Alloy: A Quick Reference and an interpretation into B

```
Marc Frappier, 2020-11-09
    version 2.1
```

Inspired from the document Alloy Quick Reference written by Martin Monperrus
https://www.monperrus.net/martin/alloy-quick-ref.pdf

Alloy Specification

The typical structure of an Alloy specification is as follows

- Declaration of signatures
- Declaration of facts
- Declaration of predicates and functions
- Run statement and check statements

However, these can be freely mixed (ie, no ordering is imposed on the declarations).

Alloy Expressions

- Basic types are declared using signatures.
- A signature declares a set of atoms
- An expression is either a term or a formula.
- A type can be a signature or a term constructed using signatures.
- A variable v must be typed using the declaration $v: T$, where T is a term constructed using signatures.
- Alloy terms (ie, values other formulas) are nary-relations.
- Alloy has no explicit notion of sets, tuples or scalars; a term is a nary-relation
- A tuple is represented using a singleton relation.
- A scalar is represented using a singleton, unary relation
- A set is represented using a unary relation.

Alloy terminology (as defined in Daniel Jackson's book Software Abstractions : Logic, Language, and Analysis)

- A model is an Alloy specification
- A fact is a formula that must be satisfied by a model instance
- A model instance is an assignment of values to the symbols (signature and relations) that satisfies the facts and the signature constraints of a specification.
- This is a bit confusing wrt to the usual terminology in logic: a model in logic is what is called a model instance in Alloy.
- A signature is a set of atoms of the same type; a signature also denotes a type whose value is its set of atoms.
- A field is declared in a signature and it denotes a relation. A field may have constraints on its values (one, lone, set).
- An atom is an element of a signature. An atom is a unary relation with only one element (ie, a singleton set).

