Statecharts for the many: Algebraic State Transition Diagrams

Marc Frappier
GRIL - Groupe de recherche en ingénierie du logiciel

Plan

- Statecharts and information system specifications
- ASTD : Algebraic State Transition Diagrams
- Semantics of ASTD
- Conclusion

Statecharts

- graphical notation
- hierarchy + orthogonality
- hierarchical states
- AND states (parallel)
- OR states (choice)
- nice for single instance behaviour
- parameterized states in Harel's seminal paper (SCP 87)
- "never" implemented or formalised

A library in statecharts

book

Ioan

Problems

- only describes behaviour of a single book
- how to deal with several books?
- put n copies of book in parallel
- not defined in statecharts or UMII
- available in ROSE RT, but it is not quite what we want here
- can discard an unreturned book
- could add a guard to discard
- unnecessary complexity
- could make discard a transition from an inner state of loan
- introduce coupling between book and loan

Potential solutions

- book knows about the structure of loan
- makes loan less reusable
- makes maintenance more difficult

book

Adding members

main

member

Problems

- a member can borrow several books in parallel
- can't "easily" express that in statecharts or UMI
- State explosion
- two calls to loan
- one in member, one in book
- they both get the lend event
- OK if only one member
- KO if we have several members trying to borrow the same book
- could remove loan from member
- must add guard to Unregister to check for completed loan
- loose visual ordering constraint

Potential solutions

- remove loan from member
- loose visual ordering constraint between member and loan
- replaced by a guard
- need state variable
member

The single instance view: A weakness of statecharts

- both statecharts and UML state machines are designed to represent a single instance
- eg, controller, object of a class, etc
- they offer no convenient means to express relationships between multiple instances
- in practice, designers only describe the single instance behaviour
- leave it to the implementer to figure out the multiple instance case

A solution: Process algebra

- CCS, CSP, ACP, LOTOS, EB3 ${ }^{3}$...
- algebra
- operators to combine process expressions
- sequence, choice, interleave, synchronisation, guard, ...
- quantification
- operators are the essence of abstraction
- combine small units to build large units
- operators foster abstraction by masking internal details

A Process expression for books

book(b : BookId) =

A process expression for loans

loan(mId:Member, IDbId:BookID) =

$$
\begin{aligned}
& \text { nbLoans(mId) < maxNbLoans(mId) } \\
& \quad \Longrightarrow \text { Lend(mId, bId) } \\
& \text { Renew(bId) }
\end{aligned}
$$

Return(bId)

A process expression for members

member(m : MemberId $)=$
Register(m, _, _)
(III b : BookId : loan(m, b) ${ }^{\star}$)
Unregister(m)

Interleave quantification

$$
\begin{aligned}
& \text { III } \mathrm{x}:\{1,2,3\}: \mathrm{P}(\mathrm{x}) \\
& \mathrm{P}(1)||\mathrm{P}(2) \|| \mathrm{P}(3)
\end{aligned}
$$

Main process expression

main $=$
(III b : BookId : book(b) ${ }^{\star}$)

Synchronisation over common actions

$\mathrm{a}(1) \cdot \mathrm{b}(1) \cdot \mathrm{c}(1)$	
quantified	\|x:T:a(x) •b(x) $\cdot \mathrm{c}(2)$
	$\mathrm{a}(1) \cdot \mathrm{b}(1) \cdot$ STOP

ASTD

- Algebraic State Transition Diagrams
- ASTD = statecharts + process algebra
- graphical notation
- power of abstraction
- statecharts become elementary process expressions
- combine them using operators
- formal semantics
- operational semantics

ASTD Operators

- \Rightarrow : sequence
- | : choice
- |x: quantified choice

■ *: Kleene closure
$\square \Longrightarrow$: guard

- |[$\mathbb{A}]$: parallel composition with synchronisation on A
- || interleave, || parallel composition

■ ||lx, |[]|x : quantified version

- AS'ID call : allows recursive calls

A book ASTD

initial
state
operators applied from
left to right
book(bld : int)

final transition:
can trigger only if its source
is in a final state

Closure applied to an ASTD

- \star means execute the ASTD an arbitrary number of times,
 including 0
- when the ASTD is in a final state, it can start again from its initial state
- example traces are
- empty trace
- e1,e2,e2,...,e1,e1,e2, ...

