Alloy: A Quick Reference and an interpretation into B

Marc Frappier, 2020-11-09
version 2.1

Inspired from the document Alloy Quick Reference written by Martin Monperrus
https://www.monperrus.net/martin/alloy-quick-ref.pdf

Alloy Specification
The typical structure of an Alloy specification is as follows

Declaration of signatures

Declaration of facts

Declaration of predicates and functions
Run statement and check statements

However, these can be freely mixed (ie, no ordering is imposed on the declarations).
Alloy Expressions

Basic types are declared using signatures.
A signature declares a set of atoms.
An expression is either a term or a formula.
A type can be a signature or a term constructed using signatures.
A variable v must be typed using the declaration v : T, where T is a term constructed using signatures.
Alloy terms (ie, values other formulas) are nary-relations.
o Alloy has no explicit notion of sets, tuples or scalars; a term is a nary-relation
o Atuple is represented using a singleton relation.
o Ascalar is represented using a singleton, unary relation
o Asetis represented using a unary relation.

Alloy terminology (as defined in Daniel Jackson’s book Software Abstractions : Logic, Language, and Analysis)

e A model is an Alloy specification
e Afactis a formula that must be satisfied by a model instance
e A model instance is an assignment of values to the symbols (signature and relations) that satisfies the facts and the signature constraints of a
specification.
o This is a bit confusing wrt to the usual terminology in logic: a model in logic is what is called a model instance in Alloy.

1

http://info.usherbrooke.ca/mfrappier/
https://www.monperrus.net/martin/alloy-quick-ref.pdf
http://www.monperrus.net/martin/
https://www.monperrus.net/martin/alloy-quick-ref.pdf

e Asignature is a set of atoms of the same type; a signature also denotes a type whose value is its set of atoms.
e Afield is declared in a signature and it denotes a relation. A field may have constraints on its values (one, lone, set).
e Anatom is an element of a signature. An atom is a unary relation with only one element (ie, a singleton set).

Signatures

Notation

Intuitive Meaning

Equivalent B declaration

sig Book {..}

Declares a set Book

SETS Book

sig Book { author: Author }
sig Author {..}

Declares a set Book, and a total function author

SETS Book, Author
CONSTANTS author

PROPERTIES author : Book --> Author

sig Book { author: set Author }

Declares a set Book, and a relation author which
is a subset of the Cartesian product
Book x Author

PROPERTIES author : Book <->Author

sig Book { author: some Author }

a book has at least one author

PROPERTIES
author : Book <-> Author
dom(author) = Book

sig A { f: lone B } f is a partial function from A to B f : A+->8B

sig A{ f: B} f is a total function from A to B f:A-->8B

sig A { f: one B } f is a total function from A to B f:A-->B

sig A { f: set B } f is a relation from A to B f: A<->B

sig Dictionary extends Book {..} Inheritance, all extension signatures are disjoint. CONSTANTS

sig Novel extends Book {..} Novel, Dictionary

PROPERTIES

Dictionary € Book &
Novel € Book &
Novel N Dictionary = {}

abstract sig Book {..} Abstract signature, has no proper instance; all PROPERTIES

sig Dictionary extends Book {..}
sig Novel extends Book {..}

instances are obtained from extensions

Novel U Dictionary = Book

one sig Bible extends Book {..}

Singleton, |Bible| = 1, Bible subset of Book

PROPERTIES
Bible € Book &
card(Bible) =1

sig LNCS in Book {..}

LNCS subset of Book. It may overlap with other
extensions of Book

PROPERTIES
LNCS < Book

Boolean Operators

p and g, p & q Conjunction p & q
por g p |l g Disjunction p or g
p implies q, p => q Implication p =>q

p implies el else e2

Conditional expression (el, e2 can be of any type or
a formula)

B allows implication only between formulas
(p => q1) & ((not p) => q2)

p iff g, p <=> ¢q

Equivalence

P <=>4q

not p, !p

Negation

not p

Quantification

all x1,.,xn : S1, .., yl,.,yn : Sm | p |Universal quantification 1(x1,..,Xn,.., yl,.,yn).
(
x1 : S1 & .. & xn : S1
- & .. & ..
yl : S2 & .. & yn : Sm
=>
p
)
some x1,.,xn : S1, .., yl,.,yn : S2 | p |Existential quantification, at least one #(x1,..,XN,.., yl,..,yn).
(
x1 : S1 & .. & xn : S1
- & .. & ..
yl : S2 & .. & yn : Sm
&
p
)
onex :S|p Exactly one assignment of values to variables #(x).(x : S & p)
satisfies p. Also allowed for list of variables. & ! (x1,x2).
(
x1:S
& x2:S
& p[x:=x1]
& p[x:=x2]
=>
x1=x2)

nox :S|p

No assignment of values to variables satisfies p. Also
allowed for list of variables.

not (#(x).(x : S & p))

lone x : S | p

At most one assignment of values to variables
satisfies p. Also allowed for list of variables.

(.. one ..) or (.. no ..)

