
Technical Report 24 / Rapport Technique 24

Département d’informatique
Facult́e des sciences

UNIVERSITÉ DE
SHERBROOKE

Algebraic State Transition Diagrams

Marc Frappier1, Fréd́eric Gervais2, Régine Laleau2, Benôıt Fraikin1

1 GRIL, Département d’informatique, Université de Sherbrooke
Sherbrooke (Qúebec), J1K 2R1, Canada

{marc.frappier,benoit.fraikin}@usherbrooke.ca

2 LACL, Université Paris-Est
IUT Fontainebleau, 77300 Fontainebleau, France

{frederic.gervais,laleau}@univ-paris12.fr

Abstract

This paper introduces a graphical notation calledalge-
braic state transition diagrams(ASTD), which allows for
the combination of state transition diagrams using classical
process algebra operators like sequence, iteration, parallel
composition, quantified choice and quantified synchroniza-
tion. It is inspired from automata, statecharts and process
algebras. Hence, it combines the strength of all these no-
tations: graphical representation, hierarchy, orthogonality,
compositionality, abstraction. Quantification is one of the
salient features of ASTDs, because it provides a powerful
mechanism for modeling an arbitrary number of instances
of an ASTD. A formal operational semantics is given. Our
target application domain is the specification of information
systems, but ASTDs are presented in a generic manner.

Keywords. State transition diagrams, statecharts, pro-
cess algebras, information systems,EB3.

1 Introduction

Our aim is the formal specification of information sys-
tems (IS), and in particular, the specification of database

applications. In previous work, we have studied the use of
process algebras likeEB3 [13] to model dynamic proper-
ties of IS. The idea of usingstate transition diagramsto
specify IS was also appealing to us, but we were unsat-
isfied with the capabilities of existing notations like state-
charts [14, 15] and UML activity diagrams and state ma-
chine diagrams [21], because of the difficulty of explicitly
and concisely representing multiple instances of an entity
type and their interactions in an IS. For instance, it is easyto
describe the behavior of a member borrowing a book in a li-
brary. However, it is very difficult to precisely describe how
several members behave altogether to borrow and reserve
books. To do so, one must use internal state variables and
thus completely hide into event guards the ordering con-
straints, for instance between the creation of a member and
the loans of the member, loosing the visual expressiveness
of state transition diagrams. The connection between mem-
bers and books over loans and reservations is even more
difficult to model. In practice, specifiers will describe the
single instance scenario (one member, one book) and let the
implementer figure out the general case (several members
and several books), given some natural language comple-
mentary description.

Interestingly, the interaction between several instances

is easy to model using process algebras like CSP [16, 22]
andEB3: in [13], we have identified and specified the most
typical patterns used in IS. Synchronization and quantifica-
tion (also called indexing) allow for an elegant, formal, con-
cise and complete representation of these scenarios. Hence,
came the need of combining the visual expressiveness of
state transition diagrams with the abstraction power of pro-
cess algebras.

In this paper, we introduce a graphical notation called
algebraic state transition diagrams(ASTD), which allows
for the combination of state transition diagrams [9] using
process algebra operators like sequence, iteration, parallel
composition, quantified choice and quantified synchroniza-
tion. It is inspired from automata [2], statecharts and pro-
cess algebras. Hence, it leverages the strength of these no-
tations: graphical representation, hierarchy, orthogonality,
compositionality, abstraction. Quantification is one of the
salient features of ASTDs, because it provides a powerful
mechanism for modeling an arbitrary number of instances
of an ASTD.

ASTDs support most of the main features of statecharts
like hierarchy, OR-states, AND-states, guards and history
states, but intentionally leaves out other features: i) no
broadcast communication (ASTD use instead event syn-
chronisation as in CSP [16, 22]), ii) no actions (ASTD only
describe event traces), and iii) no null transition, i.e., tran-
sitions without event labels (an ASTD transition is always
triggered by the reception of an event from the environment;
each automaton transition is labeled by an event). We use
ASTDs to describe the valid sequences of inputs that an IS
must accept. They provide a convenient, precise (formal)
and comprehensive way of representing all usage scenarios
of an IS. IS outputs are not specified in an ASTD, because it
is simpler and easier to specify them using attributes based
on the traces of the ASTD, as in theEB3 method [13].

As in ARGOS[19], automata constitute the ground term
for ASTD construction. Automaton states can be elemen-
tary or a complex ASTD. However, ARGOSonly includes
parallel composition; ASTD includes all typical process al-
gebra operators. In [5], a graphical notation inspired from
Live Sequence Charts and Message Sequence Charts [8]
is defined for dealing with event ordering on objects from
a class, but it only supports quantified interleaving with-
out synchronization. In [18], a process algebra semantics
to Statecharts called SPL (Statecharts Process Language)
is provided, without extending statecharts with process al-
gebra operators. ASTDs also differ from algebraic state
machines [7], which essentially represent states of a tradi-
tional state machine using an algebra [23]. In [10], single-
user scenarios are represented as state-based relations de-
picted using state transition diagrams and integrated using a
refinement-lattice meet operator.

ASTDs are closely related to process algebras like CSP

[16], CCS [20], ACP [3], LOTOS [4] and EB3 [13]. Essen-
tially, ASTDs are like a process algebra with hierarchical
automata as elementary process expressions. Automata can
be combined freely with process algebra operators. ASTDs
have a structured operational semantics in the Plotkin style,
which has been first used by Milner for CCS and later on
for LOTOS and CSP [22]. CSP also has a denotational se-
mantics, given by traces, failures and divergences of a pro-
cess. ACP is a true algebra, that is, its operators are first
defined by a set of equations relating process algebra oper-
ators. CSP also includes a set of equations, on top of the
denotational and operational semantics. LOTOS includes an
algebraic notation for specifying abstract data types thatare
used in process expressions for data exchange. In ASTDs,
we use attributes defined on the ASTD traces, as in theEB3

notation. The attributes are defined using basic types which
are assumed to be given

Model oriented notations, like B [1], Z [24] and
ASM [6], are orthogonal to ASTDs and process algebras.
The ordering of events is expressed by operation precondi-
tions in the former, while it is expressed by a graph (au-
tomaton) and operators in the latter, which makes the or-
dering more explicit. Circus [25] combines the Z notation
with CSP, which also makes event ordering more explicit;
however, it does not include an automata-like notation.

The paper is organized as follows. Section 2 briefly de-
scribes basic types and typing conventions used in the paper.
Then, we present the definition of ASTD types and states
in Section 3. Section 4 shows an application of ASTDs to
our (perennial!, we apologize) case study, a small library
system. Finally, Section 5 concludes the paper with an ap-
praisal of ASTDs and an outlook of future work.