Signatures

Notation	Intuitive Meaning	Equivalent B declaration
sig Book \{...\}	Declares a set Book	SETS Book
sig Book \{ author: Author \} sig Author \{...\}	Declares a set Book, and a total function author	SETS Book, Author CONSTANTS author PROPERTIES author : Book --> Author
sig Book \{ author: set Author \}	Declares a set Book, and a relation author which is a subset of the Cartesian product Book \times Author	PROPERTIES author : Book <-> Author
sig Book \{ author: some Author \}	a book has at least one author	```PROPERTIES author : Book <-> Author dom(author) = Book```
sig $A\{f:$ lone B \}	f is a partial function from A to B	$f: A+->B$
sig $A\{f: B\}$	f is a total function from A to B	$f: A-->B$
$\operatorname{sig} A\{f$: one B \}	f is a total function from A to B	$f: A-->B$
sig A \{ f: set B \}	f is a relation from A to B	$f: A<->B$
sig Dictionary extends Book \{...\} sig Novel extends Book \{...\}	Inheritance, all extension signatures are disjoint.	```CONSTANTS Novel, Dictionary PROPERTIES Dictionary\subseteq Book & Novel\subseteq Book & Novel \cap Dictionary = {}```
```abstract sig Book {...} sig Dictionary extends Book {...} sig Novel extends Book {...}```	Abstract signature, has no proper instance; all instances are obtained from extensions	PROPERTIES ... Novel U Dictionary = Book
one sig Bible extends Book \{...\}	Singleton, \|Bible $=1$, Bible subset of Book	```PROPERTIES Bible\subseteq Book &  card(Bible) = 1```
sig LNCS in Book \{...\}	LNCS subset of Book. It may overlap with other extensions of Book	PROPERTIES   LNCS $\subseteq$ Book

## Boolean Operators

p and $\mathrm{q}, \mathrm{p}$ \&\& q	Conjunction	$p \& q$
p or $\mathrm{q}, \mathrm{p}\| \| \mathrm{q}$	Disjunction	$p$ or q
p implies q, p $\quad$ ¢ q	Implication	$p \Rightarrow q$
$p$ implies e1 else e2	Conditional expression (e1, e2 can be of any type or a formula)	$B$ allows implication only between formulas ( $p=>q 1$ ) \& ((not $p) \Rightarrow q 2)$
p iff q, p < q	Equivalence	$\mathrm{p}<=>\mathrm{q}$
not $p,!p$	Negation	not $p$

## Quantification

all $\mathrm{x} 1, \ldots, \mathrm{xn}: \mathrm{S} 1, \ldots, \mathrm{y} 1, \ldots, y \mathrm{l}$ : Sm \| p	Universal quantification	
some $\mathrm{x} 1, \ldots, \mathrm{xn}: \mathrm{S} 1, \ldots, \mathrm{y} 1, \ldots, y \mathrm{l}$ : S2 \| p	Existential quantification, at least one	
one $\mathrm{x}: \mathrm{S} \mid \mathrm{p}$	Exactly one assignment of values to variables satisfies p. Also allowed for list of variables.	$\begin{gathered} \text { \#(x). }(x: S \& p) \\ \&!(x 1, x 2) . \\ (x 1: S \\ \& x_{2}: S \\ \& p[x:=x 1] \\ \& p[x:=x 2] \\ \Rightarrow \\ x 1=x 2) \end{gathered}$


no $\mathrm{x}: \mathrm{S} \mid \mathrm{p}$	No assignment of values to variables satisfies p . Also   allowed for list of variables.	not (\#(x).(x : S \& p))
lone $\mathrm{x}: ~ \mathrm{~S} \mid \mathrm{p}$	At most one assignment of values to variables   satisfies $p$. Also allowed for list of variables.	$(\ldots$ one ...) or (... no ...)

Sets (ie, unary relations)

none	The empty set	$\}$
univ	All instances of all types (the universe $)$	N/A
Int	set of integers, defined in module util/integer   The range of integers is defined by the scope   run ... for $n$ int   where $n$ is the number of bits used to represent a   signed integer. Thus, the range is $-2^{\mathrm{n}-1} . .\left(2^{\mathrm{n}-1}\right)-1$.   ex: for 3 int is the interval $-4 . .3$	NAT with MININT $=-2^{\mathrm{n}-1}$ and MAXINT $=\left(2^{\mathrm{n}-1}\right)-1$

## Predefined Binary relations

iden	Identity relation on univ, ie, the relation \{x:univ, $y$ :univ \| $x=y$ \}	not available   The B expression $i d(S)$   is the Alloy expression   S <: iden   where < : is Alloy's prerestriction operator

## Predicates on relation

no x	Empty set	$\mathrm{x}=\{ \}$
some x	Relation not empty	$\mathrm{x} /=\{ \}$
one x	$\|\mathrm{x}\|=1$	card $(\mathrm{x})=1$
lone x	$\|\mathrm{x}\|<=1$	card $(\mathrm{x})<=1$
a in B	Subset or equal	$\mathrm{a}<: \mathrm{B}$
$\mathrm{a}=\mathrm{b}$	Equality	$\mathrm{a}=\mathrm{b}$
$\mathrm{a} \boldsymbol{\mathrm { l } = \mathrm { b }}$	Inequality	$\mathrm{a} /=\mathrm{b}$

## Operators on relations

$a->b$	Cartesian product $\mathrm{a} \times \mathrm{b}$	a*b
\{x1:S,..., xn:Sn \| p $\}$	Set of tuples	$\{(x 1, \ldots, x n) \mid x 1: S 1 \& \ldots \& x n: S n \& p\}$ type of set elements is ((S1*S2)* ...)*Sn
b. author	Field access. Same as set of images of $b$ by relation author	author[\{b\}]
r1.r2	Relation product	r 1 ; r 2 (only when r 1 and r 2 are binary relations) Alloy has n -ary relations; B only has binary relations
a.b	Relational product extended to arbitrary naryrelations	N/A
