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Alloy: A Quick Reference and an interpretation into B 

Marc Frappier, 2020-11-09 

version 2.1 

 

Inspired from the document Alloy Quick Reference written by Martin Monperrus 

https://www.monperrus.net/martin/alloy-quick-ref.pdf 

 

Alloy Specification 

 

The typical structure of an Alloy specification is as follows 

 

• Declaration of signatures 

• Declaration of facts 

• Declaration of predicates and functions 

• Run statement and check statements 

 

However, these can be freely mixed (ie, no ordering is imposed on the declarations). 

 

Alloy Expressions 

 

• Basic types are declared using signatures. 

• A signature declares a set of atoms. 

• An expression is either a term or a formula. 

• A type can be a signature or a term constructed using signatures. 

• A variable v must be typed using the declaration v : T, where T is a term constructed using signatures. 

• Alloy terms (ie, values other formulas) are nary-relations. 

o Alloy has no explicit notion of sets, tuples or scalars; a term  is a nary-relation 

o A tuple is represented using a singleton relation. 

o A scalar is represented using a singleton, unary relation 

o A set is represented using a unary relation. 

 

Alloy terminology (as defined in Daniel Jackson’s book Software Abstractions : Logic, Language, and Analysis) 

 

• A model is an Alloy specification 

• A fact is a formula that must be satisfied by a model instance 

• A model instance is an assignment of values to the symbols (signature and relations) that satisfies the facts and the signature constraints of a 

specification. 

o This is a bit confusing wrt to the usual terminology in logic: a model in logic is what is called a model instance in Alloy. 

http://info.usherbrooke.ca/mfrappier/
https://www.monperrus.net/martin/alloy-quick-ref.pdf
http://www.monperrus.net/martin/
https://www.monperrus.net/martin/alloy-quick-ref.pdf
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• A signature is a set of atoms of the same type; a signature also denotes a type whose value is its set of atoms. 

• A field is declared in a signature and it denotes a relation. A field may have constraints on its values (one, lone, set). 

• An atom is an element of a signature. An atom is a unary relation with only one element (ie, a singleton set). 
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Signatures 

 

Notation Intuitive Meaning Equivalent B declaration 

sig Book {…} Declares a set Book SETS Book 

sig Book { author: Author } 
sig Author {…} 

Declares a set Book, and a total function author SETS Book, Author 
CONSTANTS author 
PROPERTIES author : Book --> Author 

sig Book { author: set Author } Declares a set Book, and a relation author which 

is a subset of the Cartesian product 

Book × Author 

… 

PROPERTIES author : Book <-> Author 

sig Book { author: some Author } a book has at least one author PROPERTIES 
  author : Book <-> Author 
  dom(author) = Book 

sig A { f: lone B } f is a partial function from A to B f : A +-> B 

sig A { f: B } f is a total function from A to B f : A --> B 

sig A { f: one B } f is a total function from A to B f : A --> B 

sig A { f: set B } f is a relation from A to B f : A <-> B 

sig Dictionary extends Book {…} 
sig Novel extends Book {…} 

Inheritance, all extension signatures are disjoint. CONSTANTS 
  Novel, Dictionary 
PROPERTIES 
  Dictionary ⊆ Book  & 
  Novel ⊆ Book  & 
  Novel ∩ Dictionary = {} 

abstract sig Book {…} 
sig Dictionary extends Book {…} 
sig Novel extends Book {…} 

Abstract signature, has no proper instance; all 

instances are obtained from extensions 

PROPERTIES 
… 
  Novel ∪ Dictionary = Book 

one sig Bible extends Book {…} Singleton, |Bible| = 1, Bible subset of Book PROPERTIES 
  Bible ⊆ Book  & 
  card(Bible) = 1 

sig LNCS in Book {…} LNCS subset of Book. It may overlap with other 

extensions of Book 

PROPERTIES 
  LNCS ⊆ Book 
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Boolean Operators 

