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Abstract applications. In previous work, we have studied the use of
process algebras likes3 [13] to model dynamic proper-
This paper introduces a graphical notation callatye- ties of IS. The idea of usingtate transition diagramso

braic state transition diagram{&STD), which allows for  specify IS was also appealing to us, but we were unsat-
the combination of state transition diagrams using claasic isfied with the capabilities of existing notations like stat
process algebra operators like sequence, iteration, pakal charts [14, 15] and UML activity diagrams and state ma-
composition, quantified choice and quantified synchroniza- chine diagrams [21], because of the difficulty of explicitly
tion. It is inspired from automata, statecharts and process and concisely representing multiple instances of an entity
algebras. Hence, it combines the strength of all these no-type and their interactions in an IS. For instance, it is éasy
tations: graphical representation, hierarchy, orthogdibha describe the behavior of a member borrowing a book in a li-
compositionality, abstraction. Quantification is one oéth brary. However, it is very difficult to precisely describeso
salient features of ASTDs, because it provides a powerfulseveral members behave altogether to borrow and reserve
mechanism for modeling an arbitrary number of instances books. To do so, one must use internal state variables and
of an ASTD. A formal operational semantics is given. Our thus completely hide into event guards the ordering con-
target application domain is the specification of infornoati  straints, for instance between the creation of a member and
systems, but ASTDs are presented in a generic manner.  the loans of the member, loosing the visual expressiveness
Keywords. State transition diagrams, statecharts, pro- of state transition diagrams. The connection between mem-
cess algebras, information systeras?. bers and books over loans and reservations is even more
difficult to model. In practice, specifiers will describe the
single instance scenario (one member, one book) and let the
1 Introduction implementer figure out the general case (several members
and several books), given some natural language comple-

Our aim is the formal specification of information sys- mentary description.
tems (IS), and in particular, the specification of database Interestingly, the interaction between several instances



is easy to model using process algebras like CSP [16, 22][16], CCS [20], ACP [3], loTos[4] andEB? [13]. Essen-
andes?: in [13], we have identified and specified the most tially, ASTDs are like a process algebra with hierarchical
typical patterns used in IS. Synchronization and quantifica automata as elementary process expressions. Automata can
tion (also called indexing) allow for an elegant, formalpeo  be combined freely with process algebra operators. ASTDs
cise and complete representation of these scenarios. Hencénave a structured operational semantics in the Plotkie styl
came the need of combining the visual expressiveness ofwhich has been first used by Milner for CCS and later on
state transition diagrams with the abstraction power of pro for Lotosand CSP [22]. CSP also has a denotational se-
cess algebras. mantics, given by traces, failures and divergences of a pro-
In this paper, we introduce a graphical notation called cess. ACP is a true algebra, that is, its operators are first
algebraic state transition diagram@STD), which allows  defined by a set of equations relating process algebra oper-
for the combination of state transition diagrams [9] using ators. CSP also includes a set of equations, on top of the
process algebra operators like sequence, iteration,lglaral denotational and operational semanticeTbsincludes an
composition, quantified choice and quantified synchroniza- algebraic notation for specifying abstract data typesahat
tion. It is inspired from automata [2], statecharts and pro- used in process expressions for data exchange. In ASTDs,
cess algebras. Hence, it leverages the strength of these nove use attributes defined on the ASTD traces, as irEtie
tations: graphical representation, hierarchy, ortholipna ~ notation. The attributes are defined using basic types which
compositionality, abstraction. Quantification is one of th are assumed to be given
salient features of ASTDs, because it provides a powerful Model oriented notations, like B [1], Z [24] and

mechanism for modeling an arbitrary number of instances ASM [6], are orthogonal to ASTDs and process algebras.
of an ASTD. The ordering of events is expressed by operation precondi-

ASTDs support most of the main features of statechartstions in the former, while it is expressed by a graph (au-
like hierarchy, OR-states, AND-states, guards and historyfomaton) and operators in the latter, which makes the or-
states, but intentionally leaves out other features: i) no dering more explicit. Circus [25] combines the Z notation
broadcast communication (ASTD use instead event syn-With CSP, which also makes event ordering more explicit;
chronisation as in CSP [16, 22]), ii) no actions (ASTD only however, it dogs not mplude an automata—hl;e notat.|on.
describe event traces), and iii) no null transition, i.ent The paper is organized as follows. Section 2 briefly de-
sitions without event labels (an ASTD transition is always SCribes basic types and typing conventions used in the paper
triggered by the reception of an event from the environment; TNen, we present the definition of ASTD types and states
each automaton transition is labeled by an event). We useln Section 3. Section 4 shows an application of ASTDs to
ASTDs to describe the valid sequences of inputs that an 1SOUr (perennial!, we apologize) case study, a small library
must accept. They provide a convenient, precise (formal) System. Finally, Section 5 concludes the paper with an ap-
and comprehensive way of representing all usage scenario®raisal of ASTDs and an outlook of future work.
of an IS. IS outputs are not specified in an ASTD, because it
is simpler and easier to specify them using attributes based? Conventions
on the traces of the ASTD, as in tBe> method [13].

