Approaching the Coverability Problem Continuously

Michael Blondin, Alain Finkel, Christoph Haase, Serge Haddad

[J
universite Université rH'\

PARIS-SACLAY de Montréal

CN/S y

C A CH AN INVENTORS FORTHE DIGTALWORLD

(Discrete) Petri nets

1/12

(Discrete) Petri nets

1/12

(Discrete) Petri nets

1/12

(Discrete) Petri nets

1/12

(Discrete) Petri nets

1/12

(Discrete) Petri nets

1/12

(Discrete) Petri nets

1/12

(Discrete) Petri nets

1/12

(Discrete) Petri nets

1/12

(Discrete) Petri nets

L 2

2 @

1/12

Verifying safety with Petri nets

2/12

Verifying safety with Petri nets

Process 1 Process 2

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

Process 1 Process 2

critical section

critical section

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

while True: while True:
X =True & Vy=True
whiley: pass if x then:
critical section y = False
x = False while x: pass
goto W

critical section
y = False

2/12

Verifying safety with Petri nets

while True: ® while True:
X =True e & y=True
whiley: pass [®) if x then:
critical section e y = False
x = False 0 while x: pass

goto W
critical section
y = False

2/12

Verifying safety with Petri nets

while True: ® ® while True:

X =True O e & Vy=True

while y: pass O @) if x then:

critical section 0) @ y = False

x = False O @) while x: pass
o goto W
(@) # critical section
@) y = False

2/12

Verifying safety with Petri nets

goto W

critical section

while True: ® ® while True:
X=True O [0) O & Vy=True
whiley: pass ®) ® ®) if®then:
critical section O e y = False
X = False O O while[d: pass
O
O
O

y = False

2/12

Verifying safety with Petri nets

goto W

critical section

while True: ® ® while True:

X = True O e O & [=True

while[§f: pass ®) ® ®) if x then:

critical section O [9) e y = False

x = False O ® O while x: pass
O
O
O

y = False

2/12

Verifying safety with Petri nets

while True: while True:
X =True & Vy=True
while y: pass if x then:
critical section y = False

x = False while x: pass

goto W

critical section
y = False

2/12

Verifying safety with Petri nets

critical section

critical section

2/12

Verifying safety with Petri nets

Processes at both each ‘ >1

critical sections

2/12

Verifying safety with Petri nets

Processes at both each ‘ >1
critical sections Q >0

Verifying safety with Petri nets

each ‘ > 1

2/12

Coverability problem

Problem

Input: Petri net V, initial marking mg, target marking m

Question: Is some m’ > m reachable from mq in A/?

3/12

Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking

 Backward: find predecessors of markings covering target
« EXPSPACE-complete

3/12

Coverability problem

How to solve it?

 Backward: find predecessors of markings covering target
« EXPSPACE-complete

3/12

Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking

« EXPSPACE-complete

3/12

Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking
 Backward: find predecessors of markings covering target

3/12

Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking

- \Backward] find predecessors of markings covering target
« EXPSPACE-complete

3/12

Backward algorithm

4/12

Backward algorithm

4/12

£
=
5=
1Sy
o
=0
©
o
LS
©
=
=
(5
]
-]

O

4/12

Backward algorithm

4/12

Backward algorithm

4/12

Backward algorithm

4/12

Backward algorithm

4/12

Backward algorithm

4/12

Backward algorithm

P iR

C ennot cover
+ar-ée+ markin 9

4/12

Backward algorithm

P iR

00>

4/12

Backward algorithm

We only care about some initial marking...

4/12

Backward algorithm

P iR

We only care about some initial marking...
Speedup by pruning basis!