2 Conventions

We use the following basic types.Boolean denotes the
set{true, false}. Name denotes the set of state names. It
includes two special elements, notedH andH*, which re-
spectively denote the shallow history state and the deep
history state of statecharts [15].Term denotes the set of
terms constructed using types supported by the ASTD spec-
ification language. It is left undefined at this point, but it
should include classical specification types like Boolean,
integer, string, relations, functions, sequences, Cartesian
product, sum, etc.Var denotes the set of variables.Event
denotes the set of events that the system accepts. An event
is noted l(v1, . . . , vn) where l is called the event label,
andvi ∈ Term are event parameters. Functionα extracts
the label of an event:α(l(v1, . . . , vn)) = l. Label de-
notes the set of event labels.Predicate denotes the set
of first order predicates.Env denotes the set of environ-
ments. An environment is a function which maps a variable
to a value; hence it is a set of pairsxi, vi, with xi ∈ Var

2

andvi ∈ Term. For convenience, an environment is noted
([x1, . . . , xn := v1 . . . , vn]), or, more concisely,([~x := ~v]).
An empty environment is noted([]).

An environmentΓ can be used in a substitution. The ex-
pressionu[([~x := ~v])] denotes the simultaneous substitution
of x1, . . . , xn by v1, . . . , vn in expressionu, which can be
a predicate or a term. The symbol2 is a composition oper-
ator on environments such thatu[Γ1 2 Γ2] = (u[Γ1])[Γ2].
Note thatΓ1 has precedence overΓ2 whenΓ1 2 Γ2 is used
in a substitution.

We use| as the sum operator on types. Asumis noted
B

∆

= 〈cons1, A1〉 | . . . | 〈consm, Am〉, where eachAi

is a (possibly empty) Cartesian product and symbolconsi

denotes a sum tag (also called a constructor).

3 ASTD

We denote byASTD the type of all ASTDs. It includes
the following subtypes:Automaton, Sequence, Guard, Clo-
sure, Choice, Synchronization, QChoice, QSynchronization,
ASTDCall. We shall describe each of them in the sequel.
But first, we need to define some auxiliary notations.

ASTD subtypes share common concepts. Eacha ∈
ASTD has a set of statesa.S ⊆ State. It is inductively
defined. Some elements ofS are said to be final: they en-
able subsequent work to start. Final states of an ASTDa are
determined by a functionfinala of typeState → Boolean.
Functioninit of typeASTD → State returns the initial state
of an ASTD. A state is either elementary or compound (an-
other ASTD).

The semantics of ASTDs is defined in an operational
style. It consists of a labeled transition system, which is
a subset ofState×Event×State and is inductively defined
by inference rules. Elements of this relation are calledtran-
sitionsand noteds

σ
−→a s′, which means that an ASTDa

can execute eventσ from states and move to states′. Sub-
script a can be omitted when it is clear from the context
which ASTD is being referred to.

Because we use variables in some ASTD structures like
quantified ASTDs and ASTD calls, we need the notion of
an execution environmentΓ, and we write transitions with

respect toΓ, noted ass
σ,Γ
−−→a s′. We compute a transition

starting from an empty environment, using the following
inference rule.

s
σ,([])
−−−→ s′env
s

σ
−→ s′

ASTD arenondeterministic. If several transitions onσ are
possible for a given states, then one is nondeterministically
chosen. The operational semantics is inductively defined in
the sequel for each ASTD subtype.

���� � ����	 �
������ �������� �����������
��	 �
�������� �� � ���

Figure 1. An automaton including another automaton

3.1 Automaton

An Example. An ASTD automaton is very similar to a
traditional automaton, except that its states can be of any
ASTD type, and that its transition function can refer to sub-
states of automaton states, as in statecharts. Figure 1 pro-
vides a graphical representation of an example automaton
nameda1. It includes a sub-automatona2. The outer box
delineates the definition ofa1. The tab of this box starts
with the name of the automaton, with its parameter,x, of
type int (integer). The name can be omitted. The keyword
aut denotes thata1 is an ASTD of typeAutomaton. The
initial state of an automaton is depicted by> e. For a1, the
initial state is0, which is an elementary state (denoted by
e). An initial state could also be of any ASTD type; there

are no restriction. Transitions are labeled in the statecharts
style bye(~x)[φ], wheree(~x) is an event with parameters~x
andφ is a guard which must hold for the transition to trigger.
Note that the statechart notion ofaction is not used in this
version ofASTD. The event is mandatory on the transition
and the guard is optional. A transition fires when an event
is received from the environment and there exists a transi-
tion for that event in the current state of the automaton. If
there is no transition in the current state for that event, itis
ignored and discarded. In the context of IS, a meaningful
error message should be provided to the environment (e.g.,
the user) when an event is discarded, Otherwise, the behav-
ior of an automaton is essentially the same as the behavior
of an OR-state in statecharts.

The states of an automaton are of type〈aut◦, n, h, s〉
where

• n ∈ Name denotes the name of the state.
• h ∈ Name 7→ State is a partial function that denotes

the last visited substate of an automaton; it is used
to implement the notion ofhistorystate introduced in

3

statecharts.
• s ∈ (State | 〈elem〉) is the current state of the automa-

ton. It can be a compound state, denoted by typeState,
or an elementary state, denoted byelem.

Suppose thata1 is instantiated with valuex := 2. It is
then in the initial state0. The reception of the evente1(2)
triggers a transition from 0 to state 4, whose structure is
determined bya2. Note that state name 4 is shown in the
upper right corner ofa2. This putsa2 in its initial state 5.
We denote this transition by

(aut◦, 0, h, elem)
e1(2)
−−−→a1 (aut◦, 4, h′, (aut◦, 5, h′′, elem))

For the sake of concision and illustration, let us simplify
our notation for the moment and abstract from the type con-
structoraut◦ , history functionsh, h′, h′′ and state type, by

abbreviating this transition as0
e1(2)
−−−→ 4(5). ASTD a1 can

now accept evente2 and make the transition4(5)
e2
−→ 4(6),

or accepte8 and make the transition4(5)
e2
−→ 1. Suppose

e2 has been accepted and then thate5 ande7 are accepted.
If we summarize the transitions from the initial state, we
have

0
e1(2)
−−−→ 4(5)

e2
−→ 4(6)

e5
−→ 2

e7
−→ 4(6)

The last transition (one7) goes to the history stateH. This
means that it returns to the last visited state ofa2, which
is 6. Another path is

0
e9
−→ 1

e6
−→ 4(6)

e3
−→ 4(7)

e8
−→ 1

e10
−−→ 2

e7
−→ 4(7)

since the history state points to 4(7) in that case. Hence, to
manage the notion of history state, we must include in an
automaton state a functionh which stores the last visited
substate of each state name. This function is stored in the
state ofa1 and is updated whena2 is left. Its initial value
maps 4 to the initial state ofa2:

hinit
∆

= {4 7→ 5}

Over transitions,h evolves as follows, noting state as(n, h),
wheren is the state name.

(0, {4 7→ 5})
e1(2)
−−−→ (4(5), {4 7→ 5})

e2
−→ (4(6), {4 7→ 5})

e8
−→

(1, {4 7→ 6})

Note that only transitions leavinga2 change the value
of h(4).

The transition labeled bye8 can be triggered whatever is
the state ofa2. The transition labeled bye4 is decorated by
a bullet (•) at its source: this means that it can be fired only
if a2 is in a final state, which is denoted in an automaton

by eg. Hence, the only possible transition to 3 is4(7)
e4
−→ 3.

Formal Definition . Let Automaton
∆

=
〈aut,Σ, N, ν, δ, F, n0〉 be the set of automaton ASTDs.

