Approaching the Coverability Problem Continuously

Michael Blondin, Alain Finkel, Christoph Haase, Serge Haddad
 PARIS-SACLAY

Université ll de Montréal

(Discrete) Petri nets

Verifying safety with Petri nets

Lamport mutual exclusion "1-bit algorithm"

Verifying safety with Petri nets

Process 1
Process 2

Lamport mutual exclusion "1-bit algorithm"

Verifying safety with Petri nets

Lamport mutual exclusion "1-bit algorithm"

Verifying safety with Petri nets

while True:
$\mathrm{x}=$ True
while y: pass
\# critical section
$\mathrm{x}=$ False

while True:
$y=$ True
if x then:
$y=$ False
while x: pass
goto
\# critical section
$\mathrm{y}=$ False

Verifying safety with Petri nets

```
while True:
    x = True
    whiley:pass
    # critical section
    x = False
```


while True:
$y=$ True
if x then:
$y=$ False
while x: pass
goto
\# critical section
$\mathrm{y}=$ False

Verifying safety with Petri nets

while True:
$y=$ True
if x then: $y=$ False while x: pass goto
\# critical section
$y=$ False

Verifying safety with Petri nets

while True:
$\mathrm{x}=$ True
while y: pass
\# critical section
x = False
\circ
0
0
0
0

\bigcirc	while True:
\bigcirc	- $\mathrm{y}=$ True
\bigcirc	if x then:
\bigcirc	$y=F a l s e$
\bigcirc	while x : pass
\bigcirc	goto
\bigcirc	\# critical section
\bigcirc	$y=$ False

Verifying safety with Petri nets

Verifying safety with Petri nets

while True:
x = True
while y: pass
\# critical section
x = False

while True:
$y=$ True
if x then:
$y=$ False
while x: pass
goto
\# critical section
$\mathrm{y}=$ False

Verifying safety with Petri nets

while True:

$y=$ True
if x then :
$y=$ False
while $x:$ pass
goto
\# critical section
$y=$ False

Verifying safety with Petri nets

Processes at both

critical sections

Verifying safety with Petri nets

Processes at both

critical sections

Verifying safety with Petri nets

Coverability problem

Problem

Input: \quad Petri net \mathcal{N}, initial marking $\boldsymbol{m}_{\mathbf{0}}$, target marking \boldsymbol{m}
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

Coverability problem

Problem

Input: Petri net \mathcal{N}, initial marking m_{0}, target marking m
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

How to solve it?

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Coverability problem

Problem

Input: Petri net \mathcal{N}, initial marking m_{0}, target marking m
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

How to solve it?

Karp \& Miller '69

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Coverability problem

Problem

Input: Petri net \mathcal{N}, initial marking m_{0}, target marking m
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

How to solve it?

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Coverability problem

Problem

Input: Petri net \mathcal{N}, initial marking m_{0}, target marking m
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

How to solve it?

Lipton '76, Rackoff '78

- Forward: build reachability tree from initial marking
- Backward: find predecessors of markings covering target
- EXPSPACE-complete

Coverability problem

Problem

Input: Petri net \mathcal{N}, initial marking m_{0}, target marking m
Question: Is some $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ reachable from \boldsymbol{m}_{0} in \mathcal{N} ?

How to solve it?

- Forward: build reachability tree from initial marking
- Backward. find predecessors of markings covering target
- EXPSPACE-complete

Backward algorithm

Backward algorithm

What initial markings may cover $(0,2) ?$

Backward algorithm

Basis size may become doubly exponential
(Bozzelli \& Ganty '11)

Backward algorithm

We only care about some initial marking...

Backward algorithm

We only care about some initial marking...
Speedup by pruning basis!

(Discrete) Petri nets

Continuity to over-approximate coverability

\boldsymbol{m} is coverable from \boldsymbol{m}_{0}

$$
\Downarrow
$$

\boldsymbol{m} is \mathbb{Q}-coverable from \boldsymbol{m}_{0}

Continuity to over-approximate coverability

\boldsymbol{m} is coverable from \boldsymbol{m}_{0}

EXPSPACE
\Downarrow
\boldsymbol{m} is \mathbb{Q}-coverable from \boldsymbol{m}_{0}

$$
\Downarrow \mathbb{N} \text { PTIME }
$$

\boldsymbol{m}_{0} and \boldsymbol{m} satisfy conditions of

Esparza, Ledesma-Garza, Majumdar, Meyer \& Niksic '14
PTIME/NP / CONP

Continuity to over-approximate coverability

\boldsymbol{m} is not coverable from \boldsymbol{m}_{0}

 Safety介
\boldsymbol{m} is not \mathbb{Q}-coverable from \boldsymbol{m}_{0}

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

- $m^{\prime}=m_{0}+($ Post - Pre $) \cdot v$

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \mathbf{v}$
- some execution from m_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \mathbf{v}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to m^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

