristics. There are two kinds of heuristics for finding
a sub-optimal variable ordering. Static approaches try to derive an ordering
from the system model (a Kripke structure or a hardware circuit) a priori to the
construction of the ROBDD by inspecting the mutual dependencies between the
boolean variables. Dynamic approaches changes the variable ordering during
or after the construction of the ROBDD to find a compact representation. The
latter schemes are mostly used in model checkers.

11.3.5 OBDDs and Automata on Finite Words

There is a strong analogy between OBDDs and deterministic finite-state au-
tomata. Recall from Chapter 4 that a finite-state automaton (FSA, for short)
is defined over a set of input symbols (its alphabet) and consists of a set of
states, a transition function that given a symbol from the alphabet and the
current state determines the possible next states, a distinguished set of ini-
tial states, and a set of accept states. An OBDD B is in fact a deterministic
FSA over the alphabet {0,1}. The states of the FSA correspond to the non-
terminals of B, and the edges to the children of a nonterminal are considered
as transitions to next states labeled with 0 (for left children) and 1 (for right
children), respectively. The root acts as the single initial state, whereas the
terminal labeled with value 1 is the accept state. The terminal labeled with 0
is a non-accept state. Formally:

Definition 11.5. (Mapping of an OBDD onto a deterministic FSA)
For OBDD B let the FSA Ag = (X, S,I,—, F') be defined as follows:

»={0,1}

S =V, the set of vertices of B

I ={v eV |wvisthe root of B}

— is defined as the smallest relation defined as follows:
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— v % w if and only if w = left(v)

— v L if and only if w = right(v)

e F={v eV |visterminal and val(v) =1}

The OBDD B for function fg: {0,1}” — {0,1} can be considered as a deter-
ministic FSA for the language f~ (1) of words of length n, where the FSA may
skip — like redundant vertices — bits from the input.

Theorem 11.3.
For any OBDD B: L(Ag) = f5'(1).

This result can be justified as follows. If for a certain sequence of zeroes and
ones, the FSA ends in an accept state, then fg applied to this input yields 1; if
the FSA ends in a non-accept state, then fg yields 0.

Ezample 11.11. The deterministic FSA that corresponds to the OBDD of
Figure 11.6(b) is depicted in Figure 11.9. (End of example.)

Figure 11.9: A deterministic FSA that corresponds to an OBDD

The relationship between an OBDD B and its reduced variant is almost identical
to the relationship between the deterministic FSA representing B and its min-
imized FSA that accepts the same language. Moreover, the following analogies
do exist between reduced OBDDs and minimised deterministic FSA:

e A minimised FSA for a given accepted language is unique up to iso-
morphism. An ROBDD for a given boolean function is unique up to
isomorphism given a variable ordering.

e Two languages can be tested for equivalence — do they contain the same
words? — by checking whether the minimised automata that accept these
languages are isomorphic. The equivalence of two boolean functions can
be tested by checking whether their ROBDD representations are isomor-
phic. In both cases, efficient algorithms do exists for checking isomor-
phism.
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e The question whether an automaton is non-empty — does there exist an
accepting word? — is decidable by the (efficient) test whether there exists
a path from the initial state to an accept state. This is analogous to
testing the satisfiability of a boolean function by checking whether its
ROBDD has a reachable terminal with value one.

e The standard operations on languages, such as union, intersection and
complementation, can efficiently be performed on the corresponding ac-
cepting minimised automata. Similarly, disjunction, conjunction and
negation can efficiently be performed on ROBDDs (see below).

11.4 Operations on ROBDDs

11.4.1 Negation

Let B be an ROBDD over (X, <) representing the function fg. The ROBDD
representing the negation of this function, denoted NoT(B), is obtained from B
by simply swapping the two terminal vertices. By this operation it is evident
that whenever fg(z1,...,7,) equals one, then fy,(g)(z1,...,7,) equals zero,
and similar for the other case. It is also not difficult to see that NoT(B) is a
reduced OBDD given that B is a reduced OBDD.