Note that we distinguish between a state of an ASTD and
the ASTD itself. Each has its own type; by convention, we
use subscript◦ (e.g.,aut◦) for the state type constructor. We
have the following typing constraints on the components of
an automaton.

• Σ ⊆ Event is the alphabet.
• N ⊆ Name − {H, H*} is the set of state names.
• ν ∈ N → (〈elem〉 | ASTD) maps each state name to

either an elementary state or an ASTD.
• δ ⊆ 〈η, σ, φ,final?〉 is the transition relation, where:

• η denotes the arrow. There are three types of
arrows: 〈loc, n1, n2〉 denotes a transition from
n1 to n2, 〈tsub, n1, n2, n2♭

〉 denotes a transition
from n1 to substaten2♭

of n2 such thatν(n2) ∈
Automaton, and〈fsub, n1, n1♭

, n2〉 denote a tran-
sition from substaten1♭

of n1 to n2 such that
ν(n1) ∈ Automaton.

• σ ∈ Event.

• φ ∈ Predicate is the transition guard.

• final? ∈ Boolean denotes a transition leaving
from a final state (i.e., a transition annotated with
a “•” at its source).

• F ⊆ N denotes the names ofelementaryfinal states.
• n0 ∈ N is the name of the initial state.

Note that transitions to and from a substate are only allowed
for automaton states, by conditionsν(n2) ∈ Automaton
andν(n1) ∈ Automaton. This differs from statecharts and
UML statemachines, which allow transitions from and to
substates of an AND-state. We made this choice to keep
the syntax and the semantics simple. Guards can be used if
such transitions are needed.

We now illustrate this formal definition by providing the
textual representation of the example of Figure 1, whose
declaration isa1(x : int) ∈ Automaton The scope ofx
is automatona1, which includes all its component ASTD
which are locally declared ina1. The alphabet ofa1 in-
cludes all the events that appear on transitions:a1.Σ

∆

=
{e1, e4, e5, e6, e7, e8, e9, e10}. Note thate2 and e3 are
internal to automatona2; hence they belong to the alphabet
of a2. The state names ofa1 area1.N

∆

= {0, 1, 2, 3, 4} and
they are mapped as follows

a1.ν
∆

= {0 7→ elem, 1 7→ elem, 2 7→ elem, 3 7→ elem,
4 7→ a2}

Names 0,1,2,3 are mapped to elementary states; name 4 is
mapped to the sub-automatona2. The transition relation

4

a1.δ contains the following transitions.

δ((loc, 0, 4) , e1(x), true , false)
δ((loc, 4, 3) , e4 , true , true)
δ((fsub, 4, 6, 2) , e5 , true , false)
δ((tsub, 1, 4, 6) , e6 , true , false)
δ((tsub, 2, 4, H), e7 , true , false)
δ((loc, 4, 1) , e8 , true , false)
δ((loc, 0, 1) , e9 , x > 1, false)
δ((loc, 1, 2) , e10 , true , false)

The final states ofa1 area1.F
∆

= {3}. Note that state 4
is not a final state; its automaton componenta2 includes a
final state, but that does not make 4 a final state. The initial
state ofa1 is a1.n0

∆

= 0. Automatona2 is described in a
similar manner.
Operational Semantics. Functionsfinal and init deter-
mine, respectively, if a state is final and the initial state of
an ASTD. For the sake of clarity, recursive calls tofinal are
subscripted with the ASTD defining the state space of its
parameter.

init((aut◦, . . . , n0))
∆

= (aut◦, n0, hinit, init(ν(n0)))

init(elem)
∆

= elem

hinit
∆

= {n 7→ init(ν(n)) | n ∈ N}

final((aut◦, n, h, s))
∆

= (s = elem ∧ n ∈ F)
∨
(s 6= elem ∧ finalν(n)(s))

Note that we must use the full description of a state, for
the sake of completeness. The initial state of an automa-
ton is the state namedn0. Its history function is initialized
by mapping each state name to the initial state of its inter-
nal structure: elementary states are mapped to the constant
elem; ASTD state names are mapped to the initial state of
their ASTD, recursively. An elementary state is final if its
name is inF ; an ASTD state is final if its internal state is
final (recursively).

We have six rules of inference, written in the usual form
premiss

conclusion
. The first rule,aut1, describe a transition be-

tween local states.

δ((loc, n1, n2), σ
′, g,final?) Ψ

aut1
(aut◦, n1, h, s)

σ,Γ
−−→ (aut◦, n2, h

′, init(ν(n2)))

Recall that the ASTD semantics is a transition relation on
State. The transition relationδ of an automaton is sim-
ply defined on state names fromN . Inference ruleaut1
describes howδ relates to the overall state transition rela-
tion, taking into account the history function and the ar-
bitrary type of automaton states (elementary or ASTD).
The target state of the transition is the initial state of the
destination state inδ: for an elementary state, recall that
init(elem) = elem; for an ASTD state,init returns the par-
ticular initial state of that structure. This shall become more

obvious when other ASTD types are described in the sequel.
Five rules share a common premiss, which we abbreviate by
Ψ.

Ψ
∆

=
(

(final?⇒ finalν(n1)(s)) ∧

g ∧ σ′ = σ ∧ h′ = h<+{n1 7→ s}
)

[Γ]

It provides that a transition noted asfinal? must start from
a final state, that the transition guardg holds, and that the
event received, notedσ, is equal, under the current transi-
tion environmentΓ, to the event specified in the transition
relation, notedσ′. Moreover, the history function in the
target state, notedh′, is updated by storing the last visited
substate ofn1. It is defined using operator<+, the override
operator of the B and Z notation.

Ruleaut2, handles transitions to substates, in the partic-
ular case where the substate is not an history state.

δ((tsub, n1, n2, n2♭
), σ′, g,final?)

n2♭
6∈ {H, H*}

Ψ
aut2

(aut◦, n1, h, s)
σ,Γ
−−→

(aut◦, n2, h
′, (aut◦, n2♭

, hinit, init(ν(n2♭
))))

The target state isn2, with n2♭
as its substate. Again, the

initial state of the substate is targeted (since this substate
could also be an ASTD).

Rule aut3 handles transitions to ashallowhistory state
(notedH), following the behavior prescribed by statecharts.

δ((tsub, n1, n2, H), σ′, g,final?)
n2♭

= name(h(n1))
Ψ

aut3
(aut◦, n1, h, s)

σ,Γ
−−→

(aut◦, n2, h
′, (aut◦, n2♭

, hinit, init(ν(n2♭
))))

Functionname returns the name of an automaton state:
name(aut◦, n, . . .) = n. In the case of shallow history, the
target state is theinitial state of the ASTD referenced by
h(n1).

Rule aut4 handles transitions to adeep history state
(noted H*); in that case, the target state is the full state
recorded inh(n2).

δ((tsub, n1, n2, H*), σ′, g,final?) Ψ
aut4

(aut◦, n1, h, s)
σ,Γ
−−→ (aut◦, n2, h

′, h(n2))

Ruleaut5 handles transitions from a substate.