 

p and q, p && q Conjunction p & q 

p or q, p || q Disjunction p or q 

p implies q, p => q Implication p => q 

p implies e1 else e2 Conditional expression (e1, e2 can be of any type or 

a formula) 

B allows implication only between formulas 

(p => q1) & ((not p) => q2) 

p iff q, p <=> q Equivalence p <=> q 

not p, !p Negation not p 

 

Quantification 

 

all x1,…,xn : S1, …, y1,…,yn : Sm | p Universal quantification !(x1,…,xn,…, y1,…,yn). 
( 
  x1 : S1 & … & xn : S1 
  …        & … & … 
  y1 : S2 & … & yn : Sm 
=> 
  p 
) 

some x1,…,xn : S1, …, y1,…,yn : S2 | p Existential quantification, at least one #(x1,…,xn,…, y1,…,yn). 
( 
  x1 : S1 & … & xn : S1 
  …        & … & … 
  y1 : S2 & … & yn : Sm 
  & 
  p 
) 

one x : S | p Exactly one assignment of values to variables 

satisfies p. Also allowed for list of variables. 

  #(x).(x : S & p) 
& !(x1,x2). 
    ( 
        x1:S 
      & x2:S 
      & p[x:=x1] 
      & p[x:=x2] 
    => 
      x1=x2) 
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no x : S | p No assignment of values to variables satisfies p. Also 

allowed for list of variables. 

  not (#(x).(x : S & p)) 

lone x : S | p At most one assignment of values to variables 

satisfies p. Also allowed for list of variables. 

(… one …) or (… no …) 

 

Sets (ie, unary relations) 

 

none The empty set {} 

univ All instances of all types (the universe) N/A 

Int set of integers, defined in module util/integer 
The range of integers is defined by the scope 

run … for n int 
where n is the number of bits used to represent a 

signed integer. Thus, the range is -2n-1 .. (2n-1)-1. 

ex: for 3 int is the  interval -4 .. 3 

NAT with MININT = -2n-1 and MAXINT = (2n-1)-1 

 

Predefined Binary relations 

 

iden Identity relation on univ, ie, the relation 

{x:univ,y:univ | x=y} 
not available 

The B expression 
    id(S) 
is the Alloy expression 

    S <: iden 
where <: is Alloy's prerestriction operator 

 

 

Predicates on relation 

 

no x Empty set x = {} 

some x Relation not empty x /= {} 

one x |x| = 1 card(x) = 1 

lone x  |x| <= 1 card(x) <= 1 

a in B Subset or equal a <: B 

a = b Equality a = b  

a != b Inequality a /= b 
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Operators on relations  

 

a->b Cartesian product a × b a*b 

{x1:S,…,xn:Sn | p} Set of tuples {(x1,…,xn) | x1:S1 & … & xn:Sn & p} 
type of set elements is ((S1*S2)* …)*Sn 

b.author Field access. Same as set of images of b by relation 

author 

author[{b}] 

r1.r2 Relation product r1;r2 (only when r1 and r2 are binary relations) 

Alloy has n-ary relations; B only has binary 

relations 

a.b Relational product extended to arbitrary nary-

relations 

N/A 

b[a] same as a.b b[a] 
works only if b is a binary relation and a is a set 

x + y Union x \/ y 

x & y Intersection x /\ y 

x - y Difference x - y 

a <: b Domain restriction of relation b by set a a<|b 

b :> a Range restriction of relation b by set a b|>a 

~a Inverse a~ 

*a Reflexive-transitive closure closure(a) 

^a Transitive closure closure1(a) 

a++b Relational override, 

ie, returns (a-(b.univ)) + b 

a<+b 

#a Cardinality card(a) 
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Types, constraints and multiplicities 

