Approaching the Coverability Problem Continuously

Michael Blondin, Alain Finkel, Christoph Haase, Serge Haddad

Lamport mutual exclusion "1-bit algorithm"

Lamport mutual exclusion "1-bit algorithm"

Lamport mutual exclusion "1-bit algorithm"

while True: x = True while y: pass # critical section x = False while True: y = True if x then: y = False while x: pass goto # critical section y = False

while True:	$\overline{\mathbf{O}}$
$\mathbf{x} = True$	С
whiley:pass	С
# critical section	С
x = False	С

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•<

while True: y = True if x then: y = False while x: pass goto # critical section y = False

•

 \odot

 \bigcirc

Ο

Ο

 \bigcirc

○○<

while True: y = True if x then: y = False while x: pass goto # critical section y = False

while True: x = True while y: pass # critical section x = False

) • •

 \odot

 \bigcirc

Ο

Ο

 \bigcirc

 \odot

Ο

Ο

Ο

Ο

Ο

Ο

Ο

while True: x = True while y: pass # critical section x = False

while True: x = True while y: pass # critical section x = False

Input: Petri net N, initial marking m_0 , target marking m

Question: Is some $m' \ge m$ reachable from m_0 in \mathcal{N} ?

Input: Petri net N, initial marking m_0 , target marking mQuestion: Is some $m' \ge m$ reachable from m_0 in N?

How to solve it?

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Input: Petri net N, initial marking m_0 , target marking mQuestion: Is some $m' \ge m$ reachable from m_0 in N?

How to solve it?

Karp & Miller '69

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Input: Petri net N, initial marking m_0 , target marking mQuestion: Is some $m' \ge m$ reachable from m_0 in N?

How to solve it? Arnold & Latteux '78, Abdulla *et al.* '96

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Input: Petri net N, initial marking m_0 , target marking mQuestion: Is some $m' \ge m$ reachable from m_0 in N?

How to solve it?

Lipton '76, Rackoff '78

- Forward: build reachability tree from initial marking
- · Backward: find predecessors of markings covering target
- EXPSPACE-complete

Input: Petri net N, initial marking m_0 , target marking mQuestion: Is some $m' \ge m$ reachable from m_0 in N?

How to solve it?

- Forward: build reachability tree from initial marking
- Backward find predecessors of markings covering target
- EXPSPACE-complete

What initial markings may cover (0, 2)?

Basis size may become doubly exponential (Bozzelli & Ganty '11)

We only care about some initial marking...

We only care about some initial marking... Speedup by pruning basis!

\boldsymbol{m} is coverable from \boldsymbol{m}_0

\boldsymbol{m} is \mathbb{Q} -coverable from \boldsymbol{m}_0

Continuity to over-approximate coverability

m is coverable from \mathbf{m}_0 $E \times P > P \land C \in U$ **m** is Q-coverable from \mathbf{m}_0 $\downarrow \downarrow \uparrow \uparrow P \top M \in U$

m₀ and **m** satisfy conditions of Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

PTIME / NP / coNP

Continuity to over-approximate coverability

m is not coverable from m_0 Safety

\boldsymbol{m} is not \mathbb{Q} -coverable from \boldsymbol{m}_0

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad '13

<i>m</i> is \mathbb{Q} -coverable from <i>m</i> ⁰ iff		Fraca & Haddad '13
there exist ${m m}' \geq {m m}$ and	nd $\boldsymbol{v} \in \mathbb{Q}_{\geq 0}^{T}$	_o such that
• $m' = m_0 + (\operatorname{Post} - \operatorname{Pre}) \cdot v$		

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v \in \mathbb{Q}_{\ge 0}^T$ such that• $m' = m_0 + (Post - Pre) \cdot v$

• some execution from m_0 fires exactly $\{t \in T : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v \in \mathbb{Q}_{\ge 0}^T$ such that• $m' = m_0 + (\text{Post} - \text{Pre}) \cdot v$

- some execution from \boldsymbol{m}_0 fires exactly $\{t \in T : \boldsymbol{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in T : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $m' = m_0 + (Post - Pre) \cdot v$