As in ARGOS[19], automata constitute the ground term  We use the following basic type®oolean denotes the
for ASTD construction. Automaton states can be elemen- set {true, false}. Name denotes the set of state names. It
tary or a complex ASTD. However, #cosonly includes  includes two special elements, notedand H*, which re-
parallel composition; ASTD includes all typical process al spectively denote the shallow history state and the deep
gebra operators. In [5], a graphical notation inspired from history state of statecharts [15]Term denotes the set of
Live Sequence Charts and Message Sequence Charts [8krms constructed using types supported by the ASTD spec-
is defined for dealing with event ordering on objects from ification language. It is left undefined at this point, but it
a class, but it only supports quantified interleaving with- should include classical specification types like Boolean,
out synchronization. In [18], a process algebra semanticsinteger, string, relations, functions, sequences, Oartes
to Statecharts called SPL (Statecharts Process Languaggiroduct, sum, etcvar denotes the set of variableEvent
is provided, without extending statecharts with process al denotes the set of events that the system accepts. An event

gebra operators. ASTDs also differ from algebraic state jg noted!(vy,...,v,) wherel is called the event label,
machines [7], which essentially represent states of a-tradi andv; € Term are event parameters. Functianextracts
tional state machine using an algebra [23]. In [10], single- the label of an eventa(l(vy,...,v,)) = . Label de-

user scenarios are represented as state-based relations dgotes the set of event labelsPredicate denotes the set

picted using state transition diagrams and integratedjusin  of first order predicatesEnv denotes the set of environ-

refinement-lattice meet operator. ments. An environment is a function which maps a variable
ASTDs are closely related to process algebras like CSPto a value; hence it is a set of pairs, v;, with x; € Var



andv; € Term. For convenience, an environment is noted
(x1,...,&p := v1...,0,)), OF, more conciselyz := 7).
An empty environment is notef).

An environmenf can be used in a substitution. The ex-
pressioru[(Z := ¥])] denotes the simultaneous substitution
of x1,...,x, by vy,...,v, in expression, which can be
a predicate or a term. The symbolis a composition oper-
ator on environments such thafl’; < I';] = (u[['1])[T2].
Note thatl’; has precedence ovEr whenI'; < I'y is used
in a substitution.

We use| as the sum operator on types. séimis noted
B £ (consy, A1) | ... | (consm,An), where eachd;
is a (possibly empty) Cartesian product and symiaals;
denotes a sum tag (also called a constructor).

3 ASTD

We denote byASTD the type of all ASTDs. It includes
the following subtypesAutomaton, Sequence, Guard, Clo-
sure, Choice, Synchronization, QChoice, QSynchronization,
ASTDCall. We shall describe each of them in the sequel.
But first, we need to define some auxiliary notations.

ASTD subtypes share common concepts. Eack
ASTD has a set of statesS C State. It is inductively
defined. Some elements Sfare said to be final: they en-
able subsequent work to start. Final states of an AS 8k
determined by a functiofinal, of type State — Boolean.
Functioninit of typeASTD — State returns the initial state

of an ASTD. A state is either elementary or compound (an-

other ASTD).

The semantics of ASTDs is defined in an operational
style. It consists of a labeled transition system, which is
a subset oState x Event x State and is inductively defined
by inference rules. Elements of this relation are cattad-
sitionsand noteds =, s, which means that an ASTB
can execute event from states and move to state’. Sub-
scripta can be omitted when it is clear from the context
which ASTD is being referred to.

Because we use variables in some ASTD structures like

qguantified ASTDs and ASTD calls, we need the notion of
an execution environmeiit, and we write transitions with

respect td’, noted ass il;a s’. We compute a transition
starting from an empty environment, using the following
inference rule.

s a,() o
env —— >
a /
S — S
ASTD arenondeterministic If several transitions on are
possible for a given state then one is nondeterministically

chosen. The operational semantics is inductively defined in

the sequel for each ASTD subtype.
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Figure 1. An automaton including another automaton

3.1 Automaton

An Example. An ASTD automaton is very similar to a
traditional automaton, except that its states can be of any
ASTD type, and that its transition function can refer to sub-
states of automaton states, as in statecharts. Figure 1 pro-
vides a graphical representation of an example automaton
namedal. It includes a sub-automata®. The outer box
delineates the definition afl. The tab of this box starts
with the name of the automaton, with its parameierof
typeint (integer). The name can be omitted. The keyword
aut denotes thatl is an ASTD of typeAutomaton. The
initial state of an automaton is depicted #y. Foral, the
initial state is0, which is an elementary state (denoted by
0). An initial state could also be of any ASTD type; there
are no restriction. Transitions are labeled in the statésha
style bye(Z)[4], wheree(Z) is an event with parametefs
andg is a guard which must hold for the transition to trigger.
Note that the statechart notion ationis not used in this
version ofASTD. The event is mandatory on the transition
and the guard is optional. A transition fires when an event
is received from the environment and there exists a transi-
tion for that event in the current state of the automaton. If
there is no transition in the current state for that evens, it
ignored and discarded. In the context of IS, a meaningful
error message should be provided to the environment (e.g.,
the user) when an event is discarded, Otherwise, the behav-
ior of an automaton is essentially the same as the behavior
of an OR-state in statecharts.

The states of an automaton are of tyfsit., n, h, s)
where

e n € Name denotes the name of the state.

e h € Name -+ State is a partial function that denotes
the last visited substate of an automaton; it is used
to implement the notion dfistory state introduced in



statecharts.

e s € (State | (elem)) is the current state of the automa-
ton. It can be a compound state, denoted by Spes,
or an elementary state, denoteddbym.