4/12

(Discrete) Petri nets

5/12

(Discrete) Petri nets

5/12

(Discrete) Petri nets

5/12

(Discrete) Petri nets

5/12

Petri nets
Continvous

5/12

Continvous

5/12

Petri nets

Continvous

5/12

Continvous

5/12

Petri nets

Continvous

5/12

Continvous

5/12

Petri nets

Continvous

5/12

Continuity to over-approximate coverability

m is coverable from mq

|

m is Q-coverable from my

6/12

Continuity to over-approximate coverability

m is coverable from mq

|

m is Q-coverable from my

LN

6/12

Continuity to over-approximate coverability

mis coverable from mq

mis Q-coverable from mq

6/12

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

m is Q-coverable from my iff... Fraca & Haddad '13

7/12

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat

7/12

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat

* m' =mg + (Post — Pre) - v

7/12

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat
« m =mgy + (Post — Pre) - v

+ some execution from my fires exactly {t € T: v; > 0}

7/12

Coverability in continuous Petri nets

b m = (0,2
. (]
m is Q-coverable from my iff... Fraca & Haddad '13
there exist m’ > m and such that

* m' =mg + (Post — Pre) - v
« some execution from mq fires exactly

- some execution to m’ fires exactly

7/12

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m' > m and vg,v, € Q> such that

+ some execution from my fires exactly {t € {a, b} : v; > 0}

- some execution to m’ fires exactly {t € {a,b} : v; > 0}

7/12

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<vy,+vg<2
2 < Vp
+ some execution from my fires exactly {t € {a, b} : v; > 0}

- some execution to m’ fires exactly {t € {a,b} : v; > 0}

7/12

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v
+ some execution from my fires exactly {t € {a, b} : v; > 0}

- some execution to m’ fires exactly {t € {a,b} : v; > 0}

7/12

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v
« some execution from mq fires exactly

- some execution to m’ fires exactly

7/12

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v
« some execution from mq fires exactly

- some execution to m’ fires exactly

7/12

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v

« some execution to m’ fires exactly {b}

7/12

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v
+ some execution from my fires exactly {b} v

« some execution to m’ fires exactly {b}

7/12

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v

+ some execution from my fires exactly {b} v

7/12

Coverability in continuous Petri nets
@ mo = (2,0)
©)

T b m = (0,
(]
m is Q-coverable from my iff... Fraca & Haddad '13

there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v

+ some execution from my fires exactly {b} v

7/12

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

OsWHVa<2 _ v —o vy=2,m=m

2 < Vp
+ some execution from my fires exactly {b} v
« some execution to m’ fires exactly {b} X

7/12

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

OsWHVa<2 _ v —o vy=2,m=m

2 < Vp
+ some execution from my fires exactly {b} v
« some execution to m’ fires exactly {b} X

7/12

Coverability in continuous Petri nets

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat
* m' =mg + (Post — Pre) - v
+ some execution from my fires exactly {t € T: v; > 0}
+ some execution to m’ fires exactly {te T:v; > 0}

7/12

Coverability in continuous Petri nets

Logical characterization Contribution

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat
* m =mgy + (Post — Pre) - v
+ some execution from my fires exactly {t € T: v; > 0}
+ some execution to m’ fires exactly {te T:v; > 0}

7/12

Coverability in continuous Petri nets

Logical characterization Contribution
Q-coverability can be encoded in a linear size formula of

existential FO(IN, +,<)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat
* m =mgy + (Post — Pre) - v
+ some execution from my fires exactly {t € T: v; > 0}
+ some execution to m’ fires exactly {te T:v; > 0}

