
Softw Syst Model (2003) 2: 134–149 / Digital Object Identifier (DOI) 10.1007/s10270-003-0024-z

EB3: an entity-basedblack-box specificationmethod
for information systems

M. Frappier, R. St-Denis

Département de mathématiques et d’informatique, Université de Sherbrooke, Sherbrooke (Québec) Canada J1K 2R1;
E-mail: Marc.Frappier@dmi.usherb.ca

Received: 4 May 2002/Accepted: 29 March 2003

Published online: 3 June 2003 – Springer-Verlag 2003

Abstract. This paper describes a formal method for
specifying the observable (external) behavior of informa-
tion systems using a process algebra and input-output
traces. Its notation is mainly based on the entity con-
cept, borrowed from the Jackson System Development
method, and integrated with the requirements class dia-
gram to represent data structures and associations. The
specification process promotes modular and incremental
description of the behavior of each entity through process
abstraction, entity type patterns, and entity attribute
function patterns. Valid system input traces result from
the composition of entity traces by using parallel compo-
sition operations. The association between input traces
and outputs through an input-output relation completes
the specification process.

Keywords: Trace-based specifications – Black-box spe-
cifications – Process algebra – JSD – Cleanroom –
Patterns

1 Introduction

An information system (IS) can be viewed as a set of
related entities that produce information in response
to user requests (operations) under the supervision of
a decision-making procedure in order to manage the
entities according to specific business rules. During its
execution, the IS makes decisions based on its current in-
ternal state to ensure that the business rules are enforced.
This paper is concerned with organizing unstructured
streams of operation-response pairs with the sole aim of
producing a complete, formal specification of the external
system behavior, rather than a representation of design
internals imposed by information system technologies. In-
stead of focusing on the decision-making procedure, it

Correspondence to: M. Frappier

describes a formal method, called eb3, for structuring
and writing down a trace-based specification. Since its
first proposal in 1998 [14], this method has been improved
after conducting several case studies both in academia
and industry (e.g., [15, 16]).
An eb3 specification consists of a) a requirements class

diagram (called a business model), which defines entity
types with their external events, attributes, and associa-
tions; b) entity type specifications, which define the sce-
narios (valid sequences of input events) of entities using
process expressions; c) entity attribute definitions, which
are recursive functions on the system trace; and d) input-
output rules, to specify outputs for input traces, or SQL
expressions, which can be used to specify queries on the
business model.
eb
3 is scenario-oriented and more abstract than state-

transition specifications (STS), which is the most widely
used paradigm for specifying information systems. An
STS consists of a state space, defined by state variables,
and operations describing transitions by modifications of
the state variables. Upon reception of an external input
event, an operation is called to compute the new state and
to produce an output, if necessary. There exist several no-
tations for describing STS, e.g., extended state machines,
UML with OCL, model-based notations like B Z, VDM.
One difficulty with STS is the validation and understand-
ing of event ordering properties. Because ordering is ex-
pressed through conditions on state variables, it cannot be
easily analyzed by human inspection. Because state vari-
ables constitute an encoding of the event history, the hu-
man inspectormust have a very goodunderstanding of the
state transformations conducted in operations in order to
validate these properties. In contrast, eb3’s entity process
expressions provide an explicit representation of ordering
constraints.Attribute definitions are encapsulated in a sin-
gle expression, which facilitates their understanding and
maintenance. We believe that this locality of information
can simplify system understanding and streamline main-

M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems 135

tenance. Generally, adding an attribute to an entity does
not induce any change to the rest of the eb3 specification;
its recursive functionneeds simply to bewritten on the sys-
tem trace. In STS, each operation that affects the value of
the attribute must be modified.
Another salient feature of eb3 is its executability. We

are currently working on tools to efficiently execute an
eb
3 specification. The first tool is a process algebra inter-

preter that can execute a large class of process expressions
in O(s+log(n)) in time and O(s+n) in space, where s
is the size of the specification text and n is the number
of entities [11, 12]. Typically, the complexity of a manual
implementation of an IS specification isO(log(n)) in time
andO(n) in space. Therefore, this interpreter has an over-
head of O(s) compared with a manual implementation
of an IS. We are also working on algorithms to gener-
ate an SQL database schema and update operations in
Java from eb3’s attribute definitions. The ultimate goal
is to produce an efficient interpreter/code generator for
eb
3 specifications that would be as good as conventional

implementations. It therefore would relieve software en-
gineers from implementing the specification. This goal
seems quite feasible for a large subset of simple informa-
tion systems [18].
The specification method advocated in this paper

does not invent totally new concepts. Our main contri-
bution is to adapt and uniformly integrate concepts from
several methods that have already been successfully used
in industrial applications: the black-box specification of
Cleanroom [24, 27, 28], the entity structure diagram of
the Jackson System Development (JSD) method [6, 21],
the entity-relationship diagram [7], and theories that
have sound mathematical foundations (e.g., process al-
gebras [19], calculus of concurrency and synchroniza-
tion [26], regular languages, first-order logic).
Writing complete, precise, and concise Cleanroom

black-box specifications is not an easy task. Several
practitioners use informal, or semi-formal, descriptions
(e.g., [23]), but they tend to be quite long and their infor-
mality may lead to ambiguities. Some formal approaches
have been proposed (e.g., [3, 13, 29]), but they may also
lack conciseness because of the combinatorial explosion
due to the inductive nature of their notation.
Several approaches studied the expression of ordering

constraints using process algebras or regular expressions.

Table 1. Specification layers and their corresponding behavior

Layer External behavior Business rules Input Output

1 Event signatures Description of input and output events � �
2 Entity behavior Ordering constraints on each entity �
3 System behavior Ordering constraints on the system �
4 Input-output behavior Input-output rules � �
5 Robust behavior Unspecific messages on wrong inputs � �
6 Final behavior Specific messages on wrong inputs � �

Sridhar et al. [31] propose a pureCSP formalization of JSD
entity structure diagrams. Both inputs and outputs are
specified using CSP processes. No distinction is made be-
tween inputs and outputs, aside from CSP’s decoration
“?” and “!” on channels. Entity attributes are represented
as process expressions. In contrast, we use a process alge-
bra to specify input traces and input ordering constraints.
Data structures and outputs are explicitly represented
through a class diagram and recursive functions on traces,
which makes it easier to represent the complex relation-
ships found in data structures of information systems and
to express queries using a standard notation like SQL.
In [34], a formalization based on CSP and denotational se-
mantics is proposed for all steps of the JSD method. Our
approach is based only on the entity structure step of JSD.
The work in [25] focuses on unrelated operational

functions seen as an ordered grouping of unit tasks with-
out attributes, rather than related entities seen as an
ordered grouping of operations with attributes. Ordering
constraints are expressed by using regular expressions;
operational functions are combined by using the inter-
leave operation. Hsia et al. [20] proposed a scenario-based
method in which scenarios constitute sentences of a regu-
lar language defined by a regular grammar.
To bring out the differences between these approaches

and eb3, a trace-based specification can be divided into
several layers, from the least specific to the most specific
descriptions, as summarized in Table 1. Each layer pro-
vides a different viewpoint and adds information to the
previous layer. The table indicates what kind of business
rules are scrutinized and if inputs or outputs are taken
into account in each particular layer. The approaches
in [31] and [34] cover the first four layers; [25] and [20] are
less powerful than the one proposed herein in the sense
that they only partially cover the first three layers. In [25],
the method only deals with local ordering constraints
since operational functions are executed independently.
In [20], scenarios are considered as flat or unstructured se-
quences of events, since it deals only with global ordering
constraints. Moreover, it is suitable for systems that have
a single response to a stimulus, both being events without
attributes.
Our specification method is related to recent work on

scenarios since trace-based specifications provide, for in-
stance, a good alternative to the precise description of

136 M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems

use cases [5]. They satisfy the abstraction goal that use
case proponents pursue, without requiring the definition
of objects and classes as interaction diagrams do. Further-
more, this abstraction level does not hinder the definition
of an object-oriented model, because entity types are nat-
urally refined to become classes. Entities are also more ex-
pressive than interaction diagrams, because they provide
complete description of system scenarios. The amount
of recent work on scenarios in the software engineering
community is overwhelming; see [1, 22, 33] for literature
surveys on this subject.
The rest of the paper is organized as follows. Section 2

introduces the eb3 specification method with an example
to help the reader better understand the main concepts of
its formal language as well as each phase of its specifica-
tion process. Section 3 describes the syntax and semantics
of a process algebra that is used in trace-based specifica-
tions. Section 4 summarizes the formal semantics of the
eb
3 language. Section 5 introduces several patterns writ-

ten in the eb3 language that can be reused as building
blocks in the specification of an IS. Finally, Sect. 6 con-
cludes with a discussion of the strengths and limitations
of eb3, and prospects for future work.