Suppose thaal is instantiated with value := 2. It is
then in the initial stat®. The reception of the eveetl(2)
triggers a transition from O to state 4, whose structure is
determined bya2. Note that state name 4 is shown in the
upper right corner of2. This putsa2 in its initial state 5.
We denote this transition by

el(2) ’ "
(auto, 0, h, elem) —3; (auto, 4, h’, (auts, 5, h”, elem))
For the sake of concision and illustration, let us simplify
our notation for the moment and abstract from the type con-
structoraut, , history functionsh, ', b’ and state type, by

abbreviating this transition a2, 4(5). ASTD al can
now accept everd2 and make the transitiof(5) 2, 4(6),

or accepte8 and make the transitiof(5) 2. Suppose
e2 has been accepted and then #tnde7 are accepted.
If we summarize the transitions from the initial state, we

have
1o, 4(6) 5 2 £, 4(6)

0 A(5) =

The last transition (oe7) goes to the history state. This
means that it returns to the last visited statea®f which
is 6. Another path is

e3

B4y B &0

025128 4(6) 19,9 &1 4(7)

Note that we distinguish between a state of an ASTD and
the ASTD itself. Each has its own type; by convention, we
use subscript (e.g.,aut,) for the state type constructor. We
have the following typing constraints on the components of
an automaton.

3} C Event is the alphabet.

N C Name — {H, H*} is the set of state names.

e v € N — ((elem) | ASTD) maps each state name to
either an elementary state or an ASTD.

d C (n, 0,9, final?) is the transition relation, where:

e 7 denotes the arrow. There are three types of
arrows: (loc,nq,n9) denotes a transition from
n1 t0 ng, (tsub, n1,ng, no, ) denotes a transition
from n; to substatew,, of ny such that(ns) €
Automaton, and(fsub, n;,n1, , n2) denote a tran-
sition from substate:;, of n; to ny such that

v(ny) € Automaton.
e o ¢ Event.
e ¢ € Predicate is the transition guard.

e final? € Boolean denotes a transition leaving
from a final state (i.e., a transition annotated with
a“e” at its source).

e F' C N denotes the names efementaryfinal states.
e ng € N is the name of the initial state.

Note that transitions to and from a substate are only allowed

since the history state points to 4(7) in that case. Hence, tofor automaton states, by conditiongn,) € Automaton

manage the notion of history state, we must include in an
automaton state a functialn which stores the last visited

andv(n;) € Automaton. This differs from statecharts and
UML statemachines, which allow transitions from and to

substate of each state name. This function is stored in thesubstates of an AND-state. We made this choice to keep

state ofal and is updated wheae is left. Its initial value
maps 4 to the initial state e:

Rinit = {4 — 5}

Over transitionsh evolves as follows, noting state @s ),
wheren is the state name.

(0, {4~ 5}) =2 (4(5), {4 5}) 2 (4(6), {4 — 5}) =
(1,{4 — 6})

Note that only transitions leaving2 change the value
of h(4).

The transition labeled bg8 can be triggered whatever is
the state oh2. The transition labeled by4 is decorated by
a bullet ) at its source: this means that it can be fired only
if a2 is in a final state, which is denoted in an automaton

by O. Hence, the only possible transition to 3.{§) 3.

Formal Definition. Let Automaton
(aut, 3, N, v, 0, F,ng) be the set of automaton ASTDs.

the syntax and the semantics simple. Guards can be used if
such transitions are needed.

We now illustrate this formal definition by providing the
textual representation of the example of Figure 1, whose
declaration isal(z : int) € Automaton The scope ofr
is automatoral, which includes all its component ASTD
which are locally declared ial. The alphabet of1 in-
cludes all the events that appear on transitioasy. =
{el,e4,e5,e6,e7,€8,e9,e10}. Note thate2 ande3 are
internal to automaton2; hence they belong to the alphabet
of a2. The state names afl areal.N = {0,1,2,3,4} and
they are mapped as follows

aly = {0 — elem,1 +— elem, 2 — elem, 3 — elem,
4 — a2}

Names 0,1,2,3 are mapped to elementary states; name 4 is
mapped to the sub-automataa. The transition relation



al. contains the following transitions.

4((loc,0,4) ,el(x),true ,false)
6((loc,4,3) ,e4 ,true ,true )
0( (fsub,4,6,2), 5 ,true , false)
o( (tsub,1,4 6),e6 ,true ,false)
0((tsub,2,4,H),e7 ,true ,false)
4( (loc,4 1) ,e8 ,true |, false )
6((loc,0,1) ,e9 ,x > 1,false)
0((loc,1,2) ,el0 ,true ,false)

The final states o1 areal.F' = {3}. Note that state 4
is not a final state; its automaton componentncludes a

obvious when other ASTD types are described in the sequel.
Five rules share a common premiss, which we abbreviate by
v,
= ((final? = final,,,,1(s)) A
gAo' =o AW =h<{n; — s})[I]

It provides that a transition noted @sal? must start from
a final state, that the transition guagcholds, and that the
event received, noted, is equal, under the current transi-
tion environmenft’, to the event specified in the transition
relation, noteds’. Moreover, the history function in the
target state, notel’, is updated by storing the last visited
substate ofi;. It is defined using operatat, the override

final state, but that does not make 4 a final state. The initial gperator of the B and Z notation.

state ofal is al.ny = 0. Automatona2 is described in a
similar manner.

Operational Semantics Functionsfinal and init deter-
mine, respectively, if a state is final and the initial state o
an ASTD. For the sake of clarity, recursive callgieu! are

subscripted with the ASTD defining the state space of its

parameter.
init((auto, . .., ng)) = (auts, ng, Rinit, init(v(ng)))
init(elem) = elem
hinit = {nw— init(v(n)) | n e N}
A

final((auto, n, h, s)) (s=elemAneF)
V

(s # elem A final,,,,)(s))

Note that we must use the full description of a state, for

Ruleauty, handles transitions to substates, in the partic-
ular case where the substate is not an history state.

6((tSUb7 ni, N2, nQb)a 0-/7 g?.ﬁnalo)

ng, ¢ {H,H*}
v

auty -
07
(auto, ny, h, s) —

(auto, no, h/, (auto, na,, Rinit, im’t(u(ngb ))))

The target state is,, with ny, as its substate. Again, the
initial state of the substate is targeted (since this stdsta
could also be an ASTD).