11.4.2 Variable Renaming

Let B be an ROBDD over (X, <) representing the function fg, and let y be
a fresh boolean variable, i.e., y ¢ X, such that z;_; < y < z;y;. The func-
tion RENAME(B, z;,y) yields an ROBDD over (X —{z; }) U{y } ordered under
<, that results from B by replacing the label of any z;-labeled vertex into y.
This operator can be generalized towards the renaming of several variables in
a straightforward manner. Let RENAME(B, z;,, ..., %, i, ..., Vi, ) be a short-
hand for the successive renaming of variable z;, by y;,, =i, by v;,, and so on.

11.4.3 Binary Operations

The operator APPLY performs a point-wise application of the binary operator
op (e.g., conjunction A or disjunction V) to two ROBDDs. Formally, for ROB-
DDs B; and Bs over (X, <), APPLY(0p, B1,B2) yields an ROBDD over (X, <)
representing the function fg, op fg,. In order to determine ApPLY(0p, B, B2),
the function listed in Table 11.2 is invoked where vertex v; is the root of ROBDD
B;. In general, this function is invoked with vertices of B; and Bs.
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function Apply (op : BinOp,vy,vs : BDDvertex) : BDDvertex;
(* pre: v; and vy are vertices of ROBDDs over (X, <) *)
begin var v : BDDvertex;
if (v; and vy are terminals)
then val(v) := val(vy) op val(vy);
else if (v; and vy are nonterminals A var(vy) = var(vs))
then var(v) := var(vy);
left(v) := Apply(op, left(vy), left(vs));
right(v) := Apply(op, right(v ), right(vs));
else if (var(vy) < var(vs));
then var(v) := var(vy);
left(v) := Apply(op, left(vy), v2);
right(v) := Apply(op, right(v:), v2);

else var(v) := var(vs);
left(v) := Apply(op, v1, left(vs));
right(v) := Apply(op, vy, right(v2));
fi
fi
fi
return v;
(* post: v is a BDD-vertex representing fg(v1) op fe(va) *)

end

Table 11.2: Algorithm to apply a binary operator to two ROBDDs

The algorithm for Apply follows a recursive descent scheme using Shannon’s
expansion. More concretely, for boolean functions f and g over zy,...,zy,:

fopg = (z1 A (flz1:=1] op g[z1 :=1]))
V (=z1 A (flz1:=0] op g[z1 := 0]))

Stated in words, this means that starting from the root of the ROBDDs rep-
resenting f and g, the ROBDD representing f op g can be determined by re-
cursively constructing the left- and right-branches (the 0- and 1-expressions)
and then form an ROBDD from there. During this recursive scheme, four cases
are distinguished. The simplest case occurs when vertices v; and vy are both
terminals; then a terminal node is returned with value op applied to the values
of the terminals v; and vy. In the remaining cases, at least one of the vertices
is a nonterminal. If both vertices are equally labeled, then Apply is applied
recursively according to the above expansion. If val(vy) < val(vy) then there
is no vertex in By labeled with val(vy), because both By and Bs are over the
same variable ordering. Thus fg, is independent of val(v;), and Apply needs
to be applied recursively only to the children of v;. The case val(vy) > val(vs)
is handled symmetrically.

Ezample 11.12.  (Taken from [10]). The result of calling APPLY(A, By, B2)
on the ROBDDs By (c¢f. Figure 11.10(a)) and By (cf. Figure 11.10(b)) is given
in Figure 11.10(c). To simplify the drawings, the 0-terminal vertices have been
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omitted. (End of example.)

OO

o y

(a) (b) (©)

Figure 11.10: Two ROBDDs and their conjunction

To improve its efficiency, the function Apply may avoid recursive invocations if,
depending on the binary operator op at hand, one of the two values of the formal
parameters has a value that fully determines the resulting vertex. For instance,
if op is conjunction, and v is a terminal vertex with val(vy) = 0, a terminal
vertex with value zero can be returned without any recursive invocation.