2 The eb3 specification method

The eb3 specification method is specifically devised to
derive the input-output behavior of an IS. Following
Davis [8], one may distinguish between specification of
static software systems and specification of dynamic soft-
ware systems. Static systems (e.g., a compiler) mimic
a simple input-output behavior, where the output is de-
termined by the current input. Dynamic systems (e.g., an
operating system) simulate an input-output behavior,
where the current output is determined not only by the
current input but also by the history of past inputs (input
traces). An information system composed of distinct, but
related, entities is considered as a dynamic system and is
described by a new kind of black-box specification.
The core of eb3 includes a specification process and

a formal notation for progressing from use case diagrams

Fig. 1. The requirements class diagram of the hospital admissions system

to a complete and precise specification of input-output
traces. Under eb3, the specifier performs various tasks
summarized as follows:

1. Define a business model.
2. Declare input-output signatures for entity types and
associations.

3. Specify behavior of entity types and associations using
process expressions.

4. Describe the set of valid system input traces.
5. Write recursive functions on traces that assign values
to entity attributes.

6. Define an output for each input trace using input-
output rules.

To illustrate the specification method, a subset of an
IS that processes data about patients in an hospital is
used. A patient is admitted to an hospital ward to receive
treatment and medication. Medical acts are recorded in
the patient’s file, which is opened upon initial admission.
A ward can only receive a limited number of patients.

2.1 The business model

The task of specifying system traces is made easier by de-
composing a system into entity types. Based on UML [5],
a business model is represented by a requirements class
diagram that contains the entity types and their associ-
ations. In contrast to a UML design class diagram that
includes attributes and methods for each class or relation-
ship, a requirements class diagram identifies attributes
and inputs of each entity type or association. An input
results from an action that occurs in the environment
(e.g., an action taken by a user or another system). It
corresponds to an indivisible (or atomic) operation that
an IS can perform. In eb3, the terms entity type and en-
tity are used instead of class and object. Furthermore,
the term process will also be used in place of entity when
an instance of an entity type is considered as a dynamic
object. Entity types, associations, and their respective at-
tributes are usually translated into database tables that
the environment can query and update using an IS.
Figure 1 illustrates the requirements class diagram

for the hospital admissions system. There are two entity

M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems 137

types (Patient andWard) and one association (Admission).
They are identified from use cases (omitted in this paper).
A set of attributes whose values uniquely identify each en-
tity is called a key. These attributes are underlined in the
diagram.

2.2 The input-output signatures

A black-box specification is derived from an input space
and an output space. These spaces are defined by the as-
sumption that an IS inexorably produces an output after
accepting an input and before processing the next input.
This assumption allows for the implementation of a black-
box specification using parallel transactions processed by
a database management system with proper concurrency
control mechanisms (e.g., two-phase locking or transac-
tion serialization). When the system does not produce
a visible output for a given input, the special value void
is used. Typically, update operations deliver an invisible
output or a confirmation message, since their only effect
is to modify the internal system state, which is not visi-
ble to the user. To display information about the system,
the user typically invokes inquiry operations, which nor-
mally provide a response without modifying the system’s
internal state.

2.2.1 Input-output pairs

The signature of an input-output pair has the form input :
output detailed as follows:

action(in1 : T1, · · · , inm : Tm) :

(out1 : Tm+1, · · · , outn : Tm+n) ,

where action is a label associated with the input, ini
(1≤ i≤m) denotes an input parameter name, outi (1≤
i≤ n) denotes an output parameter name, and Ti (1≤ i≤
m+n) is a set or identifier that denotes a set, which
provides a type for a parameter. Therefore, each input-
output pair defines an input set Xaction (the Cartesian
product of {action} and Ti, 1≤ i≤m) and an output set
Yaction (the Cartesian product of Ti, m+1≤ i≤m+n).
The special value void is a shorthand for the output set
{void}. The input sets (resp. output sets) are grouped to-
gether to constitute the input space X (resp. output space
Y). The following declarations define the input and out-
put spaces of the hospital admissions system. Each input
introduced in the business model in Fig. 1 is thus formally
defined.

Register(patient_id :PATIENT, ward_id :WARD,
date :DATE) : void

Receive_Medication(patient_id :PATIENT,
medication :MEDICATION) : void

Receive_Treatment(patient_id :PATIENT,
treatment :TREATMENT) : void

Leave(patient_id :PATIENT) : void

Open_File(patient_id :PATIENT,
patient_name : STRING) : void

Close_File(patient_id :PATIENT) : void
Open_Ward(ward_id :WARD,

ward_name : STRING,
capacity :NAT) : void

Close_Ward(ward_id :WARD) : void
Patient_on_Ward(patient_id :PATIENT,

ward_id :WARD) :
(result : {Yes, No})

List_Patients_on_Ward(ward_id :WARD) :
(report :ONE_LEVEL_REPORT)

List_Patients() :
(report :TWO_LEVEL_REPORT)

2.2.2 Structured Input and Output

Sets that provide types for parameters are defined from
elementary sets (e.g.,BOOL,NAT, and STRING) and
set operations. This allows for the specification of a struc-
tured input or a structured output. Some useful set op-
erations are the Kleene closure (A∗) and positive clo-
sure (A+), which represent a list of elements of A and
a nonempty list of elements of A, respectively. A set A
may also be defined using the Cartesian product, that is
expressed by a list (c1 : S1, · · · , cn : Sn), where ci is a co-
ordinate name and Si is a set expression. An elementary
set that appears in a set expression is assumed to be de-
fined. As an example, consider the following declarations
that describe a two-level occupancy report by patient and
ward:

TWO_LEVEL_REPORT
∆
= (title : STRING,

wards : FIRST_LEVEL∗,
grand_total :NAT)

FIRST_LEVEL
∆
= (ward_name : STRING,
patients : SECOND_LEVEL∗,
total :NAT)

SECOND_LEVEL
∆
= (patient_id :PATIENT,
patient_name : STRING)

Several functions are available to extract elements of
an input or output. Parameter names and coordinate
names are projection functions. They can be combined
together with functions on lists for accessing an element
included in a structured input or structured output. As
an example, the term

patient_name(first(patients

(first(wards(report(o))))))

refers to the name of the first patient on the first ward
that appears in an output o of typeTWO_LEVEL_RE-
PORT. The subterm wards(report(o)) extracts the list
of all wards, which constitutes the first level of the report.
The subterm first(wards(report(o))) gives the first ward
of the previous list.

138 M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems

2.3 The behavior of entity types and associations

An entity in eb3 is represented by a trace consisting of the
inputs related to this entity. For instance, patient p1 can
be represented by the following entity trace:

Open_File(p1, Paul) �Register(p1, w1, 26.4.02) �
Receive_Medication(p1,

morphine) �
Receive_Treatment(p1,

blood transfusion) �
Leave(p1) �
Register(p1, w2, 27.4.02) �
Receive_Treatment(p1,

major surgery)

(1)

This entity trace contains seven inputs related to pa-
tient p1. Inputs are concatenated using operation “�” to
form a trace. The aforementioned trace indicates that the
hospital opened a file for patient Paul. Next, this patient
was registered on ward w1 (e.g., the trauma unit) and re-
ceived morphine and a blood transfusion. Then, he was
transferred from the trauma unit to ward w2 (e.g., the
surgical unit). He has undergone major surgery and has
not left this unit yet.

2.3.1 Definition of entity types

The behavior of an IS is derived from the set of all per-
missible input traces for each entity. This is achieved by
first imposing ordering constraints on the inputs specific
to each entity type by using process expressions (PEs)
whose syntax is very similar to regular expressions. PEs
can also be seen as a scenario specification. Specifying or-
dering constraints on the inputs specific to each entity
type fosters a step-wise construction of the requirements
model. The following definition gives the ordering con-
straints for the entity type Patient.

Entity Type Patient(pId :PATIENT)
∆
=

Open_File(pId, _) �Admission(pId, _)∗ �Close_File(pId)

The body of this definition is a PE that specifies the set
of all permissible complete traces of the patient with key
pId. The first input of these traces is Open_File. The sym-
bol “_” denotes an arbitrary choice of a value from the type
of the second input parameter (i.e., patient_name). The
first input must be followed by a sequence of inputs gen-
erated by the call to processAdmission, which will be de-
fined in the Sect. 2.3.2. This process defines the ordering
constraints of associationAdmission in the businessmodel.
Operation “∗” permits anynumber of admissions for a par-
ticular ward. Finally, the last input isClose_File.
Inquiry operations that cannot be associated with

specific entities are grouped together into a single en-
tity type, Query, which is not shown in the requirements
class diagram in Fig. 1. Inputs that correspond to inquiry
operations initiated by a user may be submitted at any

time since they typically do not have strong ordering con-
straints. They are generally specified by a choice between
inquiry inputs, surrounded with the operation “∗”, as:

Entity TypeQuery()
∆
=

(Patient_on_Ward(_, _) |List_Patients_on_Ward(_) |
List_Patients())∗

The set of traces generated by a PE is all sequences of
inputs that the process may execute. A trace need not be
complete (i.e., it does not need to include all the inputs up
to the end of the PE). For instance, the entity trace (1) is
a trace that belongs to the set of traces generated by the
process Patient(p1).