 

r in T->U Relation from T to U r in T <-> U 

r in T -> one U Total function from T to U r in T --> U 

r in T -> lone U Partial function from T to U r in T +-> U 

r in T lone -> lone U Partial injection from T to U r in T >+> U 

r in T lone -> one U Total injection from T to U r in T >-> U 

r in T some -> lone U Partial surjection from T to U r in T +->> U 

r in T some -> one U Total  surjection from T to U r in T +->> U 

r in T one -> lone U Partial bijection from T to U r in T >+>> U 

r in T one -> one U Bijection from T to U r in T >->> U 

 

Integers (operators defined in module util/integer) 

 

plus[a,b] Sum a+b 

minus[a,b] Difference a-b 

mul[a,b] Product a*b 

div[a,b] Integer division a/b 

rem[a,b] Remainder of a divided by b  

sum[a] Returns the sum of the integers of set a  

a < b, a = b, a > b, a =< b, a >= b Integer comparison a < b, a = b, a > b, a <= b, a >= b 

max[a] Maximum of set a max(a) 

min[a] Minimum of set a max(a) 

 

Global Assertions 

 

fact { 
f1 
… 
f2 
} 

Formulas f1,…,fn  which must be satisfied by all 

instances of a model. 

Formulas f1,…,fn  are implicitly conjoined. 

PROPERTIES 
f1 & … & fn 
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Syntactic Sugar 

author[b] b.author 

author[Book] Book.author 

p1.friend[p2] friend[p1,p2] 

let v = E | F Equivalent to F where v is replaced by E 

 

Ordering (operators defined in module util/ordering) 

open util/ordering[State] as states Declares a total order on State 

states/first First element 

states/last Last element 

states/next[s] Next element 

states/prev[s] Previous element 

states/nexts All next elements 

states/prevs All previous elements 

 

Sequences 

s : seq A Sequence 

s.append[t] Concatenation 

s.first Head 

s.rest Tail 

s.elems Unordered elements 

 

 

Modules 

 

open util/ordering[States] as mystates Opens module ordering and declares mystates 

as prefix for using it (ie, mystates /function) 

 

module util/ordering[exactly elem] Declares module ordering with parameter elem  
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Predicates and functions 

 

pred wrote[a:Author,b:Book] 
{b.author=a} 

Predicate (returns true or false) DEFINITIONS 
wrote(a,b) == author[{b}] = {a} 

fun books[a:Author]:set Book 
{author.a} 

Function, returns an expression of some type, here it 

returns a set of books 

 

fun nbOfBooks[a:Author]:Int 
{#(author.a)} 

Function, returns an integer.  

 

Finding an instance of a model 

 

run {…} for n Find instances, by default with a maximum of n 

instances for each signature (n is some natural 

number). 

 

run {…} for 3 Book, 4 Author Find instances with constraints on # of instances  

run {…} for 3 but 1 Author Find instances with constraints on # of instances, 

here 3 instances of all signatures except Author, for 

which only 1 instance is used. 

 

pred foo[b:Book] {…} 
run foo for 3 but 1 Author 

Find instances satisfying predicate "foo"   

 

Checking an assertion of a model 

 

assert assertion1 
   {good_author => good_book} 
 
check assertion1 for … 

Find counter-examples violating the assertion. 

Same scope specification behavior as the run 
command 

 

check nom_check 
   {good_author => good_book} for … 

Check specified assertion. 

Assertion has the name nom_check 

 

check {good_author => good_book} for … Check anonymous assertion  
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Precedence 

(In increasing order; operators on the same line have same priority) 

Expressions (operands are not Booleans) Logical expression (operands are Booleans) 

 ~ , ^  , * 

. 

[] 

<: , :> 

-> 

& 

++ 

# 

+, - 

no , some , lone , one , set 

! , not 

in , = , < , > , = , =< , => 

! , not 

&& , and 

=> , implies , else 

<=> , iff 

|| , or 

let , no , some , lone , one , sum (quantification) 

 

All binary operators associate to the left, with the exception of implication, which associates to the right. So, for example, a.b.c is parsed as (a.b).c, and p => 
q => r is parsed as p => (q => r). 