Rule aut; handles transitions to shallow history state
(notedH), following the behavior prescribed by statecharts.

the sake of completeness. The initial state of an automa-

ton is the state named,. Its history function is initialized

by mapping each state name to the initial state of its inter-
nal structure: elementary states are mapped to the constana'f
elem; ASTD state names are mapped to the initial state of

their ASTD, recursively. An elementary state is final if its
name is inf’; an ASTD state is final if its internal state is
final (recursively).

We have six rules of inference, written in the usual form
_premiss_  Tha first rule,aut;, describe a transition be-

conclusion*

tween local states.

5((|0C,n17n2),a’,g,ﬁnal?) v

auty

(auto, 1, h, 5) 2 LN (auto, no, W', init(v(n

2)))

Recall that the ASTD semantics is a transition relation on
State. The transition relatiod of an automaton is sim-
ply defined on state names frofd. Inference ruleaut;
describes how relates to the overall state transition rela-
tion, taking into account the history function and the ar-
bitrary type of automaton states (elementary or ASTD).
The target state of the transition is the initial state of the
destination state in: for an elementary state, recall that
init(elem) = elem; for an ASTD statejnit returns the par-
ticular initial state of that structure. This shall becomeren

6((tSUba ni,n2, H)) 0'/7 9, ﬁnal'7)
ng, = name(h(ny))
v

b

(auto, m1, h, 8) of,

(auto, no, h/7 (auto, ng,, Rinit, im’t(u(ngb ))))

Functionname returns the name of an automaton state:
name(auts,n, ...) = n. In the case of shallow history, the
target state is thaitial state of the ASTD referenced by
h(’ﬂ,l)

Rule aut, handles transitions to deep history state
(noted H*); in that case, the target state is the full state
recorded im(nz).

d((tsub, ny,no, H*), o', g, final?) N4

(auto,m1, h, 8) RN (auts, na, W', h(ns))

auty

Ruleauts handles transitions from a substate.

d((fsub, n1,n1,,n2), 0", g, final?)
name(s) = nq,
v

auts
r .
(auto, 1, b, 5) —— (auto, ng, b/, init(v(ng)))
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Figure 2. A sequence ASTD including two simple au- Figure 3. A statechart reproducing the sequence ASTD

tomata of Figure 2

Ruleauts, handles transitions within a substate. a predicate liken(s1) V... in(s,), wheres; is a state con-

ol , sidered as final in the first statechart, thereby exhibitireg t
autg ST u(n) S structure of the inner statecharts into the outer state¢char

and increasing coupling between the two. If the inner stat-
echart is more complex, things get even more complicated.
This is the first recursive rule where the compositionality Note also that the initial state of a sequence ASTD is sim-
of our semantics is illustrated. It requires to prove that  ply the initial state of its first component. Hence, sequence
can be executed in the substate, which could be any ASTD.js a useful abstraction fostering simplicity in specifioati

In the target state of the conclusion, only the substateef th design.

automaton state is changing; the automaton says in the samggrmal Definition and Semantics Let Sequence =

state name. The history function is unchanged. (=,1,7) be the set of sequence ASTDs, whére € ASTD
are respectively the first and second element of the se-
3.2 Sequence quence. Functionsit andfinal are defined as follows.

(auto, n, h, 3) 2, (auto, n, h, s')

The sequence ASTD is a new concept with respect to mit((,1,71)) = (Do, left, init(1))
statecharts. It allows for the sequential composition af tw final((@o, left, 5)) = final,(s) A final,. (init(r))
ASTDs. When_ the first one reac_he_s a finz_il state, the second  fiq1((,,right, s)) 2 final,.(s)
one can start its execution. This is particularly useful for
problems which can be decomposed into a set of tasks thafl he initial state of a sequence ASTD is the initial state of
have to be executed in sequence. its LHS ASTD. A sequence ASTD is in a final state if either
An Example. Figure 2 illustrates a very simple sequence Of the following two cases holds: i) it is executing its LHS
ASTD, whose Component ASTDs are two Simp|e automata. ASTD and this ASTD is in a final state, and the initial state
Automatona, which is on the left-hand side (LHS) of the 0f the RHS ASTD is also a final state; ii) it is executing the
arrow symbol, is the first to execute. Upon reception of RHS ASTD which is in a final state.
eventel, it makes a transition from 1 to 2 and reaches a  We need three rules to define a sequence. Ruleeals

final state. This enables evesg in b to be executed upon ~ With transitions on the LHS ASTD only. Rure; deals with
its reception. Eveng2 is also executable, since it appears transitions from the LHS to RHS, when the LHS is in a final
on a transition from 2. Supposa is received. Then the state. Rule>; deals with transitions on the RHS ASTD.

sequence ASTDR leaves ASTDa and executes3 onb. To ol

represent these transitions, we first need to defined the type ) —

of a sequence state, which (=, [left | right], s), where (2, left, s) oL, (2o, left, s”)

s € State. Keywordleft indicates that the sequence ASTD

is in its LHS state, and dually faight. The sequence of final,(s)[T] init(r) LAY
events just described is represented as follows. V2

(P, left, s) 25 (Do, right, s7)
(2o, left, (auto, 1, h, elem))
L (Do left, (auto, 2, 1, elem)) g