δ((fsub, n1, n1♭
, n2), σ

′, g,final?)
name(s) = n1♭

Ψ
aut5

(aut◦, n1, h, s)
σ,Γ
−−→ (aut◦, n2, h

′, init(ν(n2)))

5

�� !" !# !$" # $ %
Figure 2. A sequence ASTD including two simple au-

tomata

Ruleaut6, handles transitions within a substate.

s
σ,Γ
−−→ν(n) s′

aut6
(aut◦, n, h, s)

σ,Γ
−−→ (aut◦, n, h, s′)

This is the first recursive rule where the compositionality
of our semantics is illustrated. It requires to prove thatσ
can be executed in the substate, which could be any ASTD.
In the target state of the conclusion, only the substate of the
automaton state is changing; the automaton says in the same
state name. The history function is unchanged.

3.2 Sequence

The sequence ASTD is a new concept with respect to
statecharts. It allows for the sequential composition of two
ASTDs. When the first one reaches a final state, the second
one can start its execution. This is particularly useful for
problems which can be decomposed into a set of tasks that
have to be executed in sequence.
An Example. Figure 2 illustrates a very simple sequence
ASTD, whose component ASTDs are two simple automata.
Automatona, which is on the left-hand side (LHS) of the
arrow symbol, is the first to execute. Upon reception of
evente1, it makes a transition from 1 to 2 and reaches a
final state. This enables evente3 in b to be executed upon
its reception. Evente2 is also executable, since it appears
on a transition from 2. Supposee3 is received. Then the
sequence ASTDc leaves ASTDa and executese3 on b. To
represent these transitions, we first need to defined the type
of a sequence state, which is〈 ◦, [left | right], s〉, where
s ∈ State. Keyword left indicates that the sequence ASTD
is in its LHS state, and dually forright. The sequence of
events just described is represented as follows.

(◦, left, (aut◦, 1, h, elem))
e1
−→c (◦, left, (aut◦, 2, h′, elem))
e3
−→c (◦, right, (aut◦, 4, h′′, elem))

The notion of final state does no exist in statecharts. To
reproduce in statecharts the same behavior as a sequence
ASTD, one could use a guarded null transition between the
two statecharts (see Figure 3); its guard is expressed using

&'()* +,-./01)/)2/ 3* 2
Figure 3. A statechart reproducing the sequence ASTD

of Figure 2

a predicate likein(s1)∨ . . . in(sn), wheresi is a state con-
sidered as final in the first statechart, thereby exhibiting the
structure of the inner statecharts into the outer statechart,
and increasing coupling between the two. If the inner stat-
echart is more complex, things get even more complicated.
Note also that the initial state of a sequence ASTD is sim-
ply the initial state of its first component. Hence, sequence
is a useful abstraction fostering simplicity in specification
design.
Formal Definition and Semantics. Let Sequence

∆

=
〈 , l, r〉 be the set of sequence ASTDs, wherel, r ∈ ASTD
are respectively the first and second element of the se-
quence. Functionsinit andfinal are defined as follows.

init((, l, r))
∆

= (◦, left, init(l))

final((◦, left, s))
∆

= final l(s) ∧ finalr(init(r))

final((◦, right, s))
∆

= finalr(s)

The initial state of a sequence ASTD is the initial state of
its LHS ASTD. A sequence ASTD is in a final state if either
of the following two cases holds: i) it is executing its LHS
ASTD and this ASTD is in a final state, and the initial state
of the RHS ASTD is also a final state; ii) it is executing the
RHS ASTD which is in a final state.

We need three rules to define a sequence. Rule1 deals
with transitions on the LHS ASTD only. Rule2 deals with
transitions from the LHS to RHS, when the LHS is in a final
state. Rule 3 deals with transitions on the RHS ASTD.

s
σ,Γ
−−→l s′

1

(◦, left, s)
σ,Γ
−−→ (◦, left, s′)

final l(s)[Γ] init(r)
σ,Γ
−−→r s′

2

(◦, left, s)
σ,Γ
−−→ (◦, right, s′)

s
σ,Γ
−−→r s′

3

(◦, right, s)
σ,Γ
−−→ (◦, right, s′)

3.3 Choice

A choice ASTD allows a choice between two compo-
nent ASTDs. Once a component has been chosen, the other

6

45 675 789 :;<= :>; ?@ >
A5 789 :?BC :DE DF GHI

JK
Figure 4. A choice ASTD including two automata

component is ignored. It is essentially the same as a choice
operator in a process algebra. The choice is nondeterminis-
tic if each component can execute the requested event.
An example. Figure 8 provides an example of a choice
ASTD, which includes two automata components. Ife1 is
received, thena is chosen to execute it. The subsequent
events will be accepted bya only. Dually, if e3 is received,
thenb is chosen to execute it. Ife2 is received, then a non-
deterministic choice is made betweena andb to execute it.

Formal Definition and Semantics. Let Choice
∆

= (|, l, r)
be the set of choice ASTDs, wherel, r ∈ ASTD are respec-
tively the first and second element of the choice. The type
of a choice state is〈|◦, side, s〉 whereside ∈ (⊥ | 〈fst〉 |
〈snd〉) denotes the component which has been chosen, and
s ∈ (State | ⊥) denotes the state of the component ASTD
which has been chosen. In the initial state, it is defined as⊥.
A choice state is final if i) it hasn’t started yet and the initial
state of each component is final, or ii) the chosen compo-
nent is in a final state. Here are the formal definitions of the
initial state and the final states.

init((|, l, r))
∆

= (|◦,⊥,⊥)

final((|◦,⊥,⊥))
∆

= final l(init(l)) ∨ finalr(init(r))

final((|◦, fst, s))
∆

= final l(s)

final((|◦, snd, s))
∆

= finalr(s)

There are four rules of inference. The first two deal with the
execution of the first event from the initial state. The other
two deal with execution of the subsequent events from the
chosen component.

init(l)
σ,Γ
−−→l s′

|1
(|◦,⊥,⊥)

σ,Γ
−−→ (|◦, fst, s′)

LMNM OM PQRSPM PQR STSUU V SV T WXM
Figure 5. A closure ASTD including a sequence ASTDY Z [\]\^^ _ _] `abcd êbcd_efabcd_ef abcd]e bcd`ef abcd`ef

Figure 6. A statechart reproducing the ASTD of Figure 5

init(r)
σ,Γ
−−→r s′

|2
(|◦,⊥,⊥)

σ,Γ
−−→ (|◦, snd, s′)

s
σ,Γ
−−→l s′

|3
(|◦, fst, s)

σ,Γ
−−→ (|◦, fst, s′)

s
σ,Γ
−−→r s′

|4
(|◦, snd, s)

σ,Γ
−−→ (|◦, snd, s′)

3.4 Kleene closure

This operator comes from regular expressions. It allows
for iteration on an ASTD an arbitrary number of times (in-
cluding zero). An iteration is completed when the compo-
nent ASTD has reached a final state. At the end of an iter-
ation, a Kleene closure can start a new iteration or be itself
in a final state (and allow, for instance, an outer sequence
ASTD to start the next task). This behavior is very com-
mon in IS. For instance, a typical pattern is the producer-
modifier-consumer of an entity or an association. The user
can iterate an arbitrary number of times on the modifiers
and then terminate with a consumer. We shall illustrate that
pattern in our small case study.
An Example. Figure 5 illustrates a closure applied to the
a sequence ASTD similar toc of Figure 2, except that the
LHS and RHS are also themselves within a closure. As a
convention, we coalesce ASTD boxes when the outer ASTD
is a unary operator, like Kleene closure; the coalescing is
indicated by adding the tab of the inner ASTD to the outer
unary ASTD (see Figure 7). The initial state of a closure
is the initial state of its component ASTD. From its initial