A more important optimisation is the following. Due to the recursive nature
of APPLY it may happen that several invocations with the same formal param-
eters, i.e., the same BDD vertices, occur. In fact, APPLY has an exponential
time complexity, since the processing of each nonterminal gives rise to two re-
cursive invocations. In order to avoid re-computation, in most implementations
dynamic programming is employed. Using this technique, computed results are
stored once they are determined and prior to each recursive invocation it is
checked whether the requested result is stored. If so, then the recursive call
is not made and the stored result is used instead, otherwise APPLY is invoked
recursively. The table storing the intermediate results is called “computed ta-
ble”. Using dynamic programming, there can be at most | By |-| B2 | recursive
invocations, each adding at most one vertex to the resulting ROBDD. Given
a hash table implementation, each step can be performed in constant time on
average. Thus, both the time complexity and the size of the resulting ROBDD
are in O(| By || B2 ).

11.4.4 Replacement by Constants

Let B be an ROBDD over the variables z; through z,. RESTRICT(B,z;,b)
returns the ROBDD which results from replacing (also called “restricting”) the
variable x; by the boolean constant b. That is to say, RESTRICT(B, z;, b) returns
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the ROBDD representing the function fg[z; := b]. Note that RESTRICT(B, z;, b)
is an ROBDD which no longer depends on variable z;, i.e., it only depends on
TiyeeryTi—1y Titly---,Tn. The ROBDD RESTRICT(B,z;,b) can be obtained
from B by replacing any edge from a vertex v to a vertex w labeled with x;
by an edge to left(w) if b equals zero, and to right(w) otherwise. Thus, all
zi-labeled vertices are “bypassed”. Subsequently, all vertices labeled with x;
are removed. Finally, the resulting OBDD is reduced to bring it into reduced
form. (This is typically guaranteed by constructing RESTRICT(B, z;,b) using
the unique table described before.) The time complexity and the size of the
resulting ROBDD are proportional to | B]|.

Example 11.13.  Figure 11.11 depicts an example application of RESTRICT.
The variable zo in ROBDD B (on the left) is restricted to one. The resulting
ROBDD RESTRICT(B, 2:2,1) is depicted on the right. As explained, the edges
to the vertex labeled with xo are redirected to its right child. (End of example.)

Figure 11.11: Example of replacing the variable z2 by the constant 1

11.4.5 Abstraction

Let B be an ROBDD over (X, <) with the boolean variables X = z1,...,z,,
and op be an associative binary boolean operator, such as conjunction (A) or
disjunction (V). The ROBDD over (X, <) that represents the abstraction of B
with respect to variable z; and operator op, denoted ABSTRACT(B, x;, 0p), rep-
resents the function fg[z; := 0] op fg[z; := 1]. For disjunction (i.e., op equals
V), abstraction with respect to variable z; amounts to existential quantification
over x;, as:

A naive implementation of existential quantification over z; is to simply return

AppLY(V, RESTRICT(B, z;,1), RESTRICT(B, %;,0))
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As the ROBDDs RESTRICT(B, z;,0) and RESTRICT(B, z;,1) are very similar
in structure, the efficiency of this operation can be improved substantially by
replacing each node in B labeled with z; by the result of applying V on its
children, while keeping the rest of the ROBDD B in tact.

Due to the associativity of the operator op, abstraction can be generalized

with respect to several variables: the ROBDD ABSTRACT(B, (zi,,...,%i,),0p)
represents the boolean function

felzi, :=0,...,z;, :=0]op ... op fglzi :==1,...,2;, =1]

That is, it represents a combination by the operator op of all possible restrictions
of B with respect to the variables x;, through z;, .

Example 11.14.  Abstraction is illustrated in Figure 11.12 by abstracting from
variable xo in the ROBDD in Figure 11.6(b). (End of example.)