. oI’ .
e, (o, right, (aute, 4, h”, elem)) (Do, right, 5) —— (., right, s’)

o, I’ ’
s ——, 8

The notion of final state does no exist in statecharts. To3.3 Choice

reproduce in statecharts the same behavior as a sequence

ASTD, one could use a guarded null transition between the A choice ASTD allows a choice between two compo-
two statecharts (see Figure 3); its guard is expressed usingient ASTDs. Once a component has been chosen, the other
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Figure 6. A statechart reproducing the ASTD of Figure 5
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Figure 4. A choice ASTD including two automata
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component is ignored. It is essentially the same as a choice

operator in a process algebra. The choice is nondeterminis- init(r) ﬂ)r s

tic if each component can execute the requested event. l2 oT

An example Figure 8 provides an example of a choice (loy L, L) = (lo, snd, s")
ASTD, which includes two automata componentselfis .

received, thera is chosen to execute it. The subsequent s = 8

events will be accepted kyonly. Dually, if e3 is received,
thenb is chosen to execute it. 2 is received, then a non-

deterministic choice is made betwesandb to execute it. ol
‘ s —, S
4
Formal Definition and Semantics Let Choice = (|, 1, ) (lo, sNd, ) ol (lo,snd, s)

be the set of choice ASTDs, whelrg € ASTD are respec-

tively the first and second element of the choice. The type3.4 Kleene closure

of a choice state ig|., side, s) whereside € (L | (fst) |

(snd)) denotes the component which has been chosen, and  Thjs operator comes from regular expressions. It allows
s € (State | 1) denotes the state of the component ASTD for jteration on an ASTD an arbitrary number of times (in-
which has been chosen. Inthe initial state, itis definet.as  cjuding zero). An iteration is completed when the compo-
A choice state is final if i) it hasn’t started yet and the &iti  nent ASTD has reached a final state. At the end of an iter-
state of each component is final, or ii) the chosen compo-ation, a Kleene closure can start a new iteration or be itself
initial state and the final states. ASTD to start the next task). This behavior is very com-
mon in IS. For instance, a typical pattern is the producer-

.. A
init((|,1,7)) N (Jo, L, 4‘)_ o modifier-consumer of an entity or an association. The user
final((lo, L, L)) N finaly(init (1)) V final, (init(r)) can iterate an arbitrary number of times on the modifiers
final((lo,fst,s)) = finaly(s) and then terminate with a consumer. We shall illustrate that
final((|o,snd, s)) = final,(s) pattern in our small case study.

] ] ] An Example. Figure 5 illustrates a closure applied to the
There are four rules of inference. The first two deal with the 4 sequence ASTD similar oof Figure 2, except that the
execution of the first event from the initial state. The other | 4 3nd RHS are also themselves within a closure. As a
two deal with execution of the subsequent events from the .nvention. we coalesce ASTD boxes when the outer ASTD
chosen component. is a unary operator, like Kleene closure; the coalescing is
indicated by adding the tab of the inner ASTD to the outer
unary ASTD (see Figure 7). The initial state of a closure
(Jo, L, 1) LN (|o, fst, s") is the initial state of its component ASTD. From its initial

ingt(l) LN

i
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sFate, the cIosurEpan execute eithe_lel ona, ore_3 on b @_e4 R <:> 2> C) 5
since the LHS ot is the closure, which can terminate im-

mediately and allow the RHS &f to executee3 (i.e., the
initial state of a closure is also a final state, to allow for 0
iteration). The statechart equivalent of this closure @sh Figure 8. A synchronization ASTD including two au-
in Figure 6. It preserves the automaton decompositionanto tomata

andb, and adds null transitions in a systematic way to sim-
ulate the closure. Indeed, to simulate a closure, one must
add a null transition from the final states to the initial stat

In b, both states 3 and 4 are final, since there is a closure in

Figure 5 onb. The guard of the transition betwearandb,
which simulates the sequential composition, must refer to

both the initial and final states of the LHS of the sequence, ) )
execute in parallel, but these two ASTD must synchronize

since a closure allows for O iteration an This simple ex- h label in th hronizatioms
ample illustrates that algebraic operators nicely endapsu on eventsf Whose label are in the synchronizationselBy
synchronization, we mean that the two ASTDs must exe-

complex behavior compositions, compared to statecharts. e th t at th time- th . icati
Moreover, this example allows for an infinite sequence of cute the event at the Ssame ime, there 1S no communication

null transitions (i.e., a divergence), which is annoying fo by message b_rogdcastmg. Events yvhose Iabgls are fotin
are executed in interleave. Thus, it is essentially the same

a statechart interpreter, because it must detect thess. caseb havi h ed hronization found i
This does not occur in an ASTD, because the operational se- ehavior as the parameterized synchronization found i pro

mantics embodies the notion of final and initial states with- ¢€5S ?'98'0“'1‘ like Lo_tos or Roscoe’s version of C.SP [22]. As
out inducing an infinite recursion. such, it also conveniently represents a conjunction ofrerde

Formal Definition and Semantics Let Closure = (%, b) :rllg cons ttra||nts on eventts_ af. WhenA is empty, it behaves
be the set of Kleene closure ASTDs, whérec ASTD AeEan n elr ea:;{e opega |on..d le of hro-
is the body of the closure. The type of a closure state is N Example. Figure o provides an example of a synchro
(%o, started?, s) wheres € State andstarted? € Boolean nization ASTD named, with A = {e2}, which is noted

indicates whether the first iteration has been started. It is_H{ez}]| in the tab. Itincludes two automasaandb. The

essentially used to determine if the closure can immedgiatel 'niti"f‘l .s_tate ofc Is the infiial stat.e of its components. From
exit without any iteration. Initial and final states are defin the initial statec can execute eitherl or e4. After execut-

ing these two events (in any order), the two ASTdDendb
as follows. X
must execute? at the same time. Ther3 ande5 can be
init((x, b)) 2 (%o, false, init (b)) executed in any order. The type of a synchronization state
final((%o, started?, s)) 2 final,(s) V —started? is (|[]|o, 51, s-) Wheres;, s, € State. Here is a possible se-
guence of transitions, wheredenotes the history function
There are two inference rules:; allows for (re-)starting  which is omitted, for the sake of concision.
from the initial state of the component ASTD when a final