2.3.2 Definition of associations

Each association is defined by a process, which is ex-
clusively invoked in the definitions of the corresponding
entity types. The process for association Admission is de-
fined below.

AssociationAdmission(pId :PATIENT,

wId :WARD)
∆
=

(nb_of_patients(t, wId)< capacity(t, wId) =⇒

Register(pId, wId, _)) �
(

Receive_Medication(pId, _)

|

Receive_Treatment(pId, _)

)∗ �
Leave(pId)

An admission is represented by a sequence of inputs
starting with a Register, followed by a sequence of
inputs generated from a PE, and terminating with
a Leave. The Boolean expression nb_of_patients(t, wId)
< capacity(t, wId) that appears just before the elemen-
tary PE Register(pId, wId, _) is a guard. It indicates
that a patient can only be registered if the ward is not
full. In this expression, the attributes nb_of_patients
and capacity are recursive functions on the set X∗×
WARD. The first argument t is a global variable that
denotes the current valid system input trace. Finally, the
innermost PE represents a choice (operation “ |”) be-
tween Receive_Medication and Receive_Treatment. It is
surrounded with the operation “∗” that permits any num-
ber of medications and treatments.

2.3.3 Relationships between entity types

The other entity type of the hospital admission system is
a ward. Its definition in terms of ordering constraints on
its inputs is provided below.

Entity TypeWard(wId)
∆
=

Open_Ward(wId, _, _) �
(||| pId :PATIENT : Admission(pId, wId)∗) �
Close_Ward(wId)

M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems 139

The PE for the entity type Ward is the most com-
plex. It shows how patients are treated on a ward.
It refers to the process Admission, because a ward
admits patients. It also contains a quantified oper-
ation of the form “||| x : X : p(x)”, which represents
the interleave of a number of processes described by
PE Admission(pId, wId)∗ for every element pId of
PATIENT. In concrete terms, it expresses the fact that
a ward may treat several patients concurrently in a very
compact form.
There are important differences in the structures of

the entity type Patient and entity typeWard with respect
to admission scenarios. First, a patient is, at most, in one
ward at a time, but he canmove from one ward to another
ward several times, since the admission scenarios for a pa-
tient are represented by the PE Admission(pId, _)∗ in
the entity type Patient. Second, a ward may process
many admissions concurrently and admit the same pa-
tient several times. The PE Admission(_, wId)∗ alone is
not appropriate for ward traces, because it implies that
a ward would treat only one patient at a time. This is
the reason why a quantified interleave is used. It should
be noted that the interleave of all elements of set PA-
TIENT does not imply that a ward must treat all the
patients that have a file in the hospital; the PE permits
it, but it also accepts that some patients are never regis-
tered on a ward, because of the “∗” operation in the PE
Admission(pId, wId)∗. The following trace is an example
of a permissible entity trace of ward w1.

Open_Ward(w1, trauma unit) �
Register(p1, w1, 26.4.02) �
Register(p2, w1, 26.4.02) �
Receive_Treatment(p2, electrocardiogram) �
Receive_Medication(p1,morphine) �
Leave(p2) �
Receive_Treatment(p1, blood transfusion) �
Leave(p1)

(2)

Two patients were in ward w1, but they eventually left
after receiving treatments or medications.

2.3.4 Entity trace versus system state

During the implementation phase of the hospital admis-
sions system, an appropriate representation of the sys-
tem state must be chosen. For instance, if a relational
database is used, a patient could be represented by a tu-
ple in a patient table. If a patient’s history of admissions
must be saved, it could be represented by a set of tuples in
an admission table. If only the last admission needs to be
saved, it could be represented as attributes in the patient
table. Several other representations are possible. An en-
tity trace is a very abstract representation of the system
state for a particular entity. For instance, a patient entity
trace represents a tuple in the patient table and associ-
ated tuples in the admission table (assuming the history
of admissions is required). Traces have several advantages

over more concrete representations like tuples of a rela-
tional database or objects of an object-oriented database.
First, they are very resilient to requirements changes. De-
ciding to keep the history of admissions or simply the last
admission requires no change to the definition of the en-
tity type Patient. An entity trace contains all the inputs
of a patient; hence, both the last admission or history of
admissions can be determined from it.

2.4 The set of valid system input traces

The system input trace records the inputs in their arrival
order. It represents a global view of the system, whereas
an entity trace represents a local view of a specific entity.
By examining entity traces (1) and (2), one can deduce
that there are at least two other entities in the system:
ward w2, in which patient p1 was registered, and patient
p2, who was registered on wardw1. For the sake of simpli-
city, we assume there is no other entity. The entity traces
for p2 and w2 are provided below.

Open_File(p2,Mary) �
Register(p2, w1, 26.4.02) �
Receive_Treatment(p2, electrocardiogram) �
Leave(p2)

(3)

Open_Ward(w2, surgery unit) �
Register(p1, w2, 27.4.02) �
Receive_Treatment(p1,major surgery)

(4)

Because the definitions of entity types Patient and
Ward both refer to the process Admission, some in-
puts occur in two entity traces. For example, the in-
put Register(p2, w1, 26.4.02) appears in entity traces (2)
and (3).

2.4.1 Assumptions under the construction of valid
system input traces

Two assumptions are made for deriving valid system in-
put traces from entity traces. First, an input that ap-
pears in many entity traces must occur only once in the
system trace. Second, the order of inputs prescribed by
entity types should be respected. The following trace
is a valid system input trace; there are several other
possibilities.

Open_Ward(w1, trauma unit) �
Open_Ward(w2, surgery unit) �
Open_File(p1, Paul) �
Register(p1, w1, 26.4.02) �
Open_File(p2,Mary) �
Register(p2, w1, 26.4.02) �
Receive_Treatment(p2, electrocardiogram) �
Receive_Medication(p1,morphine) �
Leave(p2) �
Receive_Treatment(p1, blood transfusion) �
Leave(p1) �
Register(p1, w2, 27.4.02) �
Receive_Treatment(p1,major surgery)

(5)

140 M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems

2.4.2 Invalid system input traces

An invalid input trace is one that contains some wrong
inputs that violate the assumptions. The following trace
is not a valid system input trace. It results from the
concatenation of traces (1) to (4) with duplicate inputs
removed.

Open_File(p1, Paul) �
Register(p1, w1, 26.4.02) �
Receive_Medication(p1,morphine) �
Receive_Treatment(p1, blood transfusion) �
Leave(p1) �
Register(p1, w2, 27.4.02) �
Receive_Treatment(p1,major surgery) �
Open_Ward(w1, trauma unit) �
Register(p2, w1, 26.4.02) �
Receive_Treatment(p2, electrocardiogram) �
Leave(p2) �
Open_File(p2,Mary) �
Open_Ward(w2, surgery unit)

(6)

There are several problems with this trace. First, input
Register(p1, w1, 26.4.02) occurs before input Open_Ward
(w1, trauma unit), which means that a patient was reg-
istered on a ward that was not open. A similar prob-
lem arises with the inputs Register(p1, w2, 27.4.02) and
Open_Ward(w2, surgery unit). Second, the patient p2 re-
ceived treatment before his file was opened.
Of course, it should be possible to submit any input

at any point in time during the execution of the system
even though a ward is not open yet or the patient’s file
has not been processed yet. In these cases, the system
should respond by issuing an appropriate error message
and without modifying the internal system state. Hence,
the IS should accept an invalid system input trace. It
is, however, much simpler to deal with error messages in
a subsequent phase of the specification process. In eb3,
the specification of scenarios is restricted to valid system
input traces.

2.4.3 Formal specification of valid system input traces

The key to solve the problem of valid system input
trace generation is to use the parallel composition op-
eration “‖” inspired from CSP. This operation acts
like a conjunction operation for process expressions.
An expression E1 ‖E2 has the following meaning. If E1
(resp. E2) can execute an input a(. . .) such that ac-
tion a does not occur in E2 (resp. E1), then E1 (resp.
E2) can execute it alone. If E1 can execute an input
a(. . .) such that a occurs in E2, and vice-versa, then
E1 and E2 must execute it simultaneously, and the
input occurs only once in the trace. In other words,
the processes E1 and E2 synchronize on shared ac-
tions.
As an example, the valid system input traces obtained

by the composition of entity traces (1), (2), (3), and (4)

are defined by the following PE1:

((1) ||| (3)) ‖((2) ||| (4)) (7)

Traces (1) and (3) are interleaved, because there is no or-
dering constraint between two patient entity traces; ward
entity traces (2) and (4) present a similar case. These in-
terleave expressions are combined with the parallel com-
position operation, hence they synchronize onAdmission
inputs, which satisfies the two assumptions. As an ex-
ample, trace (5) belongs to the set of traces generated by
the PE (7).
In general, entity traces must be combined in an ap-

propriate manner to form the set of valid system input
traces. This set is constructed from PEs of entity types
under some assumptions that reflect the relationships be-
tween entities as those formulated in Sect. 2.4.1. Hence,
a possibility is to generalize the PE (7) as follows. Let

E
∆
= {e1, · · · , en} be the set of entity types of an IS. The
set of system input traces is given by the following PE:

‖ e : e ∈ E : ||| k :Ke : e(k)
0..1 (8)

All entities of the same type are interleaved. It does not
matter in which order entities of the same type evolve be-
cause they are independent. The PE expression e(k)0..1

means zero or one e(k), that is, entity of type e with key k
does not necessarily exist. The process expressions for
each entity type are then composed in parallel, but they
are synchronized on common inputs. As advocated in the
JSD method, an input trace must satisfy all the ordering
constraints specified for each entity.