7

ghij hi j
Figure 7. Unary ASTD box coalescing

state, the closuref can execute either:e1 on a, or e3 on b,
since the LHS ofe is the closurec, which can terminate im-
mediately and allow the RHS ofe to executee3 (i.e., the
initial state of a closure is also a final state, to allow for 0
iteration). The statechart equivalent of this closure is shown
in Figure 6. It preserves the automaton decomposition intoa
andb, and adds null transitions in a systematic way to sim-
ulate the closure. Indeed, to simulate a closure, one must
add a null transition from the final states to the initial state.
In b, both states 3 and 4 are final, since there is a closure in
Figure 5 onb. The guard of the transition betweena andb,
which simulates the sequential composition, must refer to
both the initial and final states of the LHS of the sequence,
since a closure allows for 0 iteration ona. This simple ex-
ample illustrates that algebraic operators nicely encapsulate
complex behavior compositions, compared to statecharts.
Moreover, this example allows for an infinite sequence of
null transitions (i.e., a divergence), which is annoying for
a statechart interpreter, because it must detect these cases.
This does not occur in an ASTD, because the operational se-
mantics embodies the notion of final and initial states with-
out inducing an infinite recursion.
Formal Definition and Semantics. Let Closure

∆

= 〈⋆, b〉
be the set of Kleene closure ASTDs, whereb ∈ ASTD
is the body of the closure. The type of a closure state is
〈⋆◦, started?, s〉 wheres ∈ State andstarted? ∈ Boolean
indicates whether the first iteration has been started. It is
essentially used to determine if the closure can immediately
exit without any iteration. Initial and final states are defined
as follows.

init((⋆, b))
∆

= (⋆◦, false, init(b))

final((⋆◦, started?, s))
∆

= finalb(s) ∨ ¬started?

There are two inference rules:⋆1 allows for (re-)starting
from the initial state of the component ASTD when a final
state has been reached or for the first iteration;⋆2 allows for
execution on the component ASTD when an iteration has
already started.

(finalb(s)[Γ] ∨ ¬started?) init(b)
σ,Γ
−−→b s′

⋆1

(⋆◦, started?, s)
σ,Γ
−−→ (⋆◦, true, s′)

s
σ,Γ
−−→b s′

⋆2

(⋆◦, true, s)
σ,Γ
−−→ (⋆◦, true, s′)

kl mnopqrsmtl tuv pw pq pxw q x yzl tuv py pq p{{ | } ~
Figure 8. A synchronization ASTD including two au-

tomata

3.5 Parameterized synchronization

The parameterized synchronisation is similar to an
AND-state in statecharts, in that it allows two ASTDs to
execute in parallel, but these two ASTD must synchronize
on events whose label are in the synchronization set∆. By
synchronization, we mean that the two ASTDs must exe-
cute the event at the same time; there is no communication
by message broadcasting. Events whose labels are not in∆
are executed in interleave. Thus, it is essentially the same
behavior as the parameterized synchronization found in pro-
cess algebra like Lotos or Roscoe’s version of CSP [22]. As
such, it also conveniently represents a conjunction of order-
ing constraints on events of∆. When∆ is empty, it behaves
like an interleave operation.
An Example. Figure 8 provides an example of a synchro-
nization ASTD namedc, with ∆ = {e2}, which is noted
|[{e2}]| in the tab. It includes two automataa andb. The
initial state ofc is the initial state of its components. From
the initial state,c can execute eithere1 or e4. After execut-
ing these two events (in any order), the two ASTDsa andb
must executee2 at the same time. Then,e3 ande5 can be
executed in any order. The type of a synchronization state
is 〈|[]|◦, sl, sr〉 wheresl, sr ∈ State. Here is a possible se-
quence of transitions, wheredenotes the history function
which is omitted, for the sake of concision.

(|[]|◦, (aut◦, 1, , elem), (aut◦, 5, , elem))
e1
−→c (|[]|◦, (aut◦, 2, , elem), (aut◦, 5, , elem))
e4
−→c (|[]|◦, (aut◦, 2, , elem), (aut◦, 6, , elem))
e2
−→c (|[]|◦, (aut◦, 3, , elem), (aut◦, 7, , elem))
e3
−→c (|[]|◦, (aut◦, 4, , elem), (aut◦, 7, , elem))
e5
−→c (|[]|◦, (aut◦, 4, , elem), (aut◦, 8, , elem))

When an ASTD based on a binary operator like|[∆]| in-
cludes an automaton component or a unary operator ASTD,

8

�� ���������� ��� �� �� ��� � � ��� ��� �� �� ��� � � �
Figure 9. A coalesced version of the ASTD of Figure 8

we can also coalesce the component ASTD with its enclos-
ing box from the binary operator. Figure 9 illustrates a coa-
lesced version of the ASTD of Figure 8.
Formal Definition and Semantics. Let Synchronization

∆

=
(|[]|,∆, l, r) be the set of parameterized synchronization
ASTDs, where∆ ⊆ Label denotes a synchronization set of
event labels andl, r ∈ ASTD are the synchronized ASTDs.
Initial and final states are defined as follows.

init((|[]|,∆, l, r))
∆

= (|[]|◦, init(l), init(r))

final((|[]|◦, sl, sr))
∆

= final l(sl) ∧ finalr(sr)

There are three inference rules. Rules|[]|1 and |[]|2 re-
spectively describe execution of events with no synchro-
nization required on the LHS and the RHS of the synchro-
nization ASTD. Rule|[]|3 describe the synchronization be-
tween the LHS and the RHS.

α(σ) /∈ ∆ sl
σ,Γ
−−→l s′l|[]|1

(|[]|◦, sl, sr)
σ,Γ
−−→ (|[]|◦, s′l, sr)

α(σ) /∈ ∆ sr
σ,Γ
−−→r s′r|[]|2

(|[]|◦, sl, sr)
σ,Γ
−−→ (|[]|◦, sl, s

′

r)

α(σ) ∈ ∆ sl
σ,Γ
−−→l s′l sr

σ,Γ
−−→r s′r|[]|3

(|[]|◦, sl, sr)
σ,Γ
−−→ (|[]|◦, s′l, s

′

r)

We use the abbreviation‖
∆

= |[α(l) ∩ α(r)]|, whereα(a)
denotes the labels of event appearing in ASTDa, including
all its inner ASTDs. It is the parallel composition operator
of CSP, which means that the ASTDs synchronize on com-
mon events. We also use9

∆

= |[{}]|, which is the interleave
operator of CSP.

3.6 Quantified choice

This operator and the next one (quantified synchroniza-
tion) are not usual operators in state diagrams. They have

�� �� � � ���������� ¡ ¢� �£¤ ¥¦§̈ ©ª « ¬
Figure 10. A closure over a quantified choice ASTD

been introduced to take into account IS specificities, like
managing sets of entity type instances. The quantified
choice is very similar to an existential quantification in first-
order logic. It allows to pick a value from a set and execute a
component ASTD with that value. The scope of the quanti-
fied variable is the component ASTD. Figure 10 illustrates a
closure over a choice quantification of an automaton. ASTD
a iterates on the choice. At each iteration, a new value for
x is chosen. The choice quantification is represented by
| x : {4, 5, 6}.