Figure 7. Unary ASTD box coalescing

Parameterized synchronization

The parameterized synchronisation is similar to an
AND-state in statecharts, in that it allows two ASTDs to

state has been reached or for the first iteratiorallows for (I0]es (auto, 1, _, elem), (auto, 5, _, elem))
execution on the component ASTD when an iteration has e, (1o, (auto, 2, _, elem), (auto, 5, _, elem))
already Started. ic (| [] |°7 (aUtC’) 27 — elem)? (aUtoa 6a — elem))
oT e2
(ﬁna’lb(s)[r} \ ﬁstarted?) anﬁ(b) ’—)b s —3>C (| H |°’ (aUtO? 37*7 elem), (aUtO’ 7’ - elem))
*1 e
o o, (aUto, 4, _, elem), (auto, 7, _, elem
(%o, started?, s) oL, (%o, true, s) ;C (10l € ) )
¢ (|[]lo, (auts, 4, _, elem), (auts, 8, _, elem))
s ﬂn, s’ ) . .
*2 ol ) When an ASTD based on a binary operator lilg]| in-
(%o, true, s) —— (o, true, s') cludes an automaton component or a unary operator ASTD,



c, |[{e2}]|
a, aut

@—m —»@—e2—>@—e3

(5 —et—(6 )—e2—>(7 )—s—>(3)

Figure 9. A coalesced version of the ASTD of Figure 8

we can also coalesce the component ASTD with its enclos-

ing box from the binary operator. Figure 9 illustrates a coa-
lesced version of the ASTD of Figure 8.

Formal Definition and Semantics Let Synchronization =
(111, A, I, ) be the set of parameterized synchronization
ASTDs, whereA C Label denotes a synchronization set of
event labels andl » € ASTD are the synchronized ASTDs.
Initial and final states are defined as follows.

init((‘m’A’lvT)) (HHOﬂ imt(l),z'm't(r))
final(([[llo; 51, 57)) finaly(s1) A final, (sr)

There are three inference rules. Rulgg and|[]|, re-
spectively describe execution of events with no synchro-
nization required on the LHS and the RHS of the synchro-
nization ASTD. Rulg (]|, describe the synchronization be-
tween the LHS and the RHS.

A
A

oI’ /
S| —1 5

(10fos 515 50) 25 (10los 5}, 57)

o, ’
Sp —p S,

(=

(0lor 12 5) == (I0los 51, 57)

Sy ir—w s,
)

We use the abbreviatigh= |[a(1) N a(r)]|, wherea(a)
denotes the labels of event appearing in ASd, Ihcluding
all its inner ASTDs. It is the parallel composition operator
of CSP, which means that the ASTDs synchronize on com-

mon events. We also ugie= |[{}]|, which is the interleave
operator of CSP.

oI’ ’
S —1 5

), 228

o,

(|m0751, 57‘) — (|[]|o, SE,S/

T

3.6 Quantified choice

This operator and the next one (quantified synchroniza-

a, x | b, | x:{4,5,6} | c, aut |
@—m (x)—»@—ez(x

Figure 10. A closure over a quantified choice ASTD

been introduced to take into account IS specificities, like
managing sets of entity type instances. The quantified
choice is very similar to an existential quantification isfir
order logic. It allows to pick a value from a set and execute a
component ASTD with that value. The scope of the quanti-
fied variable is the component ASTD. Figure 10 illustrates a
closure over a choice quantification of an automaton. ASTD
a iterates on the choice. At each iteration, a new value for
x is chosen. The choice quantification is represented by
| z:{4,5,6}.

The type of a quantification choice statg|is, [L | v], s)
where L is a constant indicating that the choice hasn’t been
made yet, and € Term denotes the current value of the
choice quantified variable when the choice has been made.

The following is a possible sequence of transitions for
the ASTD of Figure 10.

(%o, false, (|:0, L, (aUts, 1, _, elem)))
ﬂc (%o, true, (|:0, 5, (aUts, 2, _, elem)))
e2(5) (TR1)
—¢ (%o, true, (]:0, 5, (alts, 3, —, elem)))
ﬂc (%o, true, (|:0, 4, (aUts, 2, _, elem)))

In the initial state, special value is used to indicate that the
guantified variable hasn’t been instantiated yet. The guant
fied choice ASTD can accept(4), e1(5) andel(6). When
eventel(5) is received, the only value af for which the
quantified choice can accept(5) is = 5. This value is
recorded in thé:, state. The iteration can complete only by
accepting everg2(5). In the next iteration, a new value of
x can be chosen. Agaiel(4), e1(5) andel(6) can be ac-
cepted. Wher1(4) is received;r is bound to 4 and a new
iteration can start.

Here is the semantics. L@Choice = (|:, z, T, b) be the
set of quantified choice ASTDs, wheree Var denotes a
guantification variable] is a type andb € ASTD is the
guantified ASTD. Initial and final states are defined as fol-
lows.

init((|:, 2, T,b)) = (|0, L, init(b))
final((|:0, L, indt(b))) = 3 : T - final, (init(b))

v# L= (final((|:0,v,5)) = final,(s)[x := v])

This is the first type of ASTD where we need the no-
tion of environment, to manage the quantification. When a

tion) are not usual operators in state diagrams. They haveransition is computed using the inference rules, the value



bound to the quantification variable is added to the execu- | * [ [{e2}] x:{1,2,3} [aut |
tion environment (the one appearing on the transition grrow

and can be used to make the proof, in particular to check >@—e1(x)—)@—e2—)@—e3(x)
that the event receivedmatches the transition evestt, af-

ter the environment has been applied as a substitution. This
behavior is expressed by the following two inference rules.

