
Approaching the Coverability Problem Continuously
.

Michael Blondin, Alain Finkel, Christoph Haase, Serge Haddad

......

(Discrete) Petri nets

..

.....

.... 2.

..

..Places .Transitions .

Pre =

(
1 2
0 0

)
.

Post =

(
0 1
0 1

)
.Marking

1/12

(Discrete) Petri nets

..

.....

.... 2.

..

..Places .Transitions .

Pre =

(
1 2
0 0

)
.

Post =

(
0 1
0 1

)
.Marking

1/12

(Discrete) Petri nets

..

.....

.... 2.

..

..Places .Transitions .

Pre =

(
1 2
0 0

)
.

Post =

(
0 1
0 1

)
.Marking

1/12

(Discrete) Petri nets

.

.

...

..

.... 2.

..

..Places .Transitions .

Pre =

(
1 2
0 0

)
.

Post =

(
0 1
0 1

)
.Marking

1/12

(Discrete) Petri nets

.

.

...

..

.... 2.

..

..Places .Transitions .

Pre =

(
1 2
0 0

)
.

Post =

(
0 1
0 1

)
.Marking

1/12

(Discrete) Petri nets

.

....

...... 2

.

..

..Places .Transitions .

Pre =

(
1 2
0 0

)
.

Post =

(
0 1
0 1

)
.Marking

1/12

(Discrete) Petri nets

.

....

...... 2

.

..

..Places .Transitions .

Pre =

(
1 2
0 0

)
.

Post =

(
0 1
0 1

)
.Marking

1/12

(Discrete) Petri nets

..

.....

.... 2

.

..

..Places .Transitions .

Pre =

(
1 2
0 0

)
.

Post =

(
0 1
0 1

)
.Marking

1/12

(Discrete) Petri nets

..

.....

.... 2

.

..

..Places .Transitions .

Pre =

(
1 2
0 0

)
.

Post =

(
0 1
0 1

)
.Marking

1/12

(Discrete) Petri nets

..

.....

.... 2

.

..

..Places .Transitions .

Pre =

(
1 2
0 0

)
.

Post =

(
0 1
0 1

)
.Marking

1/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.

..

......

.

....

..

...........

..

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.

..

......

.

....

..

...........

..

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.

..

......

.

....

..

...........

..

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.

..

......

.

....

..

...........

..

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.........

.

....

..

...........

..

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.........

.

..................

.

.......

..

.

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

...x = True
..while

.

y: pass
..# ..critical section

...x = False

.........

.

..................

.

..........

..

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if .x then:
..

.

y = False
..while .x: pass

..goto ..
..# ..critical section

..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while .y: pass

..# ..critical section
..

.

x = False

.........

.

..................

.

..

...

Process 2

.

..while True:
.... ...y = True

..if

.

x then:
...y = False
..while

.

x: pass
..goto ..

..# ..critical section
...y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

.........

.

..................

.

..

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

........

.

..................

.

...

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

........

.

..................

.

...

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

........

.

..................

.

...

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Verifying safety with Petri nets

...

Process 1

.

..while True:

..

.

x = True
..while

.

y: pass
..# ..critical section

..

.

x = False

........

.

..................

.

...

...

Process 2

.

..while True:
.... ..

.

y = True
..if

.

x then:
..

.

y = False
..while

.

x: pass
..goto ..

..# ..critical section
..

.

y = False

..

Coverability problem

.
..Processes at both ..⇐⇒

..each≥ 1
..critical sections≥ 0

..

Lamport mutual exclusion "1-bit algorithm"

2/12

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it?

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.

3/12

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it?

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.

3/12

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it? Karp & Miller '69

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.

3/12

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it? Arnold & Latteux '78, Abdulla et al. '96

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.

3/12

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it? Lipton '76, Rackoff '78

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.

3/12

Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it?

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.
3/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

4/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2...

....

What initial markings may cover (0, 2)?