(a) (b) (©)

Figure 11.12: (a) RESTRICT(B,x2,0) and (b) RESTRICT(B,z2,1), and (c)
ABSTRACT(B, z2, V)

11.5 Symbolic Model Checking

Given the operations on ROBDDs we are now in a position to explain in de-
tail how CTL model checking works based on a symbolic representation of the
Kripke structure under consideration. The first question, of course, is: how
do we obtain an ROBDD representation from a Kripke structure? Assume
that | S| = 2" and let aq,...,a, be an enumeration of the atomic propositions
that occur in the Kripke structure. This provides enough information to ob-
tain the binary encodings of states. The algorithm to construct an ROBDD
representation from a given Kripke structure is straightforward and works as
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function bddSat (® : Formula) : ROBDD;
(* pre: @ is a base CTL-formula *)
begin
switch(®) :
case ® = true then return ConsT(1)
case ® = false then return CoNsT(0)
case ® = qa; € AP then return ROBDD for f(z1,...,z,) = z;
case ® = = ®; then return NoT(bddSat(®,))
case ® = &; V P, then return APPLY(A, bddSat(®;), bddSat(®P2))
case ® = EX®; then return bddEX(®,);
case & = E(®; U®P,) then return bddEU(®,, P5)
case & = EG®; then return bddEG(®,)
end switch
(* post: ROBDD bddSat(®) represents Sat(®) = {s|sE= @} *)

end

Table 11.3: The recursive algorithm for symbolic model checking of CTL

follows: starting from the ROBDD representing 0, the Kripke structure is tra-
versed, e.g., in a depth-first search manner, and on encountering an edge, an
ROBDD for this edge is constructed and combined with the “or” operation
with the ROBDD representing all previously processed transitions. This yields
the ROBDD R that represents the successor relation R. Similarly, the ROBDD
| representing the set of initial states is constructed in a setp-wise fashion on
encountering an initial state.

Given this symbolic representation of the Kripke structure, model-checking the
CTL-formula ® takes place in the same manner as in the non-symbolic setting
(cf. Chapter 7). That is, the main algorithm consists of a bottom-up traversal
of the parse tree of the formula ®. For each node of the parse tree, i.e., for each
sub-formula ¥ of ®, the set Sat(V) of states is computed for which ¥ holds.
This computation is carried out level-wise, starting from the leafs of the parse
tree — the nodes that correspond to the atomic propositions — and finishing at
the root of tree, the (only) node in the parse tree that corresponds to ®. At
an intermediate node, the results of the computions of its children are used
and combined in an appropriate way to establish the states of its associated
sub-formula. The type of computation at such node depends on the operator
(e.g., A, EX or EU) that is at the “top level” of the sub-formula treated. By
following this bottom-up procedure, one obtains the set of states for which the
requested formula ® holds at the root of the parse tree. The main difference
with the non-symbolic procedure is that the set Sat(®) is not stored explicitly
anymore, but as an ROBDD. The recursive algorithm is shown in Table 11.3.
The ROBDDs consisting of just a single terminal vertex labeled with 0 or 1 are
indicated by CoNsT(0) and CONST(1), respectively. The ROBDD representing
f(x1,...,2,) = z; consists of a single nonterminal v labeled with x; such that
the terminals left(v) and right(v) are labeled with 0 and 1, respectively.

For formulae of the form EX® the function bddEX (cf. Table 11.4) is in-
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function bddEX (® : Formula) : ROBDD;
(* pre: @ is a base CTL-formula *)
begin var B,B’,N : ROBDD;

B := bddSat(®);

B' := RENAME(B, z1,..., 2y, 21,...,2]);
N := AppLY(A, R, B');
return ABSTRACT(N, (z,...,2}),V);
(* post: bddEX(®) represents Sat(EX®) = {s|s|=EX®} *)

end

Table 11.4: Algorithm to symbolically compute Sat(EX ®)

voked that computes the ROBDD representing the characteristic function of
Sat(EX ®) as follows. First, the ROBDD B representing Sat(®) is determined.
All state variables x; are renamed into their primed variants, yielding a primed
version of Sat(®), stored as B’. The ROBDD APpPLY(A,R,B’) is constructed,
representing the set of pairs (s,s’) in R such that s’ € Sat(®). Finally, all
boolean variables z through z], are deleted by abstraction to obtain the ROBDD
representing

{s]|3s'.R(s,s") N s" € Sat(®)}

Note that in the last step of the construction, the boolean variables x; through
T, are retained.