2.5 Specifying entity attributes using recursive functions

Valid input traces are finite, but of arbitrary length. They
may be scanned recursively by using functions that ex-
amine the last input and an appropriate action decided
on. In eb3, recursive functions are used to determine the
value of attributes with respect to the current valid sys-
tem input trace t; the specification of attributes is the
method’s fifth step.
For each entity type, there is one recursive function

per attribute and one recursive function per association.
As an example, the requirements class diagram in Fig. 1
reveals that the entity type Ward has four attributes and
one association with the entity type Patient. Let F(A) de-
note the set of finite subsets ofA. Five recursive functions
are then defined as:

ward_id : X∗→ F(WARD)

ward_name : X∗×WARD→ STRING

capacity : X∗×WARD→NAT

nb_of_patients : X∗×WARD→NAT

treated_patients : X∗×WARD→ F(PATIENT)

1 For the sake of concision, the trace number is used rather than
the actual trace.

M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems 141

The functionsward_name, capacity, and nb_of_patients
have the same domain (X∗×WARD), because they are
non-key attributes of the entity type Ward. The domain
of a function for a non-key attribute is always X∗×Tk,
where Tk is the type of the key in the entity; the range is
the type of the attribute. A key attribute is represented
differently. The domain of its function is simply X∗; the
codomain is the finite power set of its type. For instance,
ward_id is the key of the entity type Ward. Its corres-
ponding recursive function returns the subset ofWARD
that represents the open wards in the system. Let expres-
sion s′�x denote the right append of element x to sequence
s′. Function ward_id is expressed using a syntax inspired
from CAML as:

ward_id(s)
∆
=

match s with
ε →∅
s′�Open_Ward(wId, _, _)→{wId}∪ward_id(s′)
s′�Close_Ward(wId) → ward_id(s′)−{wId}
s′�_ → ward_id(s′)

The function treated_patients represents the associa-
tion between a ward and patients. Following the conven-
tion used in UML, its name is given by the role name at
the patient association end of the class diagram in Fig. 1.
Since the multiplicity of this association end is “0..*”,
the function must return a subset of PATIENT. A dual
function can be introduced for the entity type Patient to
navigate from a patient to its ward. It is defined as:

treating_ward :X∗×PATIENT→WARD

The following definition of nb_of_patients illustrates the
use of treating_ward.

nb_of_patients(s, wId)
∆
=

match s with
ε →⊥
s′�Open_Ward(wId, _, _)→ 0
s′�Close_Ward(wId) →⊥
s′�Register(_, wId, _) → 1+nb_of_patients

(s′, wId)
s′�Leave(pId) →

if treating_ward(s′, pId) = wId
then nb_of_patients(s′, wId)−1
else nb_of_patients(s′, wId)

s′�_ → nb_of_patients(s′, wId)

The range of a recursive function is implicitly augmented
with a distinguished element ⊥, denoting undefined-
ness. It should be noted how encapsulated is the defin-
ition of nb_of_patients compared with a state-based
implementation (or state-based specification). In a state-
based implementation, attribute nb_of_patients would
be modified in three places: the method that handles an
Open_Ward transaction (to be initialized with the value
zero) and methods that handle Register and Leave trans-
actions (to be incremented or decremented by one).

2.6 The outputs

The previous tasks of the specification process focus on
local and global ordering constraints that must be sat-
isfied by input traces. The only restriction imposed on
outputs is that an input from an input set must produce
an output from the corresponding output set. The final
task of the specification process concerns the definition
of a relation R that imposes more restrictions on outputs
with respect to valid input traces. In the sequel, s�R�y
denotes that the pair 〈s, y〉 is an element of relationR. For
instance, consider the following one element system trace:
Open_Ward(w1, trauma unit). According to the list of
input-output pairs (see Sect. 2.2.1), the output produced
is void, which means that no visible output is sent to
the environment. Hence, 〈Open_Ward(w1, trauma unit),
void〉 ∈R, or Open_Ward(w1, trauma unit)�R�void.
Let t denote the current valid system input trace (5),

then:

t �Patient_on_Ward(John,w1)�R�No
t �List_Patients_on_Ward(w2)�R�〈 p1 Paul 〉

In the first case, the input trace yields the output No, be-
cause patient John is not on ward w1. In the second case,
the input trace produces a list of patients on wardw2. Pa-
tientMary does not appear on this list, because she was
never registered on this ward, while patient Paul has not
left the surgical unit yet.
Three techniques are used to precisely define what is

the output associated with a valid system input trace,
according to the output’s characteristics: functions, SQL
statements, and report generators. It would have been
possible to use only a full process algebra like Lotos,
which has the same computational power as the Turing
machine, or a predicate calculus to specify the relation-
ship between inputs sequences and outputs, but the use
of commercial tools close to those used by practitioners
streamlines this task.

2.6.1 Specifying outputs using functions

For input Patient_on_Ward, the following function can be
used to determine if a particular patient is on a givenward:

on_ward(s, pId, wId)
∆
=

if wId= treating_ward(s, pId)
then return Yes

else

return No

This function can be used in a rule that specifies the out-
put for an input Patient_on_Ward.

Rule R1
var pId : PATIENT

wId :WARD
input Patient_on_Ward(pId, wId)
output on_ward(t, pId, wId)

endRule

142 M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems

Such a rule has a formal semantics defined in first-
order logic. For instance, the rule R1 has the following
meaning:

R1(t, o)⇔∃pId, wId :
pId ∈PATIENT∧wId ∈WARD∧
last(t) = Patient_on_Ward(pId, wId)∧
o= on_ward(t, pId, wId)

(9)

The term last(s) denotes the last element of sequence s,
provided s is not empty.
Generally, rules expressed using functions and first-

order logic are suitable when the output refers to at-
tributes (represented by recursive functions) or results
from intensive calculations, because of a lack of appropri-
ate attributes in the business model.

2.6.2 Specifying outputs by using SQL statements

In many cases, outputs can be expressed more easily
by using SQL statements. To do so, we assume that
the requirements class diagram is converted into a re-
lational model. There exist classical algorithms for that
task; they cover all cases of multiplicity for associations
(1:1, 1:N, M:N) [10]. Hence, we can write SQL statements
based on the tables generated from the requirements class
diagram. To illustrate this concept, consider the input
List_Patients_on_Ward. It can be defined with an SQL
statement as:

Rule R2
var wId :WARD
input List_Patients_on_Ward(wId)
output select patient_id, patient_name

from Patient
where treating_ward = wId

endRule

2.6.3 Specifying outputs by using report generators

When outputs are too complex to be defined by recursive
functions or SQL statements in a simple manner, a report
generator is used. In that specific case, it is more appro-
priate to describe an output in a language familiar to
programmers, because a specification written in a math-
ematical form is generally much too long and therefore
useless. The following rule, in which the output is de-
scribed in Oracle’s SQL*PLUS, specifies the output for
the input List_Patients.

Rule R3
input List_Patients()
output TTITLE CENTER ’LIST OF PATIENTS BY WARD’

BREAK ON ward_name
COMPUTE COUNT LABEL TOTAL OF patient_id

ON ward_name
COMPUTE COUNT LABEL ’GRAND TOTAL’

OF patient_id ON REPORT

SELECT ward_name, patient_id,
patient_name

FROMWard, Patient
WHEREWard.ward_id = Patient.

ward_id (+)
ORDER BY ward_name, patient_id;

endRule

3 The process algebra

Process algebras are powerful tools to express event or-
dering constraints. Furthermore, they permit significant
leverage in reasoning about a system’s properties or in
building case tools for scenario generation and scenario
validation. A suitable subset of CSP [19] and Lotos [4]
has been selected to facilitate the IS specification process.
It corresponds, roughly speaking, to regular expressions
plus parallel composition with synchronization. The syn-
tax and semantics of the chosen operations have been
simplified, and concepts such as nondeterminacy and the
silent action (denoted by τ in CCS [26]) have been delib-
erately omitted.
Concatenation is used in eb3 rather than the se-

quential composition in Lotos, CCS, or CSP. It makes
process expressions easier to write and read. For in-
stance, it means that the following Lotos expression
(σ1; exit |σ2; exit) � σ3; stop is simply written as
(σ1 |σ2) �σ3 in eb3. Moreover, quantification over choice,
interleave, and parallel composition streamlines the spe-
cification of complex process expressions.