Figure 11. A closure over a quantified synchronization

init(p) 2=y e ASTD

oI’
(‘:Oa J—vf) B (|:07 v, 5/)

|5y

for each value of: € {1,2,3}. These three automata syn-
s Mb s' v# L chronize ore2 (which is whye2 has no parameter). Hence,
2 oT , eventsel(1), e1(2) andel(3) can be received in any order.
(o0, 8) == (| v, ") Once they have all been received, the three automata can
synchronized ore2: the three automata execute at the
same time; from the view-point of the environment, a sin-
gle event has been submitted. Afte, eventse3(1), e3(2)

We can illustrate them by proving the last transition
of (TR1) (see previous page); we abbreviate by T.

el(4) = el(z)[(z := 4])] ande3(3) can be received in any order. The quantification
§((loc, 1,2), el(x), true, false) is in a final state when all its component automata are in a
aut, e1(4), (= = 4) final state. Hence, a new iteration on the quantification can
B 1) c (2) start only when alé3(x) have been received.
(|ro, L, (1)) Mb (l:0, 4, (2)) Figure 12 illustrates a more realistic and complex exam-
1 e1(a).() ple, with two nested quantified synchronization ASTDs. It
env (%0, T, (|10, 5, (3))) ——a (%o, T, (10,4, (2))) describes the invoicing of orders. The outer quantification

(%0, T, (|10, 5, (3))) LN (%0, T, (10,4, (2))) includes a closure on an order automaton. The quantifica-
o o ) ) ) tion onz allows to create any number of independent or-
A lemma implicitly used in this proof in step, is thatbis  gers. Each order include its own quantification on its items.

in a final state. We require that when an order is invoiced, all its items are
3ec.F frozen and can't be modified, added or deleted, until the
finaly((auto, 3,_, elem)) invoice is cancelled. This expressed by a synchronization

on eventsnvoiceOrder andcancelinvoice. Hence, whetin-
voiceOrder(z) is received, all items of order are synchro-
nized and move to state 5 (which means invoiced). If the
invoice is cancelled, each item of the order goes back to its

-~ o . previous state, thanks to the history state. An order can be
The quantified synchronization ASTD is the most con- yeleted at any time.

venient addition, compared to statecharts. It allows fer th Formal  Definition and  Semantics Let
mo_deling of an ar_bitra_lry number of instanc_efs of an ASTD QSynchronization 2 (|[]|:,z, T, A, b) be the set of quan-
which are executing in pa_rallel, synchronizing On events ifiad synchronization ASTDs, where where C Label
from A. For IS modeling, it allows one to concisely and  genotes a synchronization set of event labelstagchSTD
gxpllcnly represent thg pehawor of each_mstances ofanen s the guantified synchronized ASTD. The state of a
ity type or an association. In I'—I'arell’s first paper on stat- gyantified synchronization is of typ€|[]|:0, f) where
echarts [14], this idea of quantification was mentioned as r ¢ T — state is a function which associate a state to each

parameterized statesHowever, it has never been imple- \51ye of7, Initial and final states are defined as follows.
mented in tools supporting statecharts, like Statemate [15
(Il]f:0, T x {init(b) })

Indeed, the main difficulty of this feature is in its implermen mit((|]:, =, T, A, b)) =

tation and automatic code generation. We have identified final((|]]:0, f)) = Yv:T- final,(f(v))
cases, which are frequently occurring in most IS specifica-

tions patterns, where we could generate efficient code that There are two inference ruleg}|:, deals with events re-
can deal with parameterized quantification. More discus- quiring no synchronization, whilg]|:, deals with the ones

finaly((J:0, 5, (auto, 3, _, elem)))

3.7 Quantified Synchronization

sion about this issue is provided in Section 5. that do.

To illustrate the basic behavior, Figure 11 provides a sim- A o (z:=v)l
ple quantified synchronization ASTD, nested in a closure. It 101y afo) ¢ f(v) b5
denotes three concurrent instances of automatae., one (005 F) N (00, f<{v — §'})

10



orders, ||| x : int | * | order, aut |
items, |[{ invoiceOrder,cancellnvoice }]| y : int [ item, aut |
[2
aut

create 3 invoice

create ltem(x,y) Order(x) delete

C Order(x) ‘ Order(x) .
Itdelete cancel
em(x,y) Invoice(x)
Figure 12. Invoicing of orders using a double synchronizati on quantification
o,(z:=v) <l , b “int >0 1] d t
ao) €A Vu:T- f(v) T2 f(v) ax [bx:int|c=x>0]daut|

(1Dke: £) 2= (I0ke: 1) (D—e1—>(2)—e20—>()

Figure 13. A guard ASTD nested in a closure on a choice

3.8 Guard

A guard ASTD guards the execution of its component
ASTD using a predicate. The first event received must sat-
isfy the guard predicate. Once the guard has been satisfied | a,[[x:0.3 [ b,x [ ¢ = xmod2=0 | d, aut |
by the first event, the component ASTD execute the subse-
quent events without further constraints from its enclgsin @;91(")_’@_32("
guard ASTD. The predicate may refer to variables whose
scope include the guard; in the context of IS specification,
the guard could also refer to attributes of entities and-asso
ciations, similarly to guards in process expressions of the
EB> method [13].

The guard ASTD is a generalization of the guard speci-
fied on an automaton transition. It is especially useful when The initial state ofa is a final state, since the body of the
the component ASTD is a complex structure, avoiding the quantified interleave is a closure, whose initial statess al
duplication of the guard predicate on all the possible first a final state, by definition of closure. AST®is also in a
transitions of that structure. final state when the last two events receivede2@) and
An example Figure 13 provides an example of a guard €2(2).