The function bddEU (cf. Table 11.5) is based on the fixed-point characterization
of o = E(®U V). In fact, it iteratively computes the least fixed point of

E(@UT)=T VvV (& A EXE(®UT))

in a symbolic manner. As all U-states satisfy ¢, the computation starts with
constructing the ROBDD N for Sat(V). The states satisfying ® are recursively
computed and stored as ROBDD B. P is initialised to CONST(0). An iterative
procedure is subsequently started that can be considered to systematically check
the state space in a “backwards” manner. In each iteration, all ®-states are
determined that can move by a single transition to (one of) the states of which
we already know to satisfy . Thus, in the i-th iteration of the procedure, all
d-states are considered that can move to a W-state in at most ¢ steps. This is
performed by iteratively applying the same computations on ROBDDS as in
the function bddEX and a computation step APPLY(V, P, B') where the states
satisfying ¢ (stored as ROBDD P) are extended with the ®-states that can
reach these states in one transition. This procedure continues as long as no
new states are added, i.e., when the ROBDDs N and P are equal. Note that
due to their canonicity, equality of two ROBDDs is easy to check.

The function bddEG is in fact a symbolic algorithm to compute the greatest
fixed-point for EG @ (cf. Chapter 7). It is very similar to bddEU and is omitted
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here. This completes the description of the symbolic algorithm to model-check
CTL based on the fixed-point characterizations.

function bddEU (®,¥ : Formula) : ROBDD;
(* pre: ® and ¥ are base CTL-formulae *)
begin var N,P,B : ROBDD;
N, P, B := bddSat(¥), ConsT(0), bddSat(®);
while N # P
do P:=N;
B' := RENAME(B, z1,...,zp,2],...,20);
B’ := AprrLY(A,R,B’);
B' := ABsTtraCT(B', (z},...,2}),V);
N := AppLY(V,P,B');
od;
return N;
(* post: bddEU(®, ¥) represents Sat(E (PUP)) ={s|sE=E(@UT)}*)
end

Table 11.5: Algorithm to symbolically compute Sat(E (® U ¥))

From Chapter 7, we know that the time complexity of CTL model checking can
be improved by a factor N (the number of states) when the algorithm for EU is
based on detecting strongly connected components. We briefly sketch how this
can be performed symbolically. The most straightforward manner to compute
the strongly connected components of a Kripke structure is as follows. Suppose,
as before, that R is an ROBDD representing the successor relation R. As a first
step, the transitive closure of R is computed. This can be performed using
standard BDD-operations in an iterative manner, e.g., using iterative squaring,
yielding the ROBDD R*. We have R*(z1,...,2Zn,y1,...,yn) = 1 if and only if
state s’ with [s'] = (y1,...,yn) is reachable from s with [s] = (z1,...,z,).
The transpose of the relation R* represents backward reachable states. Thus,
states s and s’ belong to the same strongly connected component if and only if
the function represented by

APPLY(A, R, (R*)T)

yields one on the input ([s],[s']). The set of all strongly connected compo-
nents can now be obtained using abstraction, i.e., existential quantification.

11.6 Bibliographic Notes

Binary decision diagrams. BDDs originate from Lee [121] and Akers [2, 3]
in the late fifties as representations for combinatorial switching circuits. Or-
dered BDDs as well as several manipulations on these structures are due to
Bryant [35]. The important result that reduced OBDDs are unique up to iso-
morphism is due to Fortune, Hopcroft and Schmidt [75]. The fact that the
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problem of optimal variable ordering is NP-complete is due to Bollig and We-
gener [27]. Overviews of BDDs and manipulations thereof have been given by
Bryant [36] and Andersen [10]. For a survey of the most important theoretical
achievements on OBDDs, we recommend the recent overview by Wegener [186].
An improvement of the reduction algorithm of Bryant [35] has been given by
Sieling and Wegener [165]; the time complexity of this algorithm is linear in
the number of parameters of the boolean function at hand. More detailed ac-
counts of binary decision diagrams can be found in the books by Meinel and
Theobald [136], Drechsler and Becker [64] and Wegener [185]. The link between
OBDDs and deterministic finite-state automata has been described by, among
others, Thomas [176].