Sets (ie, unary relations)

The range of integers is defined by the scope
run .. for n int

where n is the number of bits used to represent a
signed integer. Thus, the range is -2" .. (2"1)-1.
ex: for 3 intisthe interval -4 ..3

none The empty set {3
univ All instances of all types (the universe) N/A
Int set of integers, defined in module util/integer |NAT with MININT =-2"1and MAXINT = (2™1)-1

Predefined Binary relations

iden

Identity relation on univ, ie, the relation
{x:univ,y:univ | x=y}

not available
The B expression
id(s)
is the Alloy expression
S <: iden
where < : is Alloy's prerestriction operator

Predicates on relation

no x Empty set x = {}

some X Relation not empty x /= {}

one X x| =1 card(x) =1
lone x x| <=1 card(x) <=1
a in B Subset or equal a<: B
a=>b Equality a=>b
al=b Inequality al/=b

Operators on relations

a->b

Cartesian product a x b

a*b

{x1:S,..,xn:Sn | p}

Set of tuples

{(x1,..,xn) | x1:51 & .. & xn:Sn & p}
type of set elements is ((S1*S2)* ..)*Sn

b.author Field access. Same as set of images of b by relation |author[{b}]
author
ri.r2 Relation product r1;r2 (only when rl and r2 are binary relations)
Alloy has n-ary relations; B only has binary
relations
a.b Relational product extended to arbitrary nary- N/A
relations
b[a] sameas a.b b[a]
works only if b is a binary relation and a is a set
X +y Union x\/y
X &y Intersection x /\y
X -y Difference X -y
a<:b Domain restriction of relation b by set a a<|b
b :>a Range restriction of relation b by set a b|>a
~a Inverse a~
*a Reflexive-transitive closure closure(a)
~a Transitive closure closurel(a)
a++b Relational override, a<+b
ie, returns (a-(b.univ)) + b
#a Cardinality card(a)

Types, constraints and multiplicities

r in T->U Relation from T to U rin T <-> U
rin T -> one U Total function from T to U rinT -->U
rin T -> lone U Partial function from T to U rin T +-> U
r in T lone -> lone U Partial injection from T to U rin T >+> U
r in T lone -> one U Total injection from T to U rin T >-> U
r in T some -> lone U Partial surjection from T to U rin T +->> U
r in T some -> one U Total surjection from T to U rin T +->> U
r in T one -> lone U Partial bijection from T to U rin T >+>> U
r in T one -> one U Bijection from T to U rin T >->> U

Integers (operators defined in module util/integer)

plus[a,b] Sum a+b
minus[a,b] Difference a-b
mul[a,b] Product a*b
div[a,b] Integer division a/b
rem[a,b] Remainder of a divided by b

sum[a] Returns the sum of the integers of set a

a<b,a=Db,a>b, a=<b, a>b>b

Integer comparison

a<b,a=b, a>b, a<=b, a>b

max[a] Maximum of set a max(a)
min[a] Minimum of set a max(a)

Global Assertions

fact { Formulas £1,...,fn which must be satisfied by all |PROPERTIES
f1 instances of a model. fl & .. & fn
Formulas f1,...,fn are implicitly conjoined.

f2

}

Syntactic Sugar

author([b] b.author
author[Book] Book.author
pl.friend[p2] friend[pl,p2]

let v=E]|F

Equivalent to F where v is replaced by E

Ordering (operators defined in module util/ordering)

open util/ordering[State] as states Declares a total order on State
states/first First element
states/last Last element
states/next[s] Next element
states/prev[s] Previous element
states/nexts All next elements
states/prevs All previous elements
Sequences

s : seq A Sequence
s.append[t] Concatenation
s.first Head

s.rest Tail

s.elems Unordered elements
Modules

open util/ordering[States] as mystates

Opens module ordering and declares mystates
as prefix for using it (ie, mystates /function)

module util/ordering[exactly elem]

Declares module ordering with parameter elem

Predicates and functions

pred wrote[a:Author,b:Book]
{b.author=a}

Predicate (returns true or false)

DEFINITIONS
wrote(a,b) == author[{b}] = {a}

fun books[a:Author]:set Book
{author.a}

Function, returns an expression of some type, here it
returns a set of books

fun nbOfBooks[a:Author]:Int
{#(author.a)}

Function, returns an integer.

Finding an instance of a model

run {..} for n

Find instances, by default with a maximum of n
instances for each signature (n is some natural
number).

run {..} for 3 Book, 4 Author

Find instances with constraints on # of instances

run {..} for 3 but 1 Author

Find instances with constraints on # of instances,
here 3 instances of all signatures except Author, for
which only 1 instance is used.

pred foo[b:Book] {..}
run foo for 3 but 1 Author

Find instances satisfying predicate "foo"

Checking an assertion of a model

assert assertionl
{good_author => good_book}

check assertionl for ..

Find counter-examples violating the assertion.
Same scope specification behavior as the run
command

check nom_check
{good_author => good_book} for ..

Check specified assertion.
Assertion has the name nom_check

check {good_author => good_book} for ..

Check anonymous assertion

Precedence

(In increasing order; operators on the same line have same priority)

Expressions (operands are not Booleans)

Logical expression (operands are Booleans)

~ N %
o

[]
<1, >
->

&

++

#

+ -

no, some, lone, one, set
I not

in ,= ,< ,> ,= ,=< ,=>

I not

&&, and

=>,implies, else

<=>,iff

|, or

let, no, some, lone, one, sum (quantification)

All binary operators associate to the left, with the exception of implication, which associates to the right. So, for example, a.b.c is parsed as (a.b).c,andp =>

g => risparsedasp => (q => r).

10

