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Coverability problem

Problem

Input: Petri net V, initial marking mg, target marking m

Question: Is some m’ > m reachable from mq in A/?
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Markings pruning efficiency across all iterations
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- Combine our approach with a forward algorithm to better
handle unsafe instances

- Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)
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Thank you! Dank u!