- some execution from m_0 fires exactly $\{t \in \{a, b\} : v_t > 0\}$
- some execution to m' fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that. $0 \le v_b + v_a \le 2$ $2 \le v_b$. some execution from m_0 fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le \mathbf{v}_b + \mathbf{v}_a \le 2$ $2 \le \mathbf{v}_b$ • some execution from m_0 fires exactly $\{t \in \{a, b\} : \mathbf{v}_t > 0\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{b\}$

m is Q-coverable from m_0 iff...Fraca & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{b\}$

m is Q-coverable from m_0 iff...Frace & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{b\}$

m is Q-coverable from m_0 iff...Frace & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{b\}$

m is Q-coverable from m_0 iff...Frace & Haddad '13there exist $m' \ge m$ and $v_a, v_b \in \mathbb{Q}_{\ge 0}$ such that• $0 \le v_b + v_a \le 2$ $2 \le v_b$ • some execution from m_0 fires exactly $\{b\}$

m is \mathbb{O} -coverable from m_0 iff... Fraca & Haddad '13 there exist $\mathbf{m}' \geq \mathbf{m}$ and $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{>0}$ such that . $0 \leq \mathbf{v}_b + \mathbf{v}_a \leq 2 \implies \mathbf{v}_a = 0, \ \mathbf{v}_b = 2, \ \mathbf{m}' = \mathbf{m}$ $2 < v_{h}$ • some execution from m_0 fires exactly $\{b\}$ X

Polynomial time !-

m is \mathbb{Q} -coverable from m_0 iff...Fraca & Haddad '13there exist $m' \geq m$ and $v \in \mathbb{Q}_{\geq 0}^T$ such that

•
$$m' = m_0 + (Post - Pre) \cdot v$$

- some execution from \boldsymbol{m}_0 fires exactly $\{t \in T : \boldsymbol{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in T : v_t > 0\}$

Coverability in continuous Petri nets

Logical characterization

Contribution

 $\mathbb Q$ -coverability can be encoded in a linear size formula of existential FO($\mathbb Q_{\geq 0},+,<)$

<i>m</i> is \mathbb{Q} -coverable from m_0 iff		Fraca & Haddad '13
there exist $m' \ge m$	and $\boldsymbol{v} \in \mathbb{Q}_{\geq 0}^{T}$	such that

- $m' = m_0 + (Post Pre) \cdot v$
- some execution from \boldsymbol{m}_0 fires exactly $\{t \in T : \boldsymbol{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in T : v_t > 0\}$

Coverability in continuous Petri nets

Logical characterization

Contribution

 $\mathbb Q\text{-}coverability$ can be encoded in a linear size formula of existential FO($\mathbb Q_{\geq 0},+,<)$

- some execution from \boldsymbol{m}_0 fires exactly $\{t \in T : \boldsymbol{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in T : v_t > 0\}$

Logical characterization

Contribution

 $\mathbb Q\text{-}coverability$ can be encoded in a linear size formula of existential FO($\mathbb Q_{\geq 0},+,<)$

Testing whether some transitions can be fired from initial marking

Testing whether some transitions can be fired from initial marking

Testing whether some transitions can be fired from initial marking

Simulate a "breadth-first" transitions firing

if target marking \boldsymbol{m} is not \mathbb{Q} -coverable:

return False

Polynomial time

if target marking m is not Q-coverable:
return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$

if $B = \emptyset$: return False

 $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \succeq \mathbf{b}$

 $X = X \cup B$

if target marking m is not Q-coverable:
return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$ if $B = \emptyset$: return False $\varphi(\boldsymbol{x}) = \varphi(\boldsymbol{x}) \land \bigwedge_{\text{pruned } \boldsymbol{b}} \boldsymbol{x} \succeq \boldsymbol{b}$ $X = X \cup B$

if target marking m is not Q-coverable:
return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$ $\text{if } B = \emptyset : \text{return False}$ $\varphi(\boldsymbol{x}) = \varphi(\boldsymbol{x}) \land \bigwedge_{\text{pruned } \boldsymbol{b}} \boldsymbol{x} \not\geq \boldsymbol{b}$ $X = X \cup B$

if target marking m is not Q-coverable:
return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$ if $B = \emptyset$: return False $\varphi(\boldsymbol{x}) = \varphi(\boldsymbol{x}) \land \bigwedge_{\text{pruned } \boldsymbol{b}} \boldsymbol{x} \not\geq \boldsymbol{b}$ $X = X \cup B$

if target marking m is not Q-coverable:
return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ b \in B : \neg \varphi(b) \}$ if $B = \emptyset$: return False $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } b} \mathbf{x} \not\geq b$ $B = \emptyset : P = \emptyset$