The type of a quantification choice state is〈|:◦, [⊥ | v], s〉
where⊥ is a constant indicating that the choice hasn’t been
made yet, andv ∈ Term denotes the current value of the
choice quantified variable when the choice has been made.

The following is a possible sequence of transitions for
the ASTD of Figure 10.

(⋆◦, false, (|:◦,⊥, (aut◦, 1, , elem)))
e1(5)
−−−→c (⋆◦, true, (|:◦, 5, (aut◦, 2, , elem)))
e2(5)
−−−→c (⋆◦, true, (|:◦, 5, (aut◦, 3, , elem)))
e1(4)
−−−→c (⋆◦, true, (|:◦, 4, (aut◦, 2, , elem)))

(TR1)

In the initial state, special value⊥ is used to indicate that the
quantified variable hasn’t been instantiated yet. The quanti-
fied choice ASTD can accepte1(4), e1(5) ande1(6). When
evente1(5) is received, the only value ofx for which the
quantified choice can accepte1(5) is x = 5. This value is
recorded in the|:◦ state. The iteration can complete only by
accepting evente2(5). In the next iteration, a new value of
x can be chosen. Again,e1(4), e1(5) ande1(6) can be ac-
cepted. Whene1(4) is received,x is bound to 4 and a new
iteration can start.

Here is the semantics. LetQChoice
∆

= 〈|:, x, T, b〉 be the
set of quantified choice ASTDs, wherex ∈ Var denotes a
quantification variable,T is a type andb ∈ ASTD is the
quantified ASTD. Initial and final states are defined as fol-
lows.

init((|:, x, T, b))
∆

= (|:◦,⊥, init(b))

final((|:◦,⊥, init(b)))
∆

= ∃x : T · finalb(init(b))

v 6= ⊥ ⇒ (final((|:◦, v, s))
∆

= finalb(s)[x := v])

This is the first type of ASTD where we need the no-
tion of environment, to manage the quantification. When a
transition is computed using the inference rules, the value

9

bound to the quantification variable is added to the execu-
tion environment (the one appearing on the transition arrow)
and can be used to make the proof, in particular to check
that the event receivedσ matches the transition eventσ′, af-
ter the environment has been applied as a substitution. This
behavior is expressed by the following two inference rules.

init(b)
σ,([x:=v])2Γ
−−−−−−−−→b s′ v ∈ T

|:1
(|:◦,⊥,)

σ,Γ
−−→ (|:◦, v, s′)

s
σ,([x:=v])2Γ
−−−−−−−−→b s′ v 6= ⊥

|:2
(|:◦, v, s)

σ,Γ
−−→ (|:, v, s′)

We can illustrate them by proving the last transition
of (TR1) (see previous page); we abbreviatetrue by T.

e1(4) = e1(x)[([x := 4])]
δ((loc, 1, 2), e1(x), true, false)

aut1
(1)

e1(4), ([x := 4])
−−−−−−−−−→c (2)

|:1
(|:◦,⊥, (1))

e1(4), ([])
−−−−−→b (|:◦, 4, (2))

⋆1

(⋆◦, T, (|:◦, 5, (3)))
e1(4),([])
−−−−−→a (⋆◦, T, (|:◦, 4, (2)))

env
(⋆◦, T, (|:◦, 5, (3)))

e1(4)
−−−→ (⋆◦, T, (|:◦, 4, (2)))

A lemma implicitly used in this proof in step⋆1 is thatb is
in a final state.

3 ∈ c.F
finala((aut◦, 3, , elem))

finalb((|:◦, 5, (aut◦, 3, , elem)))

3.7 Quantified Synchronization

The quantified synchronization ASTD is the most con-
venient addition, compared to statecharts. It allows for the
modeling of an arbitrary number of instances of an ASTD
which are executing in parallel, synchronizing on events
from ∆. For IS modeling, it allows one to concisely and
explicitly represent the behavior of each instances of an en-
tity type or an association. In Harel’s first paper on stat-
echarts [14], this idea of quantification was mentioned as
parameterized states. However, it has never been imple-
mented in tools supporting statecharts, like Statemate [15].
Indeed, the main difficulty of this feature is in its implemen-
tation and automatic code generation. We have identified
cases, which are frequently occurring in most IS specifica-
tions patterns, where we could generate efficient code that
can deal with parameterized quantification. More discus-
sion about this issue is provided in Section 5.

To illustrate the basic behavior, Figure 11 provides a sim-
ple quantified synchronization ASTD, nested in a closure. It
denotes three concurrent instances of automatona, i.e., one

®̄ °±²³ ´ µ ¯¶·±·̧ ² ¹º»¶ ± ¸ ¼°¶½́ ¾ °± °¸½́ ¾
Figure 11. A closure over a quantified synchronization

ASTD

for each value ofx ∈ {1, 2, 3}. These three automata syn-
chronize one2 (which is whye2 has no parameter). Hence,
eventse1(1), e1(2) ande1(3) can be received in any order.
Once they have all been received, the three automata can
synchronized one2: the three automata executee2 at the
same time; from the view-point of the environment, a sin-
gle event has been submitted. Aftere2, eventse3(1), e3(2)
ande3(3) can be received in any order. The quantification
is in a final state when all its component automata are in a
final state. Hence, a new iteration on the quantification can
start only when alle3(x) have been received.

Figure 12 illustrates a more realistic and complex exam-
ple, with two nested quantified synchronization ASTDs. It
describes the invoicing of orders. The outer quantification
includes a closure on an order automaton. The quantifica-
tion on x allows to create any number of independent or-
ders. Each order include its own quantification on its items.
We require that when an order is invoiced, all its items are
frozen and can’t be modified, added or deleted, until the
invoice is cancelled. This expressed by a synchronization
on eventsinvoiceOrder andcancelInvoice. Hence, whenin-
voiceOrder(x) is received, all items of orderx are synchro-
nized and move to state 5 (which means invoiced). If the
invoice is cancelled, each item of the order goes back to its
previous state, thanks to the history state. An order can be
deleted at any time.
Formal Definition and Semantics. Let
QSynchronization

∆

= (|[]|:, x, T,∆, b) be the set of quan-
tified synchronization ASTDs, where where∆ ⊆ Label
denotes a synchronization set of event labels andb ∈ ASTD
is the quantified synchronized ASTD. The state of a
quantified synchronization is of type〈|[]|:◦, f〉 where
f ∈ T → State is a function which associate a state to each
value ofT . Initial and final states are defined as follows.

init((|[]|:, x, T,∆, b))
∆

= (|[]|:◦, T × {init(b)})

final((|[]|:◦, f))
∆

= ∀ v : T · finalb(f(v))

There are two inference rules:|[]|:1 deals with events re-
quiring no synchronization, while|[]|:2 deals with the ones
that do.

