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Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it?

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.
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Continuity to over-approximate coverability

m is coverable from m0

..

⇒

m is Q-coverable from m0

..

⇒
..

̸⇒
m0 and m satisfy conditions of
Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

..

EXPSPACE

.

PTIME

.

PTIME / NP / coNP

.

Safety
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Coverability in continuous Petri nets

Fix some continuous Petri net (P, T,Pre,Post)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!
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Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True

..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance
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An implementation: QCover

• 760 lines of code
• uses the MIST .spec format for counter machines
• supports dense/sparse matrices through NumPy/SciPy
• experimental parallelism support

SMT solver: Z3 (Microsoft research)

• FO(Q≥0,+, <) formula satisfiability
• Fraca & Haddad "polynomial time" algorithm

(rational linear programming with <)
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Benchmarks

QCover tested against

• mist: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07

• bfc: Kaiser, Kroening & Wahl '14

• Petrinizer: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

Benchmarks

• 176 Petri nets: average of 1054 places & 8458 transitions
• Drawn from 5 existing suites

including
• Multithreaded C programs with shared memory (bfc)
• Mutual exclusion, communication protocols, etc. (mist)
• Erlang concurrent programs (soter, D’Osualdo, Kochems & Ong '13)
• Message analysis of a medical and a bug tracking system

(Petrinizer)

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.
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Benchmarks

Markings pruning efficiency across all iterations
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Future work

• Combine our approach with a forward algorithm to better
handle unsafe instances

• Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

• Extend to Petri nets with transfer/reset arcs
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Thank you! Dank u!

12/12