7/12

Coverability in continuous Petri nets

Logical characterization Contribution
Q-coverability can be encoded in a linear size formula of

existential FO(Q>o,+, <)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat

+ some execution from my fires exactly {t € T: v; > 0}

+ some execution to m’ fires exactly {te T:v; > 0}

7/12

Coverability in continuous Petri nets

Logical characterization Contribution
Q-coverability can be encoded in a linear size formula of

existential FO(Q>o,+, <)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat

* m =mgy + (Post — Pre) - v

7/12

Encoding the firing set conditions

8/12

Encoding the firing set conditions

Testing whether some transitions can be fired
from initial marking

8/12

Encoding the firing set conditions

Testing whether some transitions can be fired
from initial marking

8/12

Encoding the firing set conditions

8/12

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

8/12

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05)
8/12

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05)
8/12

Encoding the firing set conditions

2ol

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05)
8/12

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05)
8/12

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05)
8/12

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05)
8/12

Encoding the firing set conditions

1 2 3
w)I w
1

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05)
8/12

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05)
8/12

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05)
8/12

Encoding the firing set conditions
b
/O<I
a
C
O
L
d

Simulate a "breadth-first" transitions firing

by numbering places/transitions
(Verma, Seidl & Schwentick '05)

8/12

Encoding the firing set conditions

8/12

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False

9/12

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False
X = {target marking m}
while (initial marking my not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—ypb)}
if B=0: return False
©(X) = o(X) A Apruneap X 2 b
X=XUB

return True

9/12

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:

return False

while (initial marking my not covered by X):
B = markings obtained from X one step backward

B=B\{beB:—yb)}
if B=@: return False

p(X) = p(x) A /\pruned p XZb
X=XUB

return True

9/12

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False
X = {target marking m}

while
B = markings obtained from X one step backward

B=B\{beB:—yb)}
if B=@: return False

p(X) = p(x) A /\pruned p XZb
X=XUB

return True

9/12

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:

return False
X = {target marking m}

while (initial marking my not covered by X):

B=B\{beB:—yb)}
if B=@: return False

p(X) = p(x) A /\pruned p XZb
X=XUB

return True

9/12

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False

X = {target marking m}
while (initial marking my not covered by X):
B = markings obtained from X one step backward

if B=@: return False

p(X) = p(x) A /\pruned p XZb
X=XUB

return True

9/12

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False
X = {target marking m}
while (initial marking my not covered by X):
B = markings obtained from X one step backward

B=B\{beB:-yb)}

if return
p(X) = p(x) A /\pruned p XZb
X=XUB

return True

9/12

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking my not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—ypb)}

if B=@: return False

X=XUB

return True

9/12

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False
X = {target marking m}
while (initial marking my not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—ypb)}
if B=0: return False

p(X) = p(x) A /\pruned b X2Db

return True

9/12

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False
X = {target marking m}
while (initial marking my not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—ypb)}
if B=0: return False
©(X) = o(X) A Apruneap X 2 b
X=XUB

return

9/12

An implementation: QCOVER

@ python

- 760 lines of code
+ uses the MIST . spec format for counter machines
+ supports dense/sparse matrices through NuMPY/ScIPy

- experimental parallelism support

10/12

An implementation: QCOVER

@ python

+ uses the MIST . spec format for counter machines
+ supports dense/sparse matrices through NuMPY/ScIPy

- experimental parallelism support

10/12

An implementation: QCOVER

@ python

+ 760 lines of code

+ supports dense/sparse matrices through NuMPY/ScIPy

- experimental parallelism support

10/12

An implementation: QCOVER

@ python

+ 760 lines of code

+ uses the MIST . spec format for counter machines

- experimental parallelism support

10/12

An implementation: QCOVER

@ python

- 760 lines of code
+ uses the MIST . spec format for counter machines
+ supports dense/sparse matrices through NuMPY/ScIPy

10/12

An implementation: QCOVER

@ python

- 760 lines of code
+ uses the MIST . spec format for counter machines
+ supports dense/sparse matrices through NuMPY/ScIPy

- experimental parallelism support

+ FO(Q>0, +, <) formula satisfiability

- Fraca & Haddad "polynomial time" algorithm
(rational linear programming with <)

10/12

An implementation: QCOVER

@ python

- 760 lines of code
+ uses the MIST . spec format for counter machines
+ supports dense/sparse matrices through NuMPY/ScIPy

- experimental parallelism support

SMT solver: Z3 (Microsoft research)