α(σ) 6∈ ∆ f(v)
σ,([x:=v])2Γ
−−−−−−−−→b s′

|[]|:1
(|[]|:◦, f)

σ,Γ
−−→ (|[]|:◦, f<+{v 7→ s′})

10

¿ÀÁÂÀÃÄ ÅÅÅ Æ Ç ÈÉÊ ÈÊÂËÃÄ ÅÌÍ ÈÉÎ¿ÈÏÂÐÀÁÂÀÄÏÑÉÏÂÒÓÉÎ¿ÈÏÂ ÔÕÅ Ö Ç ÈÉÊÑ×Ê¿ÀÁÂÀÄ Ñ×ÊØ ÈÊÂËÄ Ñ×ÊÏÀÂÑÊÂÐÀÁÂÀÙÆÚ ÛÜ ÝÈÉÎ¿ÈÏÂÐÀÁÂÀÙÆÚÏÀÂÑÊÂÓÊÂËÙÆÄÖÚÁÂÒÂÊÂÓÊÂËÙÆÄÖÚ ÏÑÉÏÂÒÓÉÎ¿ÈÏÂÙÆÚ ÁÂÒÂÊÂÐÀÁÂÀÙÆÚÞ ßàá
Figure 12. Invoicing of orders using a double synchronizati on quantification

α(σ) ∈ ∆ ∀ v : T · f(v)
σ,([x:=v])2Γ
−−−−−−−−→b f ′(v)

|[]|:2
(|[]|:◦, f)

σ,Γ
−−→ (|[]|:◦, f ′)

3.8 Guard

A guard ASTD guards the execution of its component
ASTD using a predicate. The first event received must sat-
isfy the guard predicate. Once the guard has been satisfied
by the first event, the component ASTD execute the subse-
quent events without further constraints from its enclosing
guard ASTD. The predicate may refer to variables whose
scope include the guard; in the context of IS specification,
the guard could also refer to attributes of entities and asso-
ciations, similarly to guards in process expressions of the
EB3 method [13].

The guard ASTD is a generalization of the guard speci-
fied on an automaton transition. It is especially useful when
the component ASTD is a complex structure, avoiding the
duplication of the guard predicate on all the possible first
transitions of that structure.
An example. Figure 13 provides an example of a guard
ASTD namedc, which is included in the scope of a choice
ASTD b, itself included in a Kleene closure ASTDa. The
innermost component is the automatond. If evente1(v) is
received, then predicatex > 0[([x := v])], which reduces
to v > 0 after applying the substitution, must hold for the
event to be accepted; otherwise, it is rejected and ignored
by the ASTD. If , evente1(v) is accepted,e2(v) can be
accepted to terminate the first iteration of the closure. A
new iteration can then start, and the new valuev′ for x must
again satisfyx > 0. Figure 14 provides another example of
a guard ASTD namedc, which is included in the scope of
a closure ASTDb, itself included in a quantified interleave
ASTD a. The innermost component is the automatond.
ASTD a can spawn (so to speak) two instances of automa-
ton d, one forx := 0 and one forx := 2. The instances for
x ∈ {1, 3} cannot start, since they do not satisfy the guard.

âã ä å æçèéêëìí îã ã ä ï ð ñòóôõö ÷ øùã úûèúã
Figure 13. A guard ASTD nested in a closure on a choiceüý þ ÿ ���� ����� �ý ý þ 	
� � ������� � ��ý ü���ý
Figure 14. A guard ASTD nested in a quantified inter-

leaved closure

The initial state ofa is a final state, since the body of the
quantified interleave is a closure, whose initial state is also
a final state, by definition of closure. ASTDa is also in a
final state when the last two events received aree2(0) and
e2(2).
Formal Definition and Semantics. Let Guard

∆

= 〈⇒, g, b〉
be the set of guard ASTDs, whereg ∈ Predicate is the guard
predicate andb ∈ ASTD is the guarded ASTD. The type of
a guard state is〈⇒◦, started, s〉 wherestarted ∈ Boolean
ands ∈ State. Symbolstarted denotes whether the guard
has been satisfied. It is set tofalse in the initial state and
then set totrue when the guard has been satisfied by the
first transition. A guard ASTD is in a final state if i) it is not
started, the guard predicate holds and the the initial stateof
its component ASTD is in a final state, or ii) it is started,
and its component ASTD is in a final state. Here are the
formal definitions of the initial state and the final states.

init((⇒, g, b))
∆

= (⇒◦, false, init(b))

final((⇒◦, false, init(b)))
∆

= g ∧ finalb(init(b))

final((⇒◦, true, s))
∆

= finalb(s)

11

We need two rules of inference. The first one deals with the
first transition and the satisfaction of the guard predicate.
The second one deals with subsequent transitions.

g[Γ] init(b)
σ,Γ
−−→b s′

⇒1

(⇒◦, false, init(b))
σ,Γ
−−→ (⇒◦, true, s′)

s
σ,Γ
−−→b s′⇒2

(⇒◦, true, s)
σ,Γ
−−→ (⇒, true, s′)

3.9 ASTD Call

Finally, it is possible to call an ASTD which is defined
in another diagram. A call is graphically represented by the
ASTD name and its actual parameter values. Calls can be
recursive. Formally, letASTDCall

∆

= 〈cal, P (~v)〉 be the set
of ASTD calls, whereP is a reference to an ASTD defini-
tion P (~x : ~T)

∆

= b and, for eachvi ∈ ~v, we havevi ∈ Ti.
The type of an ASTD call state is〈cal◦, [⊥ | s]〉, where⊥
denotes that the call hasn’t been made yet ands ∈ State is
actual state of the called ASTD when the called has been
made. The initial and final states are as follows.

init((cal, P (~v)))
∆

= (cal◦,⊥)

final((cal◦, s))
∆

= (s = ⊥ ∧ finalb(init(b))[~x := ~v])
∨
(s 6= ⊥ ∧ finalb(s)[~x := ~v])

There are two rules of inference. Rulecal1 deals with the
initial call execution, whilecal2 deals with subsequent exe-
cutions.

init(b)
σ,([~x:=~v])2Γ
−−−−−−−−→b s′

cal1
(cal,⊥)

σ,Γ
−−→ (cal, s′)

s
σ,([~x:=~v])2Γ
−−−−−−−−→b s′

cal2
(cal, s)

σ,Γ
−−→ (cal, s′)

4 Case Study

In this section, we illustrate ASTDs on a very simple but
typical IS case study. A library system has to manage loans
of books by members. A book is acquired by the library. It
can be discarded, but only if it is not lent. A member must
register at the library in order to borrow a book. He/she can
leave the library membership only when all his/her loans are
returned.

Figure 15 defines the main ASTD which is a param-
eterized synchronization (parallel composition‖) of two
ASTDs associated with the entity types of the library sys-
tem, that ismember andbook. These two ASTDs are quan-

tified synchronizations (interleave9) where the quantified
variablesmid andbid take their value on the set of all the
objects of, respectively, entitymember and entitybook. The
unique component of each of these two quantified synchro-
nizations ASTDs is an ASTD call that refers to the ASTD
definition of member (resp. book) described in Figure 16.
Each of them is a simple automaton describing the life cycle
of an object. They refer to theloan automaton (Figure 16)
that describes the life cycle of a loan of a given bookbid
by a given membermid. In thebook automaton, the inter-
mediate state is a closure on a quantified choice, meaning
that a book can be borrowed several times but by only one
member at a time, whereas in themember automaton, the
intermediate state is a quantified synchronization on a clo-
sure, meaning that a member can borrow several books at a
time.