4/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

4/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

4/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

4/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

4/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

4/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

4/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

4/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

Basis size may become doubly exponential
(Bozzelli & Ganty '11)

4/12

Backward algorithm

..

Cannot cover

.

target marking

........ 2.

....

We only care about some initial marking...

Speedup by pruning basis!

4/12

Backward algorithm

..

Cannot cover

.

target marking

...... 2.

....

We only care about some initial marking...
Speedup by pruning basis!

4/12

(Discrete) Petri nets

........ 2.

1/2

.

1/4

.

1/2n

.

5/12

(Discrete) Petri nets

........ 2.

1/2

.

1/4

.

1/2n

.

5/12

(Discrete) Petri nets

....... 2.

1/2

.

1/4

.

1/2n

..

5/12

(Discrete) Petri nets

....... 2.

1/2

.

1/4

.

1/2n

..

5/12

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

..

5/12

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

..

5/12

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

...

5/12

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

...

5/12

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

....

5/12

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

....

5/12

(Discrete) Petri nets ..
Continuous

....... 2.

1/2

.

1/4

.

1/2n

.....

5/12

Continuity to over-approximate coverability

m is coverable from m0

..

⇒

m is Q-coverable from m0

..

⇒
..

̸⇒
m0 and m satisfy conditions of
Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

..

EXPSPACE

.

PTIME

.

PTIME / NP / coNP

.

Safety

6/12

Continuity to over-approximate coverability

m is coverable from m0

..

⇒

m is Q-coverable from m0

..

⇒
.. ̸⇒

m0 and m satisfy conditions of
Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

..

EXPSPACE

.

PTIME

.

PTIME / NP / coNP

.

Safety

6/12

Continuity to over-approximate coverability

m is not coverable from m0

.. ⇒
m is not Q-coverable from m0

..

⇒
..

̸⇒
m0 and m satisfy conditions of
Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

..

EXPSPACE

.

PTIME

.

PTIME / NP / coNP

.

Safety

6/12

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T,Pre,Post)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T,Pre,Post)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T,Pre,Post)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T,Pre,Post)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ {a,b} : vt > 0}

3

• some execution to m′ fires exactly {t ∈ {a,b} : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

3

• some execution from m0 fires exactly {t ∈ {a,b} : vt > 0}

3

• some execution to m′ fires exactly {t ∈ {a,b} : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m

3

• some execution from m0 fires exactly {t ∈ {a,b} : vt > 0}

3

• some execution to m′ fires exactly {t ∈ {a,b} : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {t ∈ {a,b} : vt > 0}

3

• some execution to m′ fires exactly {t ∈ {a,b} : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {t ∈ {a,b} : vt > 0}

3

• some execution to m′ fires exactly {t ∈ {a,b} : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b}

3

• some execution to m′ fires exactly {b}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

........ 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b}

3

• some execution to m′ fires exactly {b}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b} 3

• some execution to m′ fires exactly {b}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b} 3

• some execution to m′ fires exactly {b}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b} 3

• some execution to m′ fires exactly {b}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b} 3

• some execution to m′ fires exactly {b} 7
..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

.. Not Q-coverable from

...... 2.

a

.

b

.... m0 = (2,0).
m = (0, 2)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and va, vb ∈ Q≥0 such that

• 0 ≤ vb + va ≤ 2
2 ≤ vb

=⇒ va = 0, vb = 2, m′ = m 3

• some execution from m0 fires exactly {b} 3

• some execution to m′ fires exactly {b} 7
..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

Logical characterization Contribution

Q-coverability can be encoded in a linear size formula of

existential FO(Q≥0,+, <)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

Logical characterization Contribution

Q-coverability can be encoded in a linear size formula of

existential FO(N, +, <)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

Logical characterization Contribution

Q-coverability can be encoded in a linear size formula of

existential FO(Q≥0,+, <)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Coverability in continuous Petri nets

Logical characterization Contribution

Q-coverability can be encoded in a linear size formula of

existential FO(Q≥0,+, <)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!