- Fraca & Haddad "polynomial time" algorithm
(rational linear programming with <)

10/12

An implementation: QCOVER

@ python

- 760 lines of code
+ uses the MIST . spec format for counter machines
+ supports dense/sparse matrices through NuMPY/ScIPy

- experimental parallelism support
SMT solver: Z3 (Microsoft research)

+ FO(Q>0, +, <) formula satisfiability

10/12

* BFC: Kaiser, Kroening & Wahl "14
* PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic "14

11/12

QCOoVER tested against

* MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07

* PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic "14

11/12

QCOoVER tested against

* MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
* BFC: Kaiser, Kroening & Wahl "14

11/12

QCOoVER tested against

* MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
* BFC: Kaiser, Kroening & Wahl "14
* PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic "14

« Drawn from 5 existing suites

11/12

QCOoVER tested against

* MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
* BFC: Kaiser, Kroening & Wahl "14
* PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic "14

Benchmarks

- 176 Petri nets: average of 1054 places & 8458 transitions

+ Mutual exclusion, communication protocols, etc. (MIsT)

+ ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong '13)

+ Message analysis of a medical and a bug tracking system
(PETRINIZER)

11/12

QCOoVER tested against

* MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
* BFC: Kaiser, Kroening & Wahl "14
* PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic "14

Benchmarks

- 176 Petri nets: average of 1054 places & 8458 transitions
+ Drawn from 5 existing suites including
- Multithreaded C programs with shared memory (BFc)
+ ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong '13)
+ Message analysis of a medical and a bug tracking system
(PETRINIZER)

11/12

QCOoVER tested against

* MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
* BFC: Kaiser, Kroening & Wahl "14
* PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic "14

Benchmarks

- 176 Petri nets: average of 1054 places & 8458 transitions
+ Drawn from 5 existing suites including
- Multithreaded C programs with shared memory (BFc)
+ Mutual exclusion, communication protocols, etc. (MIsT)
+ Message analysis of a medical and a bug tracking system
(PETRINIZER)

11/12

QCOoVER tested against

* MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
* BFC: Kaiser, Kroening & Wahl "14
* PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic "14

Benchmarks

- 176 Petri nets: average of 1054 places & 8458 transitions
+ Drawn from 5 existing suites including
- Multithreaded C programs with shared memory (BFc)
+ Mutual exclusion, communication protocols, etc. (MIsT)
+ ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong '13)

11/12

Instances proven safe

100 >
I 95
80 B
60 y 63
40 r
20 d *
|

L L L
T 4 16 64 256 2000
running time in seconds

QCOVER A\ PETRINIZER ‘BFC MIST

11/12

Instances proven safe

100 >
I 95
80 B
60 y 63
40 r
20 d *
|

L L L
T 4 16 64 256 2000
running time in seconds

QCOVER A\ PETRINIZER ‘BFC MIST

11/12

100
80
60
40

20pr

Instances proven safe

|
4 95

» 63

[I I I I
1 4 16 64 256 2000

running time in seconds

QCOVER A PETRINIZER ‘ BFC

Instances proven safe or unsafe

140
120
100
80
60
40

| | |
1T 4 16 64 256 2000
running time in seconds

MIST

11/12

Markings pruning efficiency across all iterations

400

200

0 0
0 20 40 60 80 100 0 20 40 60 80 100
% pruned markings inv. cumulative % pruned markings

11/12

12/12

- Combine our approach with a forward algorithm to better
handle

$59/61 BFC

o¥ ‘ ‘ ‘ 0 PETRINIZER (NOT SUPPORTED)

I
1 4 16 64 256 2000
running time in seconds

12/12

- Combine our approach with a forward algorithm to better
handle unsafe instances

12/12

- Combine our approach with a forward algorithm to better
handle unsafe instances

- Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

12/12

Thank you! Dank u!