In ASTD main, the parallel composition (‖) denotes the
conjunction of the ordering constraints of each entity type.
It ensures that if a book is borrowed, it satisfies the order-
ing constraints of the book and the member, sincebook and
member must synchronize on common events, which are
the events of ASTDloan. We have left out usual constraints
like imposing a loan limit for a member, or taking into ac-
count reservations for books. They could easily be added
to the model, by adding a guard for the loan limit in ASTD
loan. Reservations can be modeled by adding a reservation
ASTD that would composed in parallel with loans.

5 Conclusion

We have introduced algebraic state transition diagrams,
which allows for the combination of automata using tra-
ditional process algebra operators. Automaton states can
themselves be ASTDs, supporting hierarchical decomposi-
tion of systems specifications, as in statecharts. Our moti-
vation was the specification of IS, which require quantifi-
cation operators to properly express the interaction between
entities.

ASTDs provide a concise, yet comprehensive and for-
mal, mechanism for specifying all the scenarios of an IS.
Scenarios can be built incrementally and composed using
process algebra operators. They make explicit the handling
of entity instances, by using quantifications. Existing nota-
tions like statecharts are not convenient for capturing these����� �������� �!"#��� �!" $ ��% �&&' �!"#��� �!" $ ��%

Figure 15. The main ASTD of the library case study

12

())*+(,- . /0123 451 6)40+(,-37,-27,- . /0189:;<=>?@ABCDEFGHIJKLMJNOPOQPRSOTU V WXYZ[\]Y ^_\XSQTU[OTUZ``` QTU V WXYabcdefbghijklmnopqrstpouvwxyz{|}~��� � �}�� ��� � �}��� |�� ��}��~���������������������������
Figure 16. ASTDs describing a book, a member and a

loan

aspects. Synchronization is also more convenient for IS
modeling than statechart event broadcasting, according to
our modeling experimentations. The syntax of ASTDs is
quite simple, relying on well-known concepts. For the sake
of simplicity, several features of statecharts are intentionally
ignored, like entry and exit action for states, null transitions
(transitions without event labels), state predicates and static
reactions. Our compositional semantics is also straightfor-
ward, using a simple labeled transition system. ASTD types
and states are inductively defined and allow a free combina-
tion of all ASTD types.

We intend to develop an interpreter for ASTDs, which
would be based on its operational semantics. We are con-
fident that the techniques we have developed for our pro-
cess algebra interpreterEB3PAI [11, 12] can also be applied
for ASTDs. Some patterns of synchronization quantifica-
tion can be efficiently implemented by storing, for each
value of the quantification variable, the state of the quan-
tified ASTD. Typically, the quantification variable appears
in each event of the quantified ASTD, so that its value can
be extracted from the event and the state value can be re-
trieved efficiently, inlog(n) if a B-tree is used to store the
mapping between the quantification values and the quanti-
fied ASTD state. Preliminary experimentations have shown
that an ASTD interpreter can be faster and use less space
thanEB3PAI.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to
Meanings, Cambridge University Press, Cambridge,
UK, 1996.

[2] M. Arbib. Theories of abstract automata. Prentice-
Hall, 1969.

[3] J. A. Bergstra, J. W. Klop. Process Algebra for Syn-
chronous Communication,Information and Control
60 (1):109–137, 1984.

[4] T. Bolognesi, E. Brinksma. Introduction to the ISO
Specification Language LOTOS,Computer Networks
and ISDN Systems14 (1):25–59, 1987.

[5] Y. Bontemps, G. Saval, P. Heymans and P.-Y.
Schobbens. From Interaction Diagrams to State Ma-
chines: Moving to Class-Level. InAFADL 2006, Paris,
France, March 2006. ENST Technical Reports.

[6] E. Boerger, R. Staerk.:Abstract State Machines: A
Method for High-Level System Design and Analysis.
Springer-Verlag 2003.

[7] M. Broy and M. Wirsing. Algebraic State Machines.
In AMAST 2000, LNCS 1816, 89–118, Springer-
Verlag, 2000.

[8] W. Damn and D. Harel. LSCs: Breathing Life into
Message Sequence Charts.Formal Methods in System
Design19(1):45–80 July 2001.

[9] J. Desharnais, M. Frappier and A. Mili. State transi-
tion diagrams. inHandbook on Architectures of Infor-
mation Systems, 2nd edition, P. Bernus, K. Mertins, G.
Schmidt, eds., 153–172, Springer-Verlag, 2006.

[10] J. Desharnais, M. Frappier, R. Khédri, A. Mili. In-
tegration of Sequential Scenarios.IEEE Transactions
on Software Engineering, 24(9):695–708 September
1998.

[11] B. Fraikin, M. Frappier. Efficient Symbolic Execution
of Large Quantifications in a Process Algebra, in 9th

Int. Conf. on Formal Engineering Methods (ICFEM
2007), LNCS 4789, 327–344, Springer-Verlag, 2007.

[12] B. Fraikin, M. Frappier. Efficient Symbolic Execution
of Process Expressions, submitted toScience of Com-
puter Programming.

[13] M. Frappier and R. St-Denis. EB3: an entity-based
black-box specification method for information sys-
tems.Software and Systems Modeling, 2(2):134–149,
July 2003.

[14] D. Harel. A visual formalism for complex systems.
Science of Computer Programming8, 231–274, 1987.

[15] D. Harel and A. Naamad. The STATEMATE Seman-
tics of Statecharts.ACM Trans. on Soft. Eng. and
Meth., 5(4):293–333, October 1996.

[16] C. A. R. Hoare.Communicating Sequential Processes,
Prentice-Hall, 1985.

[17] B. A. W. Roscoe.The Theory and Practice of Con-

13

currency, amended 2005, 3rd Edition, Prentice Hall,
1998.

[18] G. Lüttgen, M. von der Beeck and R. Cleaveland. Stat-
echarts via Process Algebra. InCONCUR’99, LNCS
1664, 399–414, Springer-Verlag, 1999.

[19] F. Maraninchi. Argonaute: Graphical Description,
Semantics and Verification of Reactive Systems by
Using a Process Algebra. InAutomatic Verification
Methods for Finite State Systems, LNCS 407, 38–53,
Springer-Verlag, 1989.

[20] R. Milner. Communication and Concurrency, Inter-
national Series in Computer Science, Prentice Hall,
1989.

[21] Object Management Group. OMG Unified Modeling
Language V2.1.2, http://www.omg.org.

[22] B. A. W. Roscoe. The Theory and Practice of Con-
currency, amended 2005, 3rd Edition. Prentice Hall,
1998.

[23] M. Wirsing. Algebraic Specification. inHandbook of
Theoretical Computer Science, Vol. B, 675–788, North
Holland, 1990.

[24] J. Woodcock, J. Davies.Using Z, Specification, Re-
finement and Proof, Prentice Hall, 1996.

[25] J. Woodcock, A. Cavalcanti. The Semantics of Circus,
in ZB 2002: Formal Specification and Development
in Z and B, LNCS 2272, 184–203, Springer-Verlag,
2002.

14