7/12

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Testing whether some transitions can be fired
from initial marking .

8/12

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Testing whether some transitions can be fired
from initial marking .

8/12

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Testing whether some transitions can be fired
from initial marking .

8/12

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
.

8/12

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

...

.....

..

....

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

.

..

..

...

.

.

..

..

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

.

..

..

...

.

.

..

..

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

.

..

..

...

.

.

..

..

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

.

..

..

...

.

.

..

..

...

...

.

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

.

..

......

.

.....

..

....

.

...

.

..

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

.

..

......

.

.....

..

...

.

...

.

...

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

.

..

......

.

.....

..

...

.

...

.

...

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

Simulate a "breadth-first" transitions firing
by numbering places/transitions

(Verma, Seidl & Schwentick '05) .
8/12

Encoding the firing set conditions

.

..

......

.

.....

..

...

.

...

.

...

1
.

2
.

3
.

4

.

1

. a.

b
.

c

.

d

.
>

. >.

>

.

>

.............

φ(x) = ∃y : ∧p∈P y(p) > 0→
∧
t∈•p y(t) < y(p) · · · .

8/12

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True

..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

9/12

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

9/12

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

9/12

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

9/12

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

9/12

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

9/12

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

9/12

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

9/12

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

9/12

Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True
..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance

9/12

An implementation: QCover

• 760 lines of code
• uses the MIST .spec format for counter machines
• supports dense/sparse matrices through NumPy/SciPy
• experimental parallelism support

SMT solver: Z3 (Microsoft research)

• FO(Q≥0,+, <) formula satisfiability
• Fraca & Haddad "polynomial time" algorithm

(rational linear programming with <)

10/12

An implementation: QCover

• 760 lines of code
• uses the MIST .spec format for counter machines
• supports dense/sparse matrices through NumPy/SciPy
• experimental parallelism support

SMT solver: Z3 (Microsoft research)

• FO(Q≥0,+, <) formula satisfiability
• Fraca & Haddad "polynomial time" algorithm

(rational linear programming with <)

10/12

An implementation: QCover

• 760 lines of code
• uses the MIST .spec format for counter machines
• supports dense/sparse matrices through NumPy/SciPy
• experimental parallelism support

SMT solver: Z3 (Microsoft research)

• FO(Q≥0,+, <) formula satisfiability
• Fraca & Haddad "polynomial time" algorithm

(rational linear programming with <)

10/12

An implementation: QCover

• 760 lines of code
• uses the MIST .spec format for counter machines
• supports dense/sparse matrices through NumPy/SciPy
• experimental parallelism support

SMT solver: Z3 (Microsoft research)

• FO(Q≥0,+, <) formula satisfiability
• Fraca & Haddad "polynomial time" algorithm

(rational linear programming with <)

10/12

An implementation: QCover

• 760 lines of code
• uses the MIST .spec format for counter machines
• supports dense/sparse matrices through NumPy/SciPy
• experimental parallelism support

SMT solver: Z3 (Microsoft research)

• FO(Q≥0,+, <) formula satisfiability
• Fraca & Haddad "polynomial time" algorithm

(rational linear programming with <)

10/12

An implementation: QCover

• 760 lines of code
• uses the MIST .spec format for counter machines
• supports dense/sparse matrices through NumPy/SciPy
• experimental parallelism support

SMT solver: Z3 (Microsoft research)

• FO(Q≥0,+, <) formula satisfiability
• Fraca & Haddad "polynomial time" algorithm

(rational linear programming with <)

10/12

An implementation: QCover

• 760 lines of code
• uses the MIST .spec format for counter machines
• supports dense/sparse matrices through NumPy/SciPy
• experimental parallelism support

SMT solver: Z3 (Microsoft research)