ASTD namect, which is included in the scope of a choice Formal Definition and Semantics LetGuard = (=, g, b)
ASTD b, itself included in a Kleene closure AST&D The be the set of guard ASTDs, wheyec Predicate is the guard
innermost component is the automatbnf eventel(v) is predicate and € ASTD is the guarded ASTD. The type of
received, then predicate > 0[(x := v])], which reduces  a guard state i$=, started, s) wherestarted € Boolean
tov > 0 after applying the substitution, must hold for the ands € State. Symbolstarted denotes whether the guard
event to be accepted; otherwise, it is rejected and ignoredhas been satisfied. It is setfidse in the initial state and
by the ASTD. If , eventel(v) is acceptedg2(v) can be  then set torue when the guard has been satisfied by the
accepted to terminate the first iteration of the closure. A first transition. A guard ASTD is in a final state if i) it is not
new iteration can then start, and the new valt®r  must started, the guard predicate holds and the the initial sfate
again satisfyr > 0. Figure 14 provides another example of its component ASTD is in a final state, or ii) it is started,
a guard ASTD named, which is included in the scope of and its component ASTD is in a final state. Here are the
a closure ASTDn, itself included in a quantified interleave formal definitions of the initial state and the final states.
ASTD a. The innermost component is the automatbn

Figure 14. A guard ASTD nested in a quantified inter-
leaved closure

ASTD a can spawn (so to speak) two instances of automa- init((=,9,b)) = (=, false, init (b))
tond, one forz := 0 and one forr := 2. The instances for final((=, false, init(b))) = g A finaly(init(b))
x € {1,3} cannot start, since they do not satisfy the guard. final((=o, true, s)) 2 final,(s)
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We need two rules of inference. The first one deals with the
first transition and the satisfaction of the guard predicate
The second one deals with subsequent transitions.

L ol i) " s
(=0, false, init (b)) 25 (=, true, s')
oI’ ’
=9 S —p S

(=, true, s) LN (=,true, s")
3.9 ASTD Call

Finally, it is possible to call an ASTD which is defined

tified synchronizations (interleavg) where the quantified
variablesmid andbid take their value on the set of all the
objects of, respectively, entitygember and entitybook. The
unigue component of each of these two quantified synchro-
nizations ASTDs is an ASTD call that refers to the ASTD
definition of member (resp. book) described in Figure 16.
Each of them is a simple automaton describing the life cycle
of an object. They refer to thean automaton (Figure 16)
that describes the life cycle of a loan of a given badok

by a given membemid. In thebook automaton, the inter-
mediate state is a closure on a quantified choice, meaning
that a book can be borrowed several times but by only one
member at a time, whereas in thember automaton, the
intermediate state is a quantified synchronization on a clo-

in another diagram. A call is graphically represented by the SUré, meaning that a member can borrow several books at a
ASTD name and its actual parameter values. Calls can beime.

recursive. Formally, leASTDCall = (cal, P(%)) be the set

of ASTD calls, whereP is a reference to an ASTD defini-
tion P(Z : T) £ b and, for each; € 7, we havev; € T;.

The type of an ASTD call state igalo, [L | s]), where L
denotes that the call hasn’t been made yet ardState is
actual state of the called ASTD when the called has been
made. The initial and final states are as follows.

init((cal, P(7))) = (calo, L)
final((cals,s)) = (s = L A final,(init(b))[Z := 7))
V

(s # LA finaly(s)[# := 0))

There are two rules of inference. Rulal; deals with the
initial call execution, whilecal; deals with subsequent exe-
cutions.

o,(Z:=v)<T '

init(b) b S
caly =
(cal, L) Z— (cal, s)
o,(Z:=v) <l ’
S b S
caly

(cal, s) 2, (cal, s)
4 Case Study

In this section, we illustrate ASTDs on a very simple but
typical IS case study. A library system has to manage loans
of books by members. A book is acquired by the library. It
can be discarded, but only if it is not lent. A member must
register at the library in order to borrow a book. He/she can
leave the library membership only when all his/her loans are
returned.

Figure 15 defines the main ASTD which is a param-
eterized synchronization (parallel compositiph of two
ASTDs associated with the entity types of the library sys-
tem, that isnember andbook. These two ASTDs are quan-
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In ASTD main, the parallel composition||j denotes the
conjunction of the ordering constraints of each entity type
It ensures that if a book is borrowed, it satisfies the order-
ing constraints of the book and the member, simmek and
member must synchronize on common events, which are
the events of ASTOban. We have left out usual constraints
like imposing a loan limit for a member, or taking into ac-
count reservations for books. They could easily be added
to the model, by adding a guard for the loan limit in ASTD
loan. Reservations can be modeled by adding a reservation
ASTD that would composed in parallel with loans.

5 Conclusion

We have introduced algebraic state transition diagrams,
which allows for the combination of automata using tra-
ditional process algebra operators. Automaton states can
themselves be ASTDs, supporting hierarchical decomposi-
tion of systems specifications, as in statecharts. Our moti-
vation was the specification of IS, which require quantifi-
cation operators to properly express the interaction betwe
entities.

ASTDs provide a concise, yet comprehensive and for-
mal, mechanism for specifying all the scenarios of an IS.
Scenarios can be built incrementally and composed using
process algebra operators. They make explicit the handling
of entity instances, by using quantifications. Existingarot
tions like statecharts are not convenient for capturingghe

main, ||

llmid - int | %

[Il bld :int | %

book(bld)

member(mld)

Figure 15. The main ASTD of the library case study
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