The closure ASTD type

(\star, body)

- \star denotes the type constructor for a closure
- body is an ASTD (of any type)

The closure state type

- $\star \circ$ is the closure state type constructor
- started? is a boolean
value that indicates if its component has started its first iteration
- s is the state of its component

States of a closure

function that defines the initial state of an ASTD

closure ASTD

- the in al state of its co ponent $\operatorname{init}((\star, b)) \triangleq\left(\star_{\circ}\right.$, false, $\left.\operatorname{init}(b)\right)$
- final states
- its initial state
- final states of its component
final $\left(\left(\star_{0}\right.\right.$, started $\left.\left.?, s\right)\right) \triangleq \operatorname{final}_{b}(s) \vee \neg$ started?
function that determines if

Final state

- an ASTD does not terminate when its current state is final
- a final state simply enables transitions of another ASTD within a
- closure
- sequence

A member ASTD

member(mld : int), aut

A loan ASTD

loan(bld : int, mld : int)

The main ASTD

Power of abstraction

- suppose you have two statecharts, a and b
- you want to compose them as follows
- execute a an arbitrary number of times
- then execute b an arbitrary number of times
- then start over again, an arbitrary number of times
- can't do it in statecharts without peeking into a and b's structure with guards
- introduce a dependency between the compound and the components

Power of abstraction

sequential
composition

The sequence ASTD type

$(\Rightarrow$, left, right)

- \Rightarrow denotes the sequence ASTD type constructor
- left and right are ASTDs

The sequence state type

- \Rightarrow 。 denotes the sequence state type constructor
- side denotes the current side of the sequence
- left
- right
- s denotes the state of the side component

State transitions

$$
(\Rightarrow \circ, \text { left, 1) }
$$

e1

($\Rightarrow \mathrm{o}$, left, 2)
e3

(\Rightarrow o, right, 4)

State transitions

(\Rightarrow o,left, 1)
e1

($\Rightarrow \circ$, left, 2)
e2
(\Rightarrow o,left, 2)

State transitions

$(\Rightarrow$ ○,left, $(\star \circ, \neg$ started, 1$))$

e3

(\Rightarrow 。, right, ($\star \circ$, started, 4))

e3

e

(\Rightarrow o, right, $(\star$, started, 4))

Initial and final states of a sequence ASTD

```
    init ((\triangleleft,l,r))}\triangleq| (\mp@subsup{`}{0}{},\mathrm{ left, init (l))
```



```
final((\mp@subsup{\triangleleft}{0}{},\mathrm{ right, s))}\triangleq}=\mp@subsup{\operatorname{final}}{r}{}(s
```


Operational semantics

- first used by Milner for CCS
- transitions

$$
S \xrightarrow{\sigma} \mathrm{a} S^{\prime}
$$

- ASTD a can execute σ from state s and move to state s'

Operational semantics

- transitions defined by a set of inference rules
- rules for each operator
- allows non-determinism
- if several transitions can fire from s , then one is nondeterministically chosen
- no priority

Inference rules

- first rules deals with environment, noted ([]), to manage variables introduced by
- quantifications
- process parameters