3.1 Syntax

A process may be declared using a name P , a vector
of typed formal parameters �q, and a body, which is

a PE E. Its syntactical form is P (�q)
∆
= E. Process ex-

pressions are defined over a set of symbols Σ, called the
input set. The special symbol λ denotes an internal ac-
tion that a process may execute without requiring input
from the environment. The alphabet of a PE E over Σ
denotes the set of action labels used in a process expres-
sion; it is denoted by α(E) and defined as follows. Let
Φ1 a binary PE operation and Φ2 be a unary PE op-
eration, then α(λ) = ∅, α(��) = ∅, α(action(t1, · · · , tn)) =
{action}, α(E1Φ1E2) = α(E1)∪α(E2), and α(Φ2E) =
α(E). By extension, α(Σ) denotes the set of action la-
bels of the input set Σ. This definition of α is different
from the one used in CSP and closer to the one used in
Lotos.
The PEs are defined recursively as follows. i) Elements

of Σ∪{λ} represent elementary PEs. ii) The symbol �� is
an elementary PE that represents a process that has com-
pleted its execution. iii) LetE, E1, andE2 be PEs over Σ,
n∈N, p be a predicate,�t be a vector of terms, P a process
name, and ∆⊆ αΣ. The expressions E1 �E2, E1 |E2, E∗,
E+, p=⇒ E, P (�t), E1 |[∆]|E2, E1 |||E2, and E1 ‖E2 are
PEs over Σ. Operations �, | , ∗, and + are the usual regu-

M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems 143

lar expression operations: concatenation, choice, Kleene
closure, and positive closure. PE p =⇒ E is a guard; it
states that E can execute an input only when p holds. PE
E1 |[∆]|E2 is the parameterized parallel composition of
E1 and E2 with synchronization on actions that belong
to set ∆. Drawn from Lotos, it has the following mean-
ing: if E1 (or, dually, E2) can execute σ, and α(σ) �⊆∆,
then the composition can execute σ. When α(σ) ⊆∆,
then E1 andE2 must synchronize, that is, they must both
execute σ. Operations ||| and ‖ are the interleave and par-
allel composition of CSP, respectively; they are special
variants of |[]| . The following precedence is imposed on
operations, from highest to lowest: {∗,+}, �, =⇒, | , { |[]| ,
|||, ‖}, { |x, ||| x, |[]|x }. It may be modified by means of
parentheses.

3.2 Semantics of operations

In eb3, a PE describes sequences of inputs that may be
executed by a system. The meaning of PEs is described
by the following operational semantics in the CCS style.
Inference rules T-1 to T-16 define a transition relation
→ ⊆PE × (Σ∪{λ})×PE , where PE denotes the set of
process expressions over Σ. Let ρ denote an element of
Σ∪{λ}.

(T-1):
ρ ∈ Σ∪{λ}

ρ
ρ
→��

(T-2):
p ∧ E

ρ
→E′

p=⇒E
ρ
→E′

(T-3):
E1

ρ
→ E′1

E1 �E2
ρ
→ E′1 �E2

(T-4):
E
ρ
→ E′

�� �E ρ
→ E′

(T-5):
E1

ρ
→E′1

E1 |E2
ρ
→ E′1

(T-6):
E2

ρ
→E′2

E1 |E2
ρ
→ E′2

(T-7):
E∗

λ
→��

(T-8):
E
ρ
→E′

E∗
ρ
→ E′ �E∗

(T-9):
�� |[∆]|�� λ

→��

(T-10):
E1

ρ
→E′1 ∧ E2

ρ
→ E′2 ∧ α(ρ)⊆∆

E1 |[∆]|E2
ρ
→E′1 |[∆]|E

′
2

(T-11):
E1

ρ
→E′1 ∧ α(ρ) �⊆∆

E1 |[∆]|E2
ρ
→E′1 |[∆]|E2

(T-12):
E2

ρ
→E′2 ∧ α(ρ) �⊆∆

E1 |[∆]|E2
ρ
→E1 |[∆]|E′2

(T-13):
p[x := t]∧E[x := t]

ρ
→E′

|x : p : E
ρ
→ E′

(T-14):
E[�x := �t]

ρ
→E′

P (�t)
ρ
→E′

(P (�x)
∆
=E)

(T-15):

p[x := t]∧ (∃x : x �= t∧p)∧

E[x := t] |[∆]| (|[∆]|x : p∧x �= t :E)
ρ
→ E′

|[∆]|x : p : E
ρ
→E′

(T-16):

p[x := t]∧¬(∃x : x �= t∧p)∧

E[x := t]
ρ
→E′

|[∆]|x : p :E
ρ
→E′

The following operations are defined as abbreviations:

E+
∆
=E �E∗, E0..1 ∆=E |λ, E1 |||E2 ∆=E1 |[∅]|E2, E1 ‖E2

∆
= E1 |[α(E1)∩α(E2)]|E2, action(_)

∆
= |x : T : action(x),

where T denotes the type of parameter _ of action.

3.3 Traces

In order to define the set of traces associated with
a PE, it is convenient to introduce the trace transi-
tion relation � ⊆ PE ×Σ∗×PE. Let expression σ�s
denote the left append of symbol σ ∈ Σ to sequence
s ∈ Σ∗. Inference rules TT-1 to TT-2 extend relation
→ by considering finite sequences s of elements of Σ
rather than symbols. Note that λ is not included in
traces.

(TT-1):
E
σ
→ E′

E
σ
� E′

(TT-2):
E
σ
→E′ ∧ E′

s
�E′′

E
σ�s
� E′′

(TT-3):
E
λ
→ E′ ∧ E′

s
� E′′

E
s
�E′′

(TT-4):
E
s
� E′ ∧ E′

λ
→ E′′

E
s
�E′′

A trace generated by a process described by E ∈ PE is
a nonempty sequence s ∈Σ+ recording its evolution up to
some moment in time. As usual, let ε denote the empty
sequence. The set of traces associated with E, denoted
T (E), is the set {s | ∃E′ ∈ PE :E

s
�E′∧s �= ε}.

Let E1, E2 ∈ PE. PE E1 is said to be equivalent to
E2, denoted E1 =t E2, iff T (E1) = T (E2). By using this
definition, it can be shown that operations | , |[∆]| , |||,
and ‖ are commutative and associative under trace equiv-
alence. Moreover, �� is the unit of | and λ is the unit of
||| and ‖. If α(E)∩∆ = ∅, then λ |[∆]|E =t E. Concate-
nation is associative and PE λ is the unit of this opera-
tion. Finally, all binary operations distribute through the
choice operation.

4 The semantics of the eb3 language

Recall that an eb3 specification is composed of the fol-
lowing elements: a business model, input-output signa-
tures, process expressions, recursive functions on traces,
and input-output rules. To define the semantics of the
eb
3 language, these five elements are mapped to an input-

output relationR.

144 M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems

4.1 The Input-Output Relation

The input-output signature defines an input set and
an output set that are denoted by X and Y , respec-
tively. Relation R is a subset of X+×Y . It is defined
as follows. Let main denote the main process expres-
sion (e.g., (8)) and let Ri denote the predicate associated
with an input-output rule (e.g., (9)). Relation Rvisible
defines the outputs of input traces using input-output
rules.

Rvisible
∆
= {(t, y) | t ∈ T (main)

∧ (R1(t, y)∨· · ·∨Rn(t, y))}

Relation Rvoid defines the input-output pairs for input
traces ending with an action whose output type is void
(e.g., action Open_File). Let V oid denote the labels of
such actions.

Rvoid
∆
= {(t, void) | t ∈ T (main)∧α(last(t)) ∈ V oid}

The input-output relation defining the semantics of an
eb
3 specification is:

R
∆
=Rvisible∪Rvoid

4.2 Correctness

Defining how a specification relates to an implementation
completes the semantics of the eb3 language. A program
is said to be a correct implementation of a specification
R if, for any input trace s = σ1 � · · · �σn ∈ dom(R), the
program satisfies the following two properties: i) starting
in its initial state, the program successively accepts each
element of the input trace, from σ1 to σn, delivering an
output for each input; and ii) the output y produced for
input σn satisfies s�R�y.

4.3 Robustness

An invalid input trace is one that contains a wrong in-
put that requires special processing. A typical IS should
display an appropriate message and process subsequent
inputs as if this wrong input never happened. The
input-output relation R associated with an eb3 spe-
cification is not defined for such invalid input traces.
The system behavior for invalid traces can be specified
in a generic manner by defining a robust specification.
Function robust takes a relation R between X+ and Y
and extends it to a total relation between X+ and (Y ∪
Messages), hence, a relation that is also defined for in-
valid traces.

robust(R)
∆
= {(s′�x, y) ∈X+× (Y ∪Messages) |

(red(s′, R)�x�R�y
∨
red(s′, R)�x �∈ dom(R)∧y ∈Messages)}

where function red(s,R) is defined as follows:

case

s= ε → ε
s ∈ dom(R) → s
s= s′�x ∧ red(s′, R)�x ∈ dom(R)→ red(s′, R)�x
s= s′�_ → red(s′, R)

Relation robust(R) ensures that at least one information
message is associated with each invalid input trace. It
does not, however, specify which one. Nevertheless, rela-
tion robust(R) can be refined by a relation, denoted Rf ,
that assigns specific information messages to invalid in-
put traces. This can be done by using a technique similar
to that proposed in Sect. 2.6. An input-output rule, where
the output is an information message (msg) that belongs
toMessages, is defined as:

s�x ∈X+∧s′ = red(s,R)∧ conjunction

⇒ s�x�Rf �msg.