• FO(Q≥0,+, <) formula satisfiability
• Fraca & Haddad "polynomial time" algorithm

(rational linear programming with <)

10/12

An implementation: QCover

• 760 lines of code
• uses the MIST .spec format for counter machines
• supports dense/sparse matrices through NumPy/SciPy
• experimental parallelism support

SMT solver: Z3 (Microsoft research)

• FO(Q≥0,+, <) formula satisfiability
• Fraca & Haddad "polynomial time" algorithm

(rational linear programming with <)

10/12

Benchmarks

QCover tested against

• mist: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07

• bfc: Kaiser, Kroening & Wahl '14

• Petrinizer: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

Benchmarks

• 176 Petri nets: average of 1054 places & 8458 transitions
• Drawn from 5 existing suites

including
• Multithreaded C programs with shared memory (bfc)
• Mutual exclusion, communication protocols, etc. (mist)
• Erlang concurrent programs (soter, D’Osualdo, Kochems & Ong '13)
• Message analysis of a medical and a bug tracking system

(Petrinizer)

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

QCover tested against

• mist: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07

• bfc: Kaiser, Kroening & Wahl '14

• Petrinizer: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

Benchmarks

• 176 Petri nets: average of 1054 places & 8458 transitions
• Drawn from 5 existing suites

including
• Multithreaded C programs with shared memory (bfc)
• Mutual exclusion, communication protocols, etc. (mist)
• Erlang concurrent programs (soter, D’Osualdo, Kochems & Ong '13)
• Message analysis of a medical and a bug tracking system

(Petrinizer)

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

QCover tested against

• mist: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07

• bfc: Kaiser, Kroening & Wahl '14

• Petrinizer: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

Benchmarks

• 176 Petri nets: average of 1054 places & 8458 transitions
• Drawn from 5 existing suites

including
• Multithreaded C programs with shared memory (bfc)
• Mutual exclusion, communication protocols, etc. (mist)
• Erlang concurrent programs (soter, D’Osualdo, Kochems & Ong '13)
• Message analysis of a medical and a bug tracking system

(Petrinizer)

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

QCover tested against

• mist: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07

• bfc: Kaiser, Kroening & Wahl '14

• Petrinizer: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

Benchmarks

• 176 Petri nets: average of 1054 places & 8458 transitions
• Drawn from 5 existing suites

including
• Multithreaded C programs with shared memory (bfc)
• Mutual exclusion, communication protocols, etc. (mist)
• Erlang concurrent programs (soter, D’Osualdo, Kochems & Ong '13)
• Message analysis of a medical and a bug tracking system

(Petrinizer)

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

QCover tested against

• mist: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07

• bfc: Kaiser, Kroening & Wahl '14

• Petrinizer: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

Benchmarks

• 176 Petri nets: average of 1054 places & 8458 transitions
• Drawn from 5 existing suites including
• Multithreaded C programs with shared memory (bfc)
• Mutual exclusion, communication protocols, etc. (mist)
• Erlang concurrent programs (soter, D’Osualdo, Kochems & Ong '13)
• Message analysis of a medical and a bug tracking system

(Petrinizer)

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

QCover tested against

• mist: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07

• bfc: Kaiser, Kroening & Wahl '14

• Petrinizer: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

Benchmarks

• 176 Petri nets: average of 1054 places & 8458 transitions
• Drawn from 5 existing suites including
• Multithreaded C programs with shared memory (bfc)
• Mutual exclusion, communication protocols, etc. (mist)
• Erlang concurrent programs (soter, D’Osualdo, Kochems & Ong '13)
• Message analysis of a medical and a bug tracking system

(Petrinizer)

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

QCover tested against

• mist: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07

• bfc: Kaiser, Kroening & Wahl '14

• Petrinizer: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

Benchmarks

• 176 Petri nets: average of 1054 places & 8458 transitions
• Drawn from 5 existing suites including
• Multithreaded C programs with shared memory (bfc)
• Mutual exclusion, communication protocols, etc. (mist)
• Erlang concurrent programs (soter, D’Osualdo, Kochems & Ong '13)
• Message analysis of a medical and a bug tracking system