 $X = X \cup B$

if target marking m is not Q-coverable:
return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$

if $B = \emptyset$: return False

 $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$ $\mathbf{X} = \mathbf{X} \cup \mathbf{B}$

if target marking m is not Q-coverable:
return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward $B = B \setminus \{ \mathbf{b} \in B : \neg \varphi(\mathbf{b}) \}$ if $B = \emptyset$: return False SMT solver guidance $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \succeq \mathbf{b} \longleftarrow$ $X = X \cup B$

if target marking m is not Q-coverable:
return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$

if $B = \emptyset$: return False

 $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}$ $\mathbf{x} = \mathbf{x} \cup \mathbf{B}$

if target marking m is not Q-coverable:
return False

 $X = \{ target marking m \}$

while (initial marking m_0 not covered by X):

B = markings obtained from X one step backward

 $B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}$

if $B = \emptyset$: return False

 $\varphi(\mathbf{x}) = \varphi(\mathbf{x}) \land \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \succeq \mathbf{b}$

 $X = X \cup B$

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NUMPY/SCIPY
- experimental parallelism support

- 760 lines of code
- uses the MIST .spec format for counter machines
- supports dense/sparse matrices through NUMPY/SCIPY
- experimental parallelism support

- 760 lines of code
- uses the MIST .spec format for counter machines
- supports dense/sparse matrices through NUMPY/SCIPY
- experimental parallelism support

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NUMPY/SCIPY
- experimental parallelism support

- 760 lines of code
- uses the MIST .spec format for counter machines
- supports dense/sparse matrices through NUMPY/SCIPY
- experimental parallelism support
An implementation: QCOVER

- 760 lines of code
- uses the MIST .spec format for counter machines
- supports dense/sparse matrices through NUMPY/SCIPY
- experimental parallelism support

SMT solver: Z3 (Microsoft research)

- + FO($\mathbb{Q}_{\geq 0},+,<)$ formula satisfiability
- Fraca & Haddad "polynomial time" algorithm (rational linear programming with <)

An implementation: QCOVER

- 760 lines of code
- uses the MIST .spec format for counter machines
- supports dense/sparse matrices through NUMPY/SCIPY
- experimental parallelism support

SMT solver: Z3 (Microsoft research)

- + FO($\mathbb{Q}_{\geq 0}, +, <$) formula satisfiability
- Fraca & Haddad "polynomial time" algorithm (rational linear programming with <)

An implementation: QCOVER

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NUMPY/SCIPY
- experimental parallelism support

SMT solver: Z3 (Microsoft research)

- + FO($\mathbb{Q}_{\geq 0},+,<)$ formula satisfiability
- Fraca & Haddad "polynomial time" algorithm (rational linear programming with <)

QCOVER tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl '14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

QCOVER tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl '14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

QCOVER tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl '14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

QCOVER tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl '14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

- 176 Petri nets: average of 1054 places & 8458 transitions
- Drawn from 5 existing suites

QCOVER tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl '14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

- 176 Petri nets: average of 1054 places & 8458 transitions
- Drawn from 5 existing suites including
 - Multithreaded C programs with shared memory (BFC)
 - Mutual exclusion, communication protocols, etc. (мізт)
 - ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong '13)
 - Message analysis of a medical and a bug tracking system (PETRINIZER)

QCOVER tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl '14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

- 176 Petri nets: average of 1054 places & 8458 transitions
- Drawn from 5 existing suites including
 - Multithreaded C programs with shared memory (BFC)
 - Mutual exclusion, communication protocols, etc. (мізт)
 - ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong '13)
 - Message analysis of a medical and a bug tracking system (PETRINIZER)

QCOVER tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl '14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

- 176 Petri nets: average of 1054 places & 8458 transitions
- Drawn from 5 existing suites including
 - Multithreaded C programs with shared memory (BFC)
 - Mutual exclusion, communication protocols, etc. (мізт)
 - ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong '13)
 - Message analysis of a medical and a bug tracking system (Petrinizer)

QCOVER tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl '14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

- 176 Petri nets: average of 1054 places & 8458 transitions
- Drawn from 5 existing suites including
 - Multithreaded C programs with shared memory (BFC)
 - Mutual exclusion, communication protocols, etc. (мізт)
 - ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong '13)
 - Message analysis of a medical and a bug tracking system
 (Petrinizer)

Instances proven safe

Instances proven safe

Instances proven safe

Instances proven safe or unsafe

Markings pruning efficiency across all iterations

• Combine our approach with a forward algorithm to better handle unsafe instances

- Combine our approach with a forward algorithm to better handle unsafe instances
- Use more efficient data structures, *e.g.* sharing trees (Delzanno, Raskin & Van Begin '04)

- Combine our approach with a forward algorithm to better handle unsafe instances
- Use more efficient data structures, *e.g.* sharing trees (Delzanno, Raskin & Van Begin '04)
- Extend to Petri nets with transfer/reset arcs

Thank you! Dank u!