Input trace s′ is valid, but not s′�x, because x repre-
sents a wrong input. This fact is reflected in conjuncts
of conjunction in a form equivalent to the expression
s′�x �∈ dom(R). Relation Rf should be a total relation. It
gives the final behavior of an IS.

5 Specification patterns

After conducting several case studies using the eb3

method, both in a research environment and an industrial
environment, we have noted that several patterns regu-
larly occur in various specifications. They occur mainly
in two places: i) in the process specification of the entity
types and ii) in the definition of recursive functions.

5.1 Entity type patterns

Given a business model, one can easily select from
a handful of patterns to generate the entity type process
expression.

The producer-modifier-consumer pattern. Actions
of an entity type can usually be classified as either
producers, modifiers, or consumers (as in the SADT
method). A producer creates an entity, a modifier changes
the values of its attributes (as defined by recursive func-
tions), and a consumer deactivates an entity. Associa-
tion actions can also be classified in the same manner.
The following pattern describes this producer-modifier-
consumer structure in terms of a PE. Let e be an entity
type of key set Ke and let P

e
ip
,Meim , C

e
ic
denote a pro-

ducer, a modifier, and a consumer, respectively, of entity
type e. A first pattern for an entity is:

e(k :Ke)
∆
= Pe(k) �Me(k)∗ �Ce(k)

Pe(k :Ke)
∆
= P e1 (k, _) | · · · |P

e
np
(k, _)

Me(k :Ke)
∆
= Me1 (k, _) | · · · |M

e
nm(k, _)

Ce(k :Ke)
∆
= Ce1(k, _) | · · · |C

e
nc
(k, _)

M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems 145

The one-to-many association pattern. When entity
type e1 is related to another entity type e2 by a one-
to-many (1:N) association a, a typical pattern of their
process expressions is:

e1(ke1 :Ke1)
∆
=

Pe1(ke1) �
(
Me1(ke1)

∗

|||
||| ke2 :Ke2 : a(ke1 , ke2)

∗

) �
Ce1(ke1)

e2(ke2 :Ke2)
∆
=

Pe2(ke2) �
(
Me2(ke2)

∗

|||
a(_, ke2)

∗

) �
Ce2(ke2)

On one hand, an entity of e1 is related to many entities of
e2; hence, a quantified interleave on the association pro-
cess a is used, denoting that associations are independent
from each other. On the other hand, since an entity of
e2 is related to only one entity of e1, a quantified choice
is used, which is concisely expressed by using “_” in the
process call a(_, ke2). Note that a one-to-one association
(1:1) can be represented by using two entity types of the
e2 style, and that a many-to-many association (M :N) can
be represented by using two entity types of the e1 style.

The multiple associations pattern. To generalize the
previous pattern further, we may consider that an entity
type may have several associations ai with several enti-
ties. Let Θ(ei, ej , a, c) denote the pattern of associating
entity type ei with entity type ej through association a
with multiplicity c. Multiplicity c can either be 1 or N to
denote that an entity of ei is related to either one or many
entities of ej , respectively. Pattern Θ is defined as:

Θ(ei, ej , a, 1)≡ a(kei , _)
∗

Θ(ei, ej , a,N)≡ ||| kej :Kej : a(kei , kej)
∗

Pattern Θ(ei, ej , a, 1) states that an entity of ei is related
to at most one entity of ej at any point in time. Further-
more, the entity to which it is related may change over
time. For example, a patient maymove fromward to ward
during his stay, but he can be in only one ward at a time.
Pattern Θ(ei, ej , a,N) provides that an entity of ei may
be related to several entities of ej at any point in time.
For instance, a ward can contain several patients; patients
may leave and come back as often as needed. The fol-
lowing pattern describes how e1 is related to other entity
types through associations a1, · · · , an.

e1(ke1 :Ke1)
∆
=

Pe1(ke1) �
(
Me1(ke1)

∗

|||

A(ke1)

) �
Ce1(ke1)

A(ke1 :Ke1)
∆
=

Θ(e1, e2, a1, c
e1
1)

‖
· · ·

‖
Θ(e1, en+1, an, c

e1
n)

Note that the associations in process A are composed in
parallel, because some associations may have actions in
common. For instance, in a library system, there are two
associations between entity type book and entity type
member: loan and reservation. Loan and reservation have
action BorrowWithReservation in common.

The n-ary association pattern. An association may
involve more than two entity types. For instance, assume
that e1, e2, e3 are related through association a. The mul-
tiplicities that relate e1 to e2 and e3 are mutually depen-
dent; they cannot be handled two by two. As an example,
consider the following definition of e1:

e1(ke1 :Ke1)
∆
=

Pe1(ke1) �
(| ke2 :Ke2 : ||| ke3 :Ke3 : a(ke1 , ke2 , ke3)

∗)∗ �
Ce1(ke1)

a(ke1 :Ke1 , ke2 :Ke2 , ke3 :Ke3)
∆
=

P a(ke1 , ke2 , ke3) �
Ca(ke1 , ke2 , ke3)

(10)

It states that an entity of e1 is related to at most one
entity of e2 and several entities of e3. The inner closure
allows for a pair of entities from e1 and e2 to re-establish
their association with an entity of e3. The outer closure
allows for an entity of e1 to replace its association with an
entity of e2. Hence, definition (10) allows for the following
sequence, where we show only the association producer
action P a, which creates an association between e1, e2, e3.

P a(p11 , p21 , p31) �P a(p11 , p21 , p32)

In contrast, it does not allow for the following sequence:

P a(p11 , p21 , p31) �P a(p11 , p22 , p32)

because it associates p11 with two entities of e2, i.e., p21
and p22 . If the quantifiers in the definition of e1 are inter-
changed, that is, if the following call to a is used:

||| ke3 :Ke3 : | ke2 :Ke2 : a(ke1 , ke2 , ke3)
∗ (11)

then the sequence above is accepted. The process expres-
sion of (11) states that an entity of e1 can be related
to several entities of e3 and, for each entity of e3, to ex-
actly one entity of e2, which is not the same behavior as
expressed in (10). Hence, quantified process expressions
are similar to quantified first-order formulas, where ex-
istential and universal quantifiers cannot be commuted
without changing the meaning of a formula. Interleave
quantifications can be commuted, however, like universal
quantifiers in first-order logic.
The pattern for an n-ary association is not as easy

to represent abstractly as the binary association pattern.
Aside from the fact that the ordering of the quantifiers
is significant, the specification of the Kleene closure (∗)
is also important. It allows for very fine distinctions be-
tween association behaviors. For instance, note that two

146 M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems

Kleene closures occur in (10) in order to freely choose and
change the related entities while respecting the multiplic-
ities, whereas only one closure is sufficient in (11). The
most general and less restrictive pattern is:

(Φ2 ke2 :Ke2 : · · · Φn ken :Ken :

a(ke1 , ke2 , · · · , ken)
∗ · · ·)∗ ,

where Φi is either a choice (for a multiplicity of 1) or an
interleave (for a multiplicity ofN).

The weak entity type pattern. The notion of weak
entity type is well known in database modeling. A weak
entity type is dependent on another entity type, in the
sense that it needs an entity of a parent entity type to
exist. An item of a customer order is a typical example of
a weak entity type. The order header must exist in order
to add items. The parent entity is usually related to many
weak entities. This pattern is represented as follows. Let
we be a weak entity type (e.g., item) and let e be its par-
ent entity type (e.g., order header). Usually, a weak entity
type has producers, modifiers, and consumers, like a nor-
mal entity type.

e(ke :Ke)
∆
=

Pe(ke) �
(
Me(ke)

∗

|||
(
||| kwe :Kwe :we(ke, kwe)∗

‖
Ae(ke)
)
) �
Ce(ke)

we(ke :Ke, kwe :Kwe)
∆
=

Pwe(ke, kwe) �
(
Mwe(ke, kwe)

∗

|||
Awe(ke, kwe)
) �
Cwe(ke, kwe)

The recursive association pattern. An association
that relates an entity type with itself is usually called re-
cursive. For instance, consider the manage relationship
between employees. To state employee p1 manages em-
ployee p2, both p1 and p2 must have been created. This
cannot be expressed by using a single entity type for em-
ployee; two are needed to represent both ends of the re-
cursive association. Indeed, a recursive association is no
different than a normal association: it needs two entity
types to interact. Let e denote the process representing
the entity type and e′ denote this second process needed
to represent the second end of the recursive association.

e(ke :Ke)
∆
=

Pe(ke) �
(
Me(ke)

∗

|||
Θ(e, e′, a, ce)

) �
Ce(ke)

e′(ke :Ke)
∆
=

Pe(ke) �
Θ(e′, e, a, ce′) �
Ce(ke)

Note that α(e′) ⊆ α(e). Hence, these two processes syn-
chronize on producers, association actions and consumers
in the main process (i.e., see (8)). Note there is no need
to mention the modifiers in e′, because their ordering con-
straints are already expressed in e. When an entity is
created (e.g., an employee), both processes execute the
same producer action. When an association producer ac-
tion is executed (e.g., Manage(p1, p2)), one entity in each
entity type executes it. The example below of computing
a system trace illustrates this. An action P e(p1) denotes
a producer of e, while the action P a(p1, p2) denotes an
association producer action likeManage(p1, p2).

