
1

Alloy: A Quick Reference and an interpretation into B

Marc Frappier, 2020-11-09

version 2.1

Inspired from the document Alloy Quick Reference written by Martin Monperrus

https://www.monperrus.net/martin/alloy-quick-ref.pdf

Alloy Specification

The typical structure of an Alloy specification is as follows

• Declaration of signatures

• Declaration of facts

• Declaration of predicates and functions

• Run statement and check statements

However, these can be freely mixed (ie, no ordering is imposed on the declarations).

Alloy Expressions

• Basic types are declared using signatures.

• A signature declares a set of atoms.

• An expression is either a term or a formula.

• A type can be a signature or a term constructed using signatures.

• A variable v must be typed using the declaration v : T, where T is a term constructed using signatures.

• Alloy terms (ie, values other formulas) are nary-relations.

o Alloy has no explicit notion of sets, tuples or scalars; a term is a nary-relation

o A tuple is represented using a singleton relation.

o A scalar is represented using a singleton, unary relation

o A set is represented using a unary relation.

Alloy terminology (as defined in Daniel Jackson’s book Software Abstractions : Logic, Language, and Analysis)

• A model is an Alloy specification

• A fact is a formula that must be satisfied by a model instance

• A model instance is an assignment of values to the symbols (signature and relations) that satisfies the facts and the signature constraints of a

specification.

o This is a bit confusing wrt to the usual terminology in logic: a model in logic is what is called a model instance in Alloy.

http://info.usherbrooke.ca/mfrappier/
https://www.monperrus.net/martin/alloy-quick-ref.pdf
http://www.monperrus.net/martin/
https://www.monperrus.net/martin/alloy-quick-ref.pdf

2

• A signature is a set of atoms of the same type; a signature also denotes a type whose value is its set of atoms.

• A field is declared in a signature and it denotes a relation. A field may have constraints on its values (one, lone, set).

• An atom is an element of a signature. An atom is a unary relation with only one element (ie, a singleton set).

3

Signatures

Notation Intuitive Meaning Equivalent B declaration

sig Book {…} Declares a set Book SETS Book

sig Book { author: Author }
sig Author {…}

Declares a set Book, and a total function author SETS Book, Author
CONSTANTS author
PROPERTIES author : Book --> Author

sig Book { author: set Author } Declares a set Book, and a relation author which

is a subset of the Cartesian product

Book × Author

…

PROPERTIES author : Book <-> Author

sig Book { author: some Author } a book has at least one author PROPERTIES
 author : Book <-> Author
 dom(author) = Book

sig A { f: lone B } f is a partial function from A to B f : A +-> B

sig A { f: B } f is a total function from A to B f : A --> B

sig A { f: one B } f is a total function from A to B f : A --> B

sig A { f: set B } f is a relation from A to B f : A <-> B

sig Dictionary extends Book {…}
sig Novel extends Book {…}

Inheritance, all extension signatures are disjoint. CONSTANTS
 Novel, Dictionary
PROPERTIES
 Dictionary ⊆ Book &
 Novel ⊆ Book &
 Novel ∩ Dictionary = {}

abstract sig Book {…}
sig Dictionary extends Book {…}
sig Novel extends Book {…}

Abstract signature, has no proper instance; all

instances are obtained from extensions

PROPERTIES
…
 Novel ∪ Dictionary = Book

one sig Bible extends Book {…} Singleton, |Bible| = 1, Bible subset of Book PROPERTIES
 Bible ⊆ Book &
 card(Bible) = 1

sig LNCS in Book {…} LNCS subset of Book. It may overlap with other

extensions of Book

PROPERTIES
 LNCS ⊆ Book

4

Boolean Operators

p and q, p && q Conjunction p & q

p or q, p || q Disjunction p or q

p implies q, p => q Implication p => q

p implies e1 else e2 Conditional expression (e1, e2 can be of any type or

a formula)

B allows implication only between formulas

(p => q1) & ((not p) => q2)

p iff q, p <=> q Equivalence p <=> q

not p, !p Negation not p

Quantification

all x1,…,xn : S1, …, y1,…,yn : Sm | p Universal quantification !(x1,…,xn,…, y1,…,yn).
(
 x1 : S1 & … & xn : S1
 … & … & …
 y1 : S2 & … & yn : Sm
=>
 p
)

some x1,…,xn : S1, …, y1,…,yn : S2 | p Existential quantification, at least one #(x1,…,xn,…, y1,…,yn).
(
 x1 : S1 & … & xn : S1
 … & … & …
 y1 : S2 & … & yn : Sm
 &
 p
)

one x : S | p Exactly one assignment of values to variables

satisfies p. Also allowed for list of variables.

 #(x).(x : S & p)
& !(x1,x2).
 (
 x1:S
 & x2:S
 & p[x:=x1]
 & p[x:=x2]
 =>
 x1=x2)

5

no x : S | p No assignment of values to variables satisfies p. Also

allowed for list of variables.

 not (#(x).(x : S & p))

lone x : S | p At most one assignment of values to variables

satisfies p. Also allowed for list of variables.