b[a]	same as a.b	b [a]   works only if $b$ is a binary relation and $a$ is a set
$x+y$	Union	$x$ \/ y
$x$ \& y	Intersection	$x / \backslash y$
$x-y$	Difference	$x-y$
$\mathrm{a}<$ : b	Domain restriction of relation $b$ by set a	$a<1 b$
b : > a	Range restriction of relation $b$ by set $a$	b $1>a$
$\sim \mathrm{a}$	Inverse	a~
*a	Reflexive-transitive closure	closure(a)
$\wedge$ ^a	Transitive closure	closure1(a)
a++b	Relational override, ie, returns (a-(b.univ)) + b	a<+b
\#a	Cardinality	card(a)

## Types, constraints and multiplicities

$r$ in $T->U$	Relation from $T$ to $U$	$r$ in $T<->U$
$r$ in $T->$ one $U$	Total function from $T$ to $U$	$r$ in $T-->U$
$r$ in $T->$ lone $U$	Partial function from $T$ to $U$	$r$ in $T+->U$
$r$ in $T$ lone $->$ lone $U$	Partial injection from $T$ to $U$	$r$ in $T>+>U$
$r$ in $T$ lone $->$ one $U$	Total injection from $T$ to $U$	$r$ in $T>->U$
$r$ in $T$ some $->$ lone $U$	Partial surjection from $T$ to $U$	$r$ in $T+-\gg U$
$r$ in $T$ some $->$ one $U$	Total surjection from $T$ to $U$	$r$ in $T+-\gg U$
$r$ in $T$ one $->$ lone $U$	Partial bijection from $T$ to $U$	$r$ in $T>+\gg U$
$r$ in $T$ one $->$ one $U$	Bijection from $T$ to $U$	$r$ in $T>-\gg U$

## Integers (operators defined in module util/integer)

plus [a, b]	Sum	a+b
minus [a, b]	Difference	a-b
mul[a, b]	Product	a*b
div[a,b]	Integer division	a/b
$\operatorname{rem}[\mathrm{a}, \mathrm{b}$ ]	Remainder of a divided by b	
sum[a]	Returns the sum of the integers of set a	
$\begin{aligned} & a<b, a=b, a>b, a=\langle b, a>=b \\ & \max [a] \end{aligned}$	Integer comparison   Maximum of set a	$\begin{aligned} & a<b, a=b, a>b, a<=b, a>=b \\ & \max (a) \end{aligned}$
min[a]	Minimum of set a	$\max (\mathrm{a})$

## Global Assertions

fact \{	Formulas $f 1, \ldots, f n$ which must be satisfied by all   f1	PROPERTIES   instances of a model.   f1 \& $\ldots \& ~ f n$
f2		
$\}$	Formulas $f 1, \ldots, f n$ are implicitly conjoined.	

Syntactic Sugar

author[b]	b.author
author[Book]	Book. author
p1.friend[p2]	friend[p1, p2]
let $v=E \mid F$	Equivalent to $F$ where $v$ is replaced by E

Ordering (operators defined in module util/ordering)

open util/ordering[State] as states	Declares a total order on State
states/first	First element
states/last	Last element
states/next[s]	Next element
states/prev[s]	Previous element
states/nexts	All next elements
states/prevs	All previous elements

## Sequences

s : seq A	Sequence
s.append[t]	Concatenation
s.first	Head
s.rest	Tail
s.elems	Unordered elements

## Modules

open util/ordering[States] as mystates	Opens module ordering and declares mystates   as prefix for using it (ie, mystates /function)	
module util/ordering[exactly elem]	Declares module ordering with parameter elem	

## Predicates and functions

pred wrote[a:Author, $b:$ Book]   $\{b . a u t h o r=a\}$	Predicate (returns true or false)	DEFINITIONS   wrote $(a, b)==a u t h o r[\{b\}]=\{a\}$
fun books[a:Author]: set Book   $\{$ author.a\}	Function, returns an expression of some type, here it   returns a set of books	
fun nbOfBooks[a:Author]:Int   $\{\#(a u t h o r . a)\}$	Function, returns an integer.	

## Finding an instance of a model

run $\{\ldots\}$ for $n$	Find instances, by default with a maximum of $n$   instances for each signature ( $n$ is some natural   number).	
run $\{\ldots\}$ for 3 Book, 4 Author	Find instances with constraints on \# of instances	
run $\{\ldots\}$ for 3 but 1 Author	Find instances with constraints on \# of instances,   here 3 instances of all signatures except Author, for   which only 1 instance is used.	
pred foo[b:Book] \{...\}   run foo for 3 but 1 Author	Find instances satisfying predicate "foo"	

## Checking an assertion of a model

assert assertion1   \{good_author $=>$ good_book\}   check assertion1 for ...	Find counter-examples violating the assertion.   Same scope specification behavior as the run   command	
check nom_check   \{good_author $=>$ good_book\} for ...	Check specified assertion.   Assertion has the name nom_check	
check \{good_author $=>$ good_book\} for ...	Check anonymous assertion	

## Precedence

(In increasing order; operators on the same line have same priority)

Expressions (operands are not Booleans)	Logical expression (operands are Booleans)	
$\sim, \wedge$, *	!, not	
	\& \& , and	
[]	=>, implies, else	
<: , :>	<<>, iff	
->	\|	, or
\&	let, no, some, lone, one, sum (quantification)	
++		
\#		
+, -		
no, some, lone, one, set		
!, not		
in , = , < , > , = , = < , =>		

All binary operators associate to the left, with the exception of implication, which associates to the right. So, for example, a.b.c is parsed as (a.b).c, and p => $q \Rightarrow r$ is parsed as $p \Rightarrow(q=>r)$.