P e(p1) �P a(p1, p2) (12)

||| (13)

P e(p2) (14)

‖ (15)

P e(p1) (16)

||| (17)

P e(p2) �P a(p1, p2) (18)

�

P e(p1) �P e(p2) �P a(p1, p2) (19)

Line (19) denotes the system trace. Lines (12) and (14)
denote the entity traces in entity type e; lines (16) and
(18) denote the entity traces in process expression e′.
Lines (13) and (17) denote the interleaving of entity
traces of an entity type, while line (15) denotes the com-
position between entity types.
Furthermore, cycles are usually not allowed in recur-

sive associations (e.g., p1 manages · · · manages p1). This
constraint is better expressed by a guard:

ke′ �= ke ∧ ke′ �∈ successors(t, ke) =⇒ P a(ke, ke′)

in PE a, where successors is an attribute of e defined as:

successors(s, ke)
∆
=

match s with
ε →⊥
s′�P e(ke, _) →∅
s′�P a(ke, k1)→ k1∪successors(s′, ke)
s′�P a(k1, k2)→ if k1 ∈ successors(s′, ke)

then {k2}∪successors(s′, ke)
else successors(s′, ke)

s′�Ce(ke) →⊥
s′�_ → successors(s′, ke)

The inheritance association pattern. The inheri-
tance association allows one entity type to inherit at-
tributes and actions from another. A main pattern is
presented and illustrated by the requirements class dia-
gram in Fig. 2. It is founded on the following assumptions:
a) single inheritance and no overloading, i.e., an entity
type can only be a specialization of one entity type and
an action occurs only once in the requirements class dia-
gram; b) producers occur only on leafs of the inheritance

M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems 147

a1

e1

e2

e4

a3

a2

e3

P e2

Me2

Me1

Ce1

Me3
Ca2

Pa3

Ca3

P e4

Me4

Pa1

Ca1

Pa2

Fig. 2. An inheritance hierarchy in a requirements class diagram

hierarchy; c) any entity type can have modifiers and as-
sociations; d) only the top entity type has consumers;
and e) the key is provided by the top entity type; hence,
a key value must be unique among all entities of the
inheritance hierarchy. Variations on these assumptions
generate variations on the main pattern. The asymmetry
between producers and consumers can be justified as fol-
lows: a producer from a generalization is usually not very
useful for its specializations, because it does not provide
values for their specific attributes. Dually, there is no need
to have a consumer for each entity type in the hierarchy,
because it usually has only one parameter: the entity type
key, which is inherited, and whose value is unique among
all entities of the hierarchy. Entity types that are neither
a top or a leaf in the hierarchy only have modifiers and
associations.
The main pattern consists of only one entity type

process expression, eg, which describes the ordering con-
straints for the entire inheritance hierarchy. Process eg
offers a choice between the leafs of the hierarchy, denoted
by esi , followed by its consumers. Each leaf calls its spe-
cific modifiers and associations as well as the modifiers
and associations of its parent entity type. The following
notation is used to handle inheritance: Me

�(ke) denotes
all modifiers accessible to entity type e; it includes the
modifiers specific to e, denoted byMe(ke), and the mod-
ifiers inherited from its parent entity type, denoted by
Me
�(ke). A similar convention is used for the associations.

This is the abstract description of the main pattern:

eg(ke :Ke)
∆
= (es1(ke) | · · · | esn(ke)) � Ceg(ke)

esi(ke :Ke)
∆
= Pesi (ke) � (M

esi
� (ke)

∗ ||| A
esi
� (ke))

M
esi
� (ke :Ke)

∆
= Mesi (ke) | M

esi� (ke)

A
esi
� (ke :Ke)

∆
= Aesi (ke) ‖ A

esi� (ke)

To illustrate further this pattern, it is instantiated for
the inheritance hierarchy in Fig. 2, with eg := e1, n := 2,
es1 := e2, and es2 := e4.

e1(k :K)
∆
= (e2(k) | e4(k)) � Ce1(k)

e2(k :K)
∆
= P e2(k) � (Me2� (k)∗ |||Θ(e1, · · · , a1, · · ·))

e4(k :K)
∆
= P e4(k) � (Me4� (k)∗ |||Ae4� (k))

Me2� (k :K)
∆
= Me2(k) | Me1(k)

Me4� (k :K)
∆
= Me4(k) | Me3� (k)

Me3� (k :K)
∆
= Me3(k) | Me1(k)

Ae4� (k :K)
∆
= Θ(e4, · · · , a3, · · ·) ‖ A

e3
� (k)

Ae3� (k :K)
∆
= Θ(e3, · · · , a2, · · ·) ‖ Θ(e1, · · · , a1, · · ·)

We may summarize these definitions as follows. An entity
can be created using a producer from either e2 or e4. An
entity of e2 can be modified using modifiers of e1 or e2.
It can be associated through a1 with some other entities.
It is deleted by executing a consumer of e1. An entity of
e4 can be modified by using any modifier from e1, e2, e4.
It can be associated with other entities by using associa-
tions a1, a2, a3. It is deleted by executing a consumer of
e1. Note that there is no process definition for e3, because
it is neither a leaf nor the top of the hierarchy.

5.2 Entity attribute function patterns

Attributes are defined by recursive functions. The func-
tions are more varied in style, but a few simple patterns
still cover quite a large number of cases. We present two
of them.
When an attribute bk is a key of an entity type e, the

structure of its recursive function has the following pat-
tern. For the sake of simplicity, assume that this entity
has only one producer and one consumer.

bk(s)
∆
=

match s with
ε →∅
s′�P e(ke, _)→{ke}∪ bk(s′)
s′�Ce(ke) → bk(s′)−{ke}
s′�_ → bk(s′)

Producers add key values to the set of keys of active enti-
ties; consumers remove them. The initial value of a key at-
tribute (i.e., for the empty trace) is the empty set (∅), be-
cause there are no active entities in the beginning. Other
simple attributes bo (e.g., ward_name, patient_name) of
e have the following pattern:

bo(s, ke)
∆
=

match s with
ε →⊥
s′�P e(ke, · · · , vbo , · · ·) → vbo
s′�Ce(ke) →⊥
s′�Me(ke, · · · , vbo , · · ·)→ vbo
s′�_ → bo(s′, ke)

148 M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems

The initial value of a simple attribute is provided by
a producer and further changed by a modifier. When an
entity is deactivated by a consumer, the attribute be-
comes undefined.
Attributes arising from associations also follow pat-

terns (e.g., treating_ward or treated_patients).

6 Conclusion

This paper is based upon methods proposed in the early
80’s, which have been studied intensively for many years
and used successfully in many applications. It provides
a new style of black-box specification that allows devel-
opers to rigorously describe the interaction of a system
with its environment solely from the user’s point of view.
It combines and adapts various techniques, each exploited
for aspects that it treats particularly well, to obtain a no-
tation that is light but complete enough for specifying
a large class of ISs.
Using relations instead of functions is a slight general-

ization of the initial Cleanroom model of black-box spe-
cifications. It supports a simple form of nondeterminacy
in specifications. Relations between input histories and
output histories (i.e., relations between X+ and Y +), as
proposed in [2] and [32], are even more general. However,
for a large class of ISs, relations on X+×Y are sufficient
and easier to manage, since it is not necessary to deal with
the output history.
Using PEs instead of regular expressions yields a no-

tation that is more expressive in the sense that it deals
with complex ordering constraints. The operations cho-
sen among those in CSP and Lotos have been sufficient
to formalize the semantics of processes described infor-
mally in the JSD method. The choice of using concate-
nation instead of prefixing and sequential composition
makes the set of inference rules a bit more complex than
in Lotos or CCS, but the specifications shorter.
Despite its mathematical foundations, this new spe-

cification method does not require the analyst to have
a strong mathematical background. PEs are close to JSD
structure diagrams. Furthermore, because entities closely
correspond to relations in a relational database, input-
output rules can be defined by using SQL statements.
This short conceptual distance between this new kind of
black-box specification and a corresponding SQL-based
implementation should make the design phase straight-
forward and reduce the learning curve for software de-
signers to apply this new method. Similarly, entity types
closely correspond to classes in an objet-oriented ap-
proach. Hence, there should be a natural refinement of
black-box specifications by an object-oriented design.
Our personal experimentations with eb3 show that it

can conveniently be used for the ISs following the pat-
terns of Sect. 5. Nevertheless, real-world systems can be
very complex. We do not know yet how far eb3 can go in
managing this complexity.

