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Bisimulation equivalence

I A binary relation B between processes is a bisimulation
provided that, whenever (E ,F ) ∈ B and a ∈ A,

I if E
a−→ E ′ then F

a−→ F ′ for some F ′ such that (E ′,F ′) ∈ B
and

I if F
a−→ F ′ then E

a−→ E ′ for some E ′ such that (E ′,F ′) ∈ B

I E and F are bisimulation equivalent (or bisimilar) if there is a
bisimulation relation B such that (E ,F ) ∈ B.

I We write E ∼ F if E and F are bisimilar
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Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties expressible in a nice modal or temporal logic

5. It should abstract from silent actions.

We deal first with conditions 1− 4
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Bisimilarity is an equivalence relation

I Theorem : E ∼ E

I Theorem: if E ∼ F then F ∼ E .

I Theorem : if E ∼ F and F ∼ G , then E ∼ G .

Proof: Since E ∼ F , (E ,F ) ∈ B1 for some bisimulation B1.
Since F ∼ G , (F ,G ) ∈ B2 for some bisimulation B2. So
(E ,G ) ∈ B1 ◦ B2. We show that B1 ◦ B2 is a bisimulation.
Let (H1,H2) ∈ B1 ◦ B2 and H1

a−→ H ′
1. We find H ′

2 such that

H2
a−→ H ′

2 and (H ′
1,H

′
2) ∈ B1 ◦ B2. Since (H1,H2) ∈ B1 ◦ B2,

there is H such that (H1,H) ∈ B1 and (H,H2) ∈ B2. Since
B1 is bisimulation, there is H ′ such that H

a−→ H ′ and
(H ′

1,H
′) ∈ B1. Since B2 is bisimulation, there is H ′

2 such that

H2
a−→ H ′

2 and (H ′,H ′
2) ∈ B2. Since (H ′

1,H
′) ∈ B1 and

(H ′,H ′
2) ∈ B2, we have (H ′

1,H
′
2) ∈ B1 ◦ B2.
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Bisimilarity is a congruence

Proposition: If E ∼ F , then for any process G , for any set of
actions K , for any action a and for any renaming function f ,

1. a.E ∼ a.F

2. E + G ∼ F + G

3. E | G ∼ F | G
4. E [f ] ∼ F [f ]

5. E\K ∼ F\K
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Proof of case 3: if E ∼ F then E | G ∼ F | G

We show B = {(E | G ,F | G ) : E ∼ F} is a bisimulation.

Assume that ((E | G ), (F | G )) ∈ B and E | G a−→ E ′ | G ′

I E
a−→ E ′ and G = G ′. Because E ∼ F , we know that

F
a−→ F ′ and E ′ ∼ F ′ for some F ′. Therefore

F | G a−→ F ′ | G , and so ((E ′ | G ), (F ′ | G )) ∈ B.

I G
a−→ G ′ and E ′ = E . So F | G a−→ F | G ′, and by definition

((E | G ′), (F | G ′)) ∈ B.

I a = τ and E
b−→ E ′ and G

b−→ G ′. F
b−→ F ′ for some F ′

such that E ′ ∼ F ′, so F | G τ−→ F ′ | G ′, and therefore
((E ′ | G ′), (F ′ | G ′)) ∈ B.

Symmetrically for a transition F | G a−→ F ′ | G ′.
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Bisimilarity and Hennessy-Milner Logic I

I Let E ≡HM F if E and F satisfy exactly the same formulas of
HM-Logic.

I Theorem: If E ∼ F then E ≡HM F .

I Proof: By induction on modal formulas Φ.
For any G and H, if G ∼ H, then G |= Φ iff H |= Φ.

I Basis: Φ = tt or Φ = ff. Clear.

I Step: We consider only the case Φ = [K ]Ψ. By symmetry, it
suffices to show that G |= [K ]Ψ implies H |= [K ]Ψ.
Assume G |= [K ]Ψ. For any G ′ such that G

a−→ G ′ and
a ∈ K , it follows that G ′ |= Ψ.
Let H

a−→ H ′ (with a ∈ K ). Since G ∼ H, there is a G ′ such
that G

a−→ G ′ and G ′ ∼ H ′. By the induction hypothesis
H ′ |= Ψ, and therefore H |= Φ.
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Bisimilarity and Hennessy-Milner Logic II

I E is immediately image-finite if, for each a ∈ A, the set
{F : E

a−→ F} is finite.

I E is image-finite if all processes reachable from it are
immediately image-finite.



Bisimilarity and Hennessy-Milner Logic II

I E is immediately image-finite if, for each a ∈ A, the set
{F : E

a−→ F} is finite.

I E is image-finite if all processes reachable from it are
immediately image-finite.



Bisimilarity and Hennessy-Milner Logic III

I Theorem: If E , F image-finite and E ≡HM F , then E ∼ F .

I Proof: the following relation is a bisimulation.
{(E ,F ) : E ≡HM F and E ,F are image-finite}

I Assume G ≡HM H and G
a−→ G ′

Need to show H
a−→ Hi and G ′ ≡HM Hi

I Because G |= 〈a〉tt and G ≡HM H, H |= 〈a〉tt
So {H ′ : H

a−→ H ′} = {H1, . . . ,Hn} is non-empty and finite
by image-finiteness.

I If G ′ 6≡HM Hi for each i : 1 ≤ i ≤ n, there are formulas
Φ1, . . . ,Φn such that G ′ |= Φi and Hi 6|= Φi .
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Properties of weak bisimilarity

I Weak bisimilarity is an equivalence relation

I Weak bisimilarity is a congruence with respect to all operators
of CCS with the exception of +

τ.a.0 ≈ a.0 but τ.a.0 + b.0 6≈ a.0 + b.0

I Two observationally image finite processes are weakly bisimilar
iff they satisfy the same properties of observational
Hennessy-Milner logic.
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Exercise

Which of the following are weakly bisimilar?

Y/N

a.τ.b.0 a.b.0

a.(b.0 + τ.c.0) a.(b.0 + c.0)

a.(b.0 + τ.c.0) a.(b.0 + τ.c.0) + a.c.0

a.0 + b.0 + τ.b.0 a.0 + τ.b.0

a.0 + b.0 + τ.b.0 a.0 + b.0

a.(b.0 + τ.b.0) a.b.0