(… one …) or (… no …)

Sets (ie, unary relations)

none The empty set {}

univ All instances of all types (the universe) N/A

Int set of integers, defined in module util/integer
The range of integers is defined by the scope

run … for n int
where n is the number of bits used to represent a

signed integer. Thus, the range is -2n-1 .. (2n-1)-1.

ex: for 3 int is the interval -4 .. 3

NAT with MININT = -2n-1 and MAXINT = (2n-1)-1

Predefined Binary relations

iden Identity relation on univ, ie, the relation

{x:univ,y:univ | x=y}
not available

The B expression
 id(S)
is the Alloy expression

 S <: iden
where <: is Alloy's prerestriction operator

Predicates on relation

no x Empty set x = {}

some x Relation not empty x /= {}

one x |x| = 1 card(x) = 1

lone x |x| <= 1 card(x) <= 1

a in B Subset or equal a <: B

a = b Equality a = b

a != b Inequality a /= b

6

Operators on relations

a->b Cartesian product a × b a*b

{x1:S,…,xn:Sn | p} Set of tuples {(x1,…,xn) | x1:S1 & … & xn:Sn & p}
type of set elements is ((S1*S2)* …)*Sn

b.author Field access. Same as set of images of b by relation

author

author[{b}]

r1.r2 Relation product r1;r2 (only when r1 and r2 are binary relations)

Alloy has n-ary relations; B only has binary

relations

a.b Relational product extended to arbitrary nary-

relations

N/A

b[a] same as a.b b[a]
works only if b is a binary relation and a is a set

x + y Union x \/ y

x & y Intersection x /\ y

x - y Difference x - y

a <: b Domain restriction of relation b by set a a<|b

b :> a Range restriction of relation b by set a b|>a

~a Inverse a~

*a Reflexive-transitive closure closure(a)

^a Transitive closure closure1(a)

a++b Relational override,

ie, returns (a-(b.univ)) + b

a<+b

#a Cardinality card(a)

7

Types, constraints and multiplicities

r in T->U Relation from T to U r in T <-> U

r in T -> one U Total function from T to U r in T --> U

r in T -> lone U Partial function from T to U r in T +-> U

r in T lone -> lone U Partial injection from T to U r in T >+> U

r in T lone -> one U Total injection from T to U r in T >-> U

r in T some -> lone U Partial surjection from T to U r in T +->> U

r in T some -> one U Total surjection from T to U r in T +->> U

r in T one -> lone U Partial bijection from T to U r in T >+>> U

r in T one -> one U Bijection from T to U r in T >->> U

Integers (operators defined in module util/integer)

plus[a,b] Sum a+b

minus[a,b] Difference a-b

mul[a,b] Product a*b

div[a,b] Integer division a/b

rem[a,b] Remainder of a divided by b

sum[a] Returns the sum of the integers of set a

a < b, a = b, a > b, a =< b, a >= b Integer comparison a < b, a = b, a > b, a <= b, a >= b

max[a] Maximum of set a max(a)

min[a] Minimum of set a max(a)

Global Assertions

fact {
f1
…
f2
}

Formulas f1,…,fn which must be satisfied by all

instances of a model.

Formulas f1,…,fn are implicitly conjoined.

PROPERTIES
f1 & … & fn

8

Syntactic Sugar

author[b] b.author

author[Book] Book.author

p1.friend[p2] friend[p1,p2]

let v = E | F Equivalent to F where v is replaced by E

Ordering (operators defined in module util/ordering)

open util/ordering[State] as states Declares a total order on State

states/first First element

states/last Last element

states/next[s] Next element

states/prev[s] Previous element

states/nexts All next elements

states/prevs All previous elements

Sequences

s : seq A Sequence

s.append[t] Concatenation

s.first Head

s.rest Tail

s.elems Unordered elements

Modules

open util/ordering[States] as mystates Opens module ordering and declares mystates

as prefix for using it (ie, mystates /function)

module util/ordering[exactly elem] Declares module ordering with parameter elem

9

Predicates and functions

pred wrote[a:Author,b:Book]
{b.author=a}

Predicate (returns true or false) DEFINITIONS
wrote(a,b) == author[{b}] = {a}

fun books[a:Author]:set Book
{author.a}

Function, returns an expression of some type, here it

returns a set of books

fun nbOfBooks[a:Author]:Int
{#(author.a)}

Function, returns an integer.

Finding an instance of a model

run {…} for n Find instances, by default with a maximum of n

instances for each signature (n is some natural

number).

run {…} for 3 Book, 4 Author Find instances with constraints on # of instances

run {…} for 3 but 1 Author Find instances with constraints on # of instances,

here 3 instances of all signatures except Author, for

which only 1 instance is used.

pred foo[b:Book] {…}
run foo for 3 but 1 Author

Find instances satisfying predicate "foo"

Checking an assertion of a model

assert assertion1
 {good_author => good_book}

check assertion1 for …

Find counter-examples violating the assertion.

Same scope specification behavior as the run
command

check nom_check
 {good_author => good_book} for …

Check specified assertion.

Assertion has the name nom_check

check {good_author => good_book} for … Check anonymous assertion

10

Precedence

(In increasing order; operators on the same line have same priority)

Expressions (operands are not Booleans) Logical expression (operands are Booleans)

 ~ , ^ , *

.

[]

<: , :>

->

&

++

+, -

no , some , lone , one , set

! , not

in , = , < , > , = , =< , =>

! , not

&& , and

=> , implies , else

<=> , iff

|| , or

let , no , some , lone , one , sum (quantification)

All binary operators associate to the left, with the exception of implication, which associates to the right. So, for example, a.b.c is parsed as (a.b).c, and p =>
q => r is parsed as p => (q => r).