Symbolic model checking. The use of BDDs as compact representations in model
checking of hardware circuits has been brought up in the late eighties by the in-
dependent teams of Burch et al. [38, 37] and Coudert, Berthet and Madre [59].
A detailed account of “symbolic” model checking was first given in the doc-
toral dissertation by McMillan [133]. McMillan also showed that abstraction
of variables on BDDs is NP-hard. Symbolic algorithms for detecting strongly
connected components have been described by Xie and Beeler [191] and Bloem,
Gabow and Somenzi [24]. An elegant and lucid description of symbolic model
checking can be found in the book by Huth and Ryan [102], who also consider
the relational p-calculus and the treatment of fair CTL. The “interleaved” vari-
able ordering for representing transition systems by BDDs has been advocated
by Enders, Filkorn and Taubner [73]. Prominent symbolic model checkers are
SMV [133], NuSMV [43], and VIS [31]. The use of BDDs in the verification of
logic circuits has been described by Kropf [113] and Janssen [105]. An impor-
tant subject in this field is to construct an ROBDD describing the input-output
relation of a hardware circuit, and to compare the functionality of circuits
using their ROBDD representation. As ROBDDs are unique (up to isomor-
phism), this results in an efficient equivalence check for hardware circuits once
the ROBDD representations are given.

Implementation issues. The main issues in implementing BDD packages have
been described by Brace, Rudell and Bryant [30], Janssen [105] and, more re-
cently, by Somenzi [170]. Unique tables that contain all BDD vertices are typi-
cally kept in dynamic hash tables where hash collisions are resolved by chaining.
Garbage collection is based on reference counting. As the variable order has a
significant impact on the size of the BDDs, most BDD packages include dynamic
variable reordering algorithms, such as Rudell’s sifting algorithm that is based
on swapping variables at consecutive levels in a BDD [157]. Such algorithms
typically slow down the BDD computations, but on larger cases (that take quite
some verification time) outperform schemes without this facility [192]. Com-
puted tables (for dynamic programming in the implementation of APPLY), are
typically kept in caches governed by a first-in, first-out replacement strategy.

Empirical results. Empirical results of using BDDs in model checking have
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extensively been described by Yang et al. [192]. The authors study the perfor-
mance of various BDD packages for a set of benchmark problems (16 SMV mod-
els) and conclude that BDD computations in model checking and in synthesizing
BDDs for combinatorial circuits have fundamentally different performance char-
acteristics. These differences include the effects of cache sizes (model checking
is more sensitive with respect to cache size), garbage collection frequency (for
model checking, this should be as low as possible), and memory locality (no sig-
nificant difference between breadth-first and depth-first BDD-operations). In
addition, Yang et al. provide results on different dynamic variable reordering
algorithms and the impact of initial variable orders.

11.7 Exercises

EXERCISE 11.1.  Let f(xy,x2,23) = (11 AX2Az3) V (-2 A —~z3) be a boolean
function. Give the Shannon expansion of f with respect to the variable z;. Do the
same for the variable x».

EXERCISE 11.2. Let f(x1,%2,%3,%4) = (1 Ax2) V (23 Axyg) be a boolean function
over X ={z1,29,23,24 }.

1. Give a binary decision tree representing f using the ordering r; < x5 < 3 < x4
2. Transform the BDT into an ROBDD by successively applying the reduction rules

3. Repeat the former two questions using the ordering z; < x3 < z2 < x4

EXERCISE 11.3. Construct an ROBDD representing the input-output relation of the
hardware circuit depicted in Figure 11.13. Use the ordering =1 < z2 < 3 < 4.

x

output

) ——

Figure 11.13: A hardware circuit with four inputs

EXERCISE 11.4. Give an ROBDD representation of the set numbers from the domain
{0,1,...,14 } such that are either even or larger than 11.
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EXERCISE 11.5. Consider the hidden weight function H,, : {0,1}"™ — {0,1} defined
by Hy,(x1,...,%,) =z with 0 < k < n is a bit position where k is the number of ones
in the input and xg = 0. For instance, for n = 4 we have H4(0,0,1,0) =0, as ;1 =0
and H4(1,1,1,0) =1 as 3 = 1. Give an ROBDD representation of H,, for n=4 using
the variable ordering 77 < x5 < 73 < x4.