(Petrinizer)

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

QCover tested against

• mist: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07

• bfc: Kaiser, Kroening & Wahl '14

• Petrinizer: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

Benchmarks

• 176 Petri nets: average of 1054 places & 8458 transitions
• Drawn from 5 existing suites including
• Multithreaded C programs with shared memory (bfc)
• Mutual exclusion, communication protocols, etc. (mist)
• Erlang concurrent programs (soter, D’Osualdo, Kochems & Ong '13)
• Message analysis of a medical and a bug tracking system

(Petrinizer)

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

Markings pruning efficiency across all iterations

Instances proven safe

.....
1

.
4

.
16

.
64

.
256

.
2000

.20 .
40
.

60

.

80

.

100

.

running time in seconds

.

105/115

.

95

.

63

.
35

. QCover . Petrinizer . bfc . mist

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

Markings pruning efficiency across all iterations

Instances proven safe

.....
1

.
4

.
16

.
64

.
256

.
2000

.20 .
40
.

60

.

80

.

100

.

running time in seconds

.

105/115

.

95

.

63

.
35

. QCover . Petrinizer . bfc . mist

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

Markings pruning efficiency across all iterations

Instances proven safe

.....
1

.
4

.
16

.
64

.
256

.
2000

.20 .
40
.

60

.

80

.

100

.

running time in seconds

.

105/115

.

95

.

63

.
35

Instances proven safe or unsafe

.....
1

.
4

.
16

.
64

.
256

.
2000

.40 .
60
.

80

.

100

.

120

.

140

.

running time in seconds

.

142/176

.

122

.

95

.

74

. QCover . Petrinizer . bfc . mist

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Benchmarks

Markings pruning efficiency across all iterations

.....
0
.

20
.

40
.

60
.

80
.

100
.0 .

20

.

40

.

60

..

% pruned markings

.....
0
.

20
.

40
.

60
.

80
.

100
.0 .

200

.

400

.

inv. cumulative % pruned markings
..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.

11/12

Future work

• Combine our approach with a forward algorithm to better
handle unsafe instances

• Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

• Extend to Petri nets with transfer/reset arcs

...
..
1

.
4

.
16

.
64

.
256

.
2000

.0 .
10
.

20

.

30

.

40

.

50

.

60

.

running time in seconds

.

59/61 bfc

.

39 mist

.
37 QCover

.

0 Petrinizer (not supported)

.

12/12

Future work

• Combine our approach with a forward algorithm to better
handle unsafe instances

• Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

• Extend to Petri nets with transfer/reset arcs

...
..
1

.
4

.
16

.
64

.
256

.
2000

.0 .
10
.

20

.

30

.

40

.

50

.

60

.

running time in seconds

.

59/61 bfc

.

39 mist

.
37 QCover

.

0 Petrinizer (not supported)

.

12/12

Future work

• Combine our approach with a forward algorithm to better
handle unsafe instances

• Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

• Extend to Petri nets with transfer/reset arcs

...
..
1

.
4

.
16

.
64

.
256

.
2000

.0 .
10
.

20

.

30

.

40

.

50

.

60

.

running time in seconds

.

59/61 bfc

.

39 mist

.
37 QCover

.

0 Petrinizer (not supported)

.

12/12

Future work

• Combine our approach with a forward algorithm to better
handle unsafe instances

• Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

• Extend to Petri nets with transfer/reset arcs

...
..
1

.
4

.
16

.
64

.
256

.
2000

.0 .
10
.

20

.

30

.

40

.

50

.

60

.

running time in seconds

.

59/61 bfc

.

39 mist

.
37 QCover

.

0 Petrinizer (not supported)

.

12/12

Thank you! Dank u!

12/12