6.1 Future work

This work leaves open a number of research issues. The
ultimate goal of eb3 is to automatically generate a fully
operational system from a specification. An interpreter
has been developed to determine if an input trace is valid.
It remains to extend this interpreter to compute recursive
functions and input-output rules. The next step will be
to increase interpreter efficiency to provide response time
competitive with that of a conventional implementation
of an IS.
A prototype that generates a simple user interface

from an eb3 specification has been built. This interface is
sufficient for specification validation and prototyping, but
it needs to be improved in order to become an ergonomic,
production-strength interface. Research work in model-
based interface development environments (MB-IDE) has
explored this issue, but without any integration to a for-
mal specification of the functional requirements [30]. By
integrating research results in MB-IDE and formal speci-
fications, the ultimate goal of eb3 becomes quite realistic
for a large class of information systems. Finally, the in-
tegration of eb3 specification with existing systems must
also be investigated, because new information systems are
typically linked to existing systems.
eb
3 specifications can also be refined into state-based

implementations. In [17], a refinement strategy and proof
rules are proposed for B machines. This work could be
extended to generate a partial implementation of an eb3

specification into object-oriented languages like C++ or
Java. The verification of this implementation could be
carried out by automatically generating functional test
scenarios from the eb3 specification and automatically
checking implementation conformance. A bridge could
also be generated to use verification tools developed for
CSP and Lotos. A functional test scenario is represented
by a sequence of input-output pairs. An eb3 specification
can be easily extended to include an operational profile
specification, which describes the probability of occur-
rence of a trace. These probabilities are expressed accord-
ing to the structure of the process expressions.

Acknowledgements. The research described in this paper was sup-
ported in part by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and the Fonds québécois de la
recherche sur la nature et les technologies (FQRNT).

References

1. Amyot, D., Eberlein, A.: An Evaluation of Scenario Notations
for Telecommunication Systems Development. In: 9th Interna-
tional Conference on Telecommunications Systems (ICTS’01).
Dallas, USA March 2001

2. Broy, M., Dederichs, F., Dendorfer, C., Fuchs, M., Gritzner,
T.F., Weber, R.: The Design of Distributed Systems – an
Introduction to FOCUS. Technische Universität München, In-
stitut für Informatik, TUM-I9203 1992

3. Boudriga, N., Mili, A., Zalila, R., Mili, F.: A Relational Model
for the Specification of Data Types. Computer Languages
17(2): 101–131, 1992

M. Frappier and R. St-Denis: EB3: an entity-based black-box specification method for information systems 149

4. Bolognesi, T., Brinksma, E.: Introduction to the ISO Spe-
cification Language LOTOS. Computer Networks and ISDN
Systems 14(1): 25–59, 1987

5. Booch, G., Rumbaugh J., Jacobson, I.: The Unified Modeling
Language User Guide. Addison Wesley, Reading, MA 1999

6. Cameron, J.R.: JSP and JSD: The Jackson Approach to Soft-
ware Development. Second Edition, IEEE Computer Society
Press, Washington 1989

7. Chen, P.: The Entity Relationship Model – Towards a Unified
View of Data. ACM Transactions on Database Systems 1(1):
9–36, 1976

8. Davis, A.: Requirements Engineering. Prentice Hall, Engle-
wood Cliffs 1992

9. Deck, M.D.: Data Abstraction in the Box Structures Ap-
proach, Proc. 3rd Annual Int. Conf. on Cleanroom Software
Engineering Practices 1996

10. Elmasri, R., Navathe, S.B.: Fundamentals of Database Sys-
tems, 3rd edition, Addison-Wesley 2000

11. Fraikin, B., Frappier, M.: EBSPAI: an Efficient Process Al-
gebra Interpreter. 5th Workshop on Tools for System De-
sign and Verification (FM-TOOLS 2002), Reisensburg Castle,
Günzburg, Germany July 15–17 2002

12. Fraikin, B., Frappier, M.: eb3pai: an Interpreter for the
eb
3 Specification Language. 15th International Conference on

Software & Systems Engineering & their Applications. Paris,
France December 3–5 2002

13. Frappier, M., Mili, A., Desharnais J.: Defining and Detecting
Feature Interactions, In: Proc. IFIP TC2 Working Conf. on
Algorithmic Languages and Calculi 1997

14. Frappier, M., St-Denis, R.: A Specification Method for Clean-
room’s Black Box Description, Proc. 31st Hawaii Int. Conf. on
System Sciences 1998

15. Frappier, M., St-Denis, R.: Combining JSD and Cleanroom for
Object-Oriented Scenario Specification. In: Kilov, H., Rumpe,
B., Simmonds, I. (eds.) Behavioral Specifications of Businesses
and Systems. Kluwer Academic Publishers, Boston 1999

16. Frappier, M., St-Denis, R.: Specifying a Cleanroom Black
Box Using JSD. In: Frappier, M., Habrias, H. (eds.) Soft-
ware Specification Methods: An Overview Using a Case Study.
Springer, London 2000

17. Frappier, M., Laleau, R.: Verifying Event Ordering Properties
for Information Systems. The third International Conference
of B and Z Users, Lecture Notes in Computer Science, vol.
2651. Springer-Verlag, Turku, Finland June 4–6 2003

18. Frappier, M., Fraikin, B., Laleau, R., Richard, M.: Automatic
Production of Information Systems. In: AAAI Symposium on
Logic-Based Program Synthesis, Stanford University, Stan-
ford, CA March 25–27 2002

19. Hoare, C.A.R.: Communicating Sequential Processes. Prentice
Hall, Englewood Cliffs 1985

20. Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y., Chen,
C.: Formal Approach to Scenario Analysis. IEEE Software
11(2): 33–41, 1994

21. Jackson, M.: System Development. Prentice Hall, Englewood
Cliffs 1983

22. Jarke, M., Kurki-Suonio, R., Eds.: Special Issue on Scenario
Management. IEEE Transactions on Software Engineering
24(12), 1998.

23. Karlsson, E.-A.: An Extension of the Black Box Approach to
System Specification, Proc. 3rd Annual Int. Conf. on Clean-
room Software Engineering Practices 1996

24. Linger, R.C.: Cleanroom Process Model. IEEE Software 11(2):
50–58, 1994

25. Lustman, F.: Specifying Transaction-Based Information Sys-
tems with Regular Expressions. IEEE Transactions on Soft-
ware Engineering 20(3): 207–217, 1994

26. Milner, R.: Communication and Concurrency. Prentice Hall,
Englewood Cliffs 1989

27. Mills, H.D., Linger R.C., Hevner, A.R.: Principles of Informa-
tion Systems Analysis and Design. Academic Press, Orlando,
FL 1986

28. Oshana, R.S.: Tailoring Cleanroom for Industrial Use. IEEE
Software 15(6): 46–55, 1998

29. Prowell, S.J.: Sequence-Based Software Specification. Ph.D.
Dissertation, University of Tennessee 1996

30. Puerta, A.R.: A Model-Based Interface Development Environ-
ment. IEEE Software 14(4): 41–47, 1997

31. Sridhar, K.T., Hoare, C.A.R.: JSD Expressed in CSP, Techni-
cal Monograph PRG-51, Oxford University Computing Labo-
ratory, Programming Research Group, Oxford, England, July
1985, pp. 334–363. Reprinted in [6]

32. Wang, Y., Parnas, D.L.: Simulating the Behavior of Software
Modules by Trace Rewriting. IEEE Transactions on Software
Engineering 20(10): 750–759, 1994

33. Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.: Scenar-
ios in System Development: Current Practice. IEEE Software
15(2): 34–45, 1998

34. Yeung, W.L.: Denotational Semantics for JSD, In: 4th Asia-
Pacific Software Engineering and International Computer Sci-
ence Conference, IEEE Computer Society Press, December
02–05 1997, pp. 72–80

Marc Frappier is a professor of
software engineering at the Uni-
versité de Sherbrooke. He earned
a Ph.D. in computer science from
the University of Ottawa in 1995.
His research interests include
software specification and syn-
thesis, software measurement,
and project management. He
held several positions in indus-
try prior to his academic ca-
reer, both at the technical and

management levels. He is also an independent industrial
consultant.

Richard St-Denis received
the B.Sc. and M.Sc. degrees in
computer science from the Uni-
versité de Montréal in 1975 and
1977, respectively, and the Ph.D.
degree in applied sciences from
École Polytechnique de Montréal
in 1992. He is currently a pro-
fessor of computer science at
the Université de Sherbrooke,
where his research interests in-
clude reactive systems, discrete-

event systems, and software engineering. He has published
a book in French on programming with the Sparc assembly
language.