EXERCISE 11.6. Consider the following boolean function that has 2n inputs:
f@y,.o o xon) = (21 V 22) A oo A (T2p1 V T2).

Questions:

1. Give the ROBDD representing f for n=3 using the variable ordering z; < x;11,
for 0 < i < 2n.

2. Give the ROBDD representing f for n=3 using the variable ordering =1 < x3 <
< o1 < T2 <y < ... < Top.

3. Give an expression for the number of vertices for representing f using the two
indicated variable orderings.

EXERCISE 11.7. Consider an automaton with 7 control states sg through sg, a bounded
integer var digit: 0..9 aboolean var flag: boolean and an indicator var ind:
0..4. The system is considered to be in an initial state if control is in state sg, variable
digit, and ind equal zero, and flag is arbitrary.

1. Find a binary encoding of the possible states of this automaton.
2. Based on this encoding, give a boolean expression that identifies the initial states.

3. Given an ROBDD representation of the set of states in which the proposition
“ready implies digit exceeds three or ind equals two” holds.

4. Consider a transition from control state s3 to s4 which is enabled if digit and
ind differ from zero, and which results in setting flag to true. Give a boolean
expression representing this transition.

ExERCISE 11.8. Consider the function Mx that given the address vector ¢ = (ag—1,- - -,
ap) describing as binary representation the address m, and the data vector z = (o,
..., Tp—1) selects zp,. For instance for ¢ = (0,1,1) and z = (0,1,0,1,0,1,1,0) we have
that Mx(a,z) = 3 = 1. Question: construct an ROBDD for the function Mx for n=5
using the variable ordering a1 < ... <ag <z < ... < Tp_1.

EXERCISE 11.9. Alternatives to Shannon’s expansion are negative and positive Davio
expansion. For function f: {0,1}"* — {0,1} let the boolean difference with respect
to x; be defined as:

of _

S flzi == 0] & flz; :== 1] where & denotes “exclusive or”
;
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Prove that:

)
1. Davio’s positive expansion: f(zy,...,z,) = flz; :=0]® (:L“Z A 6—f>
€L

)
2. Davio’s negative expansion: f(z1,...,z,) = flz; :=1] @ (ﬁxi A 6—f>
T

ExERCISE 11.10. Consider the ROBDD of Figure 11.6(a), and name it B. Compute
the reduced OBDDs RESTRICT(B, z},0) and RESTRICT(B, 2}, 1).

EXERCISE 11.11.  Define a generalization of RESTRICT towards replacing various
boolean variables by constants at a time. That is, define the operation RESTRICT(B, (25, ,
ooy ), (biy, ..., by,)) for ROBDD B over (X, <). You may assume that z;, < ... <
T

"t

EXERCISE 11.12. Give a tree representation of the recursive invocations of the function
APPLY for the example in Figure 11.10 assuming that a dynamic programming scheme
is used to avoid recomputations.

EXERCISE 11.13. A BDD over (X, <) is an OBDD for which the ordering constraint
is mot required. A BDD is called read-once if each path in it contains at most one x;-
labeled vertex for each x; € X. A BDD is called oblivious with respect to z; through
Tm, T; € X if the set of nonterminals can be partitioned into m levels, such that level i
only contains z;-labeled vertices and all edges from level i to nodes from level j where
j >t are to terminals. Question: prove that an OBDD is a read-once oblivious BDD.

EXERCISE 11.14. Prove the relation between OBDDs and deterministic FSA as stated
by Theorem 11.3.
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