ALU世O similar to traditional pence rules δ of an automaton

	$\delta\left(\left(\mathrm{loc}, n_{1}, n_{2}\right), \sigma^{\prime}, g\right.$, final? $)$	Ψ	
	$\left(\text { aut }_{\circ}, n_{1}, h, s\right) \xrightarrow{\sigma, \Gamma}\left(\text { aut }_{\circ}, n_{2}, h^{\prime}, \dot{j} \pi i t\left(\nu\left(n_{2}\right)\right)\right)$		

execute an automaton transition

$$
\begin{aligned}
& \Psi \triangleq\left(\left(\text { final } ?^{\forall} \operatorname{final}_{\nu\left(n_{1}\right)}(s)\right) \wedge\right. \\
& \left.\qquad g \wedge \sigma^{\prime}=\sigma \wedge h^{\prime}=h<+\left\{n_{1} \mapsto s\right\}\right)[\Gamma]
\end{aligned}
$$

$$
\operatorname{aut}_{6} \frac{s \stackrel{\sigma, \Gamma}{\longrightarrow} \nu(n) s^{\prime}}{\left(\text { aut }_{\circ}, n, h, s\right) \xrightarrow{\sigma, \Gamma}\left(\text { aut }_{\circ}, n, h, s^{\prime}\right)}
$$

execute a transition of the component

Closure inference rules

execute from the initial state of the component

$$
\star_{1} \frac{\left(\text { inal }_{b}(s)[\Gamma] \vee \neg \text { started } ?\right) \quad \operatorname{init}(b) \xrightarrow{\sigma, \Gamma} b s^{\prime}}{\left(\star_{0}, \text { started } ?, s\right) \xrightarrow{\sigma, \Gamma}\left(\star_{0}, \text { true }, s^{\prime}\right)}
$$

execute the component when started

$$
\star_{2} \frac{s \xrightarrow{\sigma, \Gamma}_{b} s^{\prime}}{\left(\star_{0}, \text { true }, s\right) \xrightarrow{\sigma, \Gamma}\left(\star_{0}, \text { true }, s^{\prime}\right)}
$$

Sequence inference rules

$$
\neg_{1} \frac{s \xrightarrow{\sigma, \Gamma} s^{\prime}}{\left(\hbar_{0}, \text { left }, s\right) \xrightarrow{\sigma, \Gamma}\left(\hbar_{0}, \text { left }, s^{\prime}\right)}
$$

execute on left

$$
\triangleleft_{2} \frac{\operatorname{final}_{l}(s)[\Gamma] \quad \operatorname{init}(r) \xrightarrow{\sigma, \Gamma} r s^{\prime}}{\left(ڭ_{\circ}, \text { left }, s\right) \xrightarrow{\sigma, \Gamma}\left(ڭ_{\circ}, \text { right }, s^{\prime}\right)}
$$

execute on right when left is final

execute the right component

Choice: initial and final states

> Choice state
> (|०,side,s)

```
    init((|,l,r)) \triangleq (| |, \perp, \perp)
    final((|, , , , )) \triangleq finall (init (l))\vee final 
    final((|o, fst,s)) \triangleq finall}(s
final((|o, snd,s))\triangleq \inal
```


Choice inference rules

execute the first component from its initial state
execute the second component from its initial state
execute the first component when it has been selected
execute the second component when it has been selected

Choice example

Integration with the business class diagram

		loan		
		Lend Renew Return		
book		date		member
Acquire Discard	*		1	Register Unregister
ListBook			borrower	memberId
bookId title				name nbLoans maxNbLoans

State variables

- the system trace is the only state variable
- entity attributes are functions on this trace
- attributes can be used anywhere in ASTDs
- guard, quantification sets, ...
nbloans(mId : MemberId) $=$ Register(mId, _) : 0, Lend(mId, _) : $1+$ nbLoans(mId), Return(bId) : if borrower(bId) $=\mathrm{mId}$ then nbLoans (mId) - 1 ,
Unregister(mId, _) : \perp;

Conclusion

- process algebra operators can improve the expressiveness of statecharts
- complete, precise models of information systems
- not just single instance scenarios, but also multiple instance scenarios
- future work
- tools for animation
- model checking
- code generation