\boldsymbol{m} is \mathbb{Q}-coverable from m_{0} iff...
Fraca \& Haddad ' 13 there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\boldsymbol{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot v$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

\boldsymbol{m} is \mathbb{Q}-coverable from m_{0} iff...
Fraca \& Haddad ' 13
there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\boldsymbol{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2$
$2 \leq \boldsymbol{v}_{b}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in\{a, b\}: \mathbf{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

m is \mathbb{Q}-coverable from m_{0} iff...
Fraca \& Haddad ' 13
there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\mathbf{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, m^{\prime}=m$
$2 \leq \boldsymbol{v}_{b}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in\{a, b\}: \mathbf{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

m is \mathbb{Q}-coverable from m_{0} iff...
Fraca \& Haddad ' 13
there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\mathbf{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in\{a, b\}: \mathbf{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in\{a, b\}: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to m^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

m is \mathbb{Q}-coverable from m_{0} iff...
Fraca \& Haddad ' 13
there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\boldsymbol{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$ $2 \leq \boldsymbol{v}_{b}$
- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to m^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

$$
\begin{aligned}
& \boldsymbol{m}_{0}=(2,0) \\
& \boldsymbol{m}=(0,2)
\end{aligned}
$$

- $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$

$$
2 \leq \boldsymbol{v}_{b}
$$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\{b\}$

Coverability in continuous Peri nets

Not Q-coverable from

m is \mathbb{Q}-coverable from m_{0} of...

there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\mathbf{v}_{a}, \boldsymbol{v}_{b} \in \mathbb{Q} \geq 0$ such that
. $0 \leq \boldsymbol{v}_{b}+\boldsymbol{v}_{a} \leq 2 \Longrightarrow \boldsymbol{v}_{a}=0, \boldsymbol{v}_{b}=2, \boldsymbol{m}^{\prime}=\boldsymbol{m}$ $2 \leq \boldsymbol{v}_{b}$

- some execution from \boldsymbol{m}_{0} fires exactly $\{b\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\{b\}$

Coverability in continuous Petri nets

Polynomial time!

m is \mathbb{Q}-coverable from m_{0} iff...

 there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\boldsymbol{v} \in \mathbb{Q}_{\geq 0}^{\top}$ such that- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \mathbf{v}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{\boldsymbol{t}}>0\right\}$

Coverability in continuous Petri nets

Logical characterization

Contribution
\mathbb{Q}-coverability can be encoded in a linear size formula of

$$
\text { existential } \mathrm{FO}\left(\mathbb{Q}_{\geq 0},+,<\right)
$$

m is \mathbb{Q}-coverable from m_{0} iff...

Fraca \& Haddad ' 13 there exist $\boldsymbol{m}^{\prime} \geq \boldsymbol{m}$ and $\boldsymbol{v} \in \mathbb{Q}_{\geq 0}^{T}$ such that

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \mathbf{v}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

Logical characterization

Contribution

\mathbb{Q}-coverability can be encoded in a linear size formula of existential $\operatorname{FO}(\mathbb{N}, \quad+,<)$

m is \mathbb{Q}-coverable from m_{0} iff...

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \mathbf{v}$
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

Logical characterization

\mathbb{Q}-coverability can be encoded in a linear size formula of existential $\operatorname{FO}\left(\mathbb{Q}_{\geq 0},+,<\right)$

m is \mathbb{Q}-coverable from m_{0} iff...

- $m^{\prime}=m_{0}+($ Post - Pre) $\cdot v \quad$ Straightforward
- some execution from \boldsymbol{m}_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to \boldsymbol{m}^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Coverability in continuous Petri nets

Logical characterization

\mathbb{Q}-coverability can be encoded in a linear size formula of existential $\mathrm{FO}\left(\mathbb{Q}_{\geq 0},+,<\right)$

- $\boldsymbol{m}^{\prime}=\boldsymbol{m}_{\mathbf{0}}+($ Post - Pre $) \cdot \mathbf{v}$ More subfle
- some execution from m_{0} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$
- some execution to m^{\prime} fires exactly $\left\{t \in T: \boldsymbol{v}_{t}>0\right\}$

Encoding the firing set conditions

Testing whether some transitions can be fired from initial marking

Encoding the firing set conditions

Testing whether some transitions can be fired
from initial marking

Encoding the firing set conditions

Testing whether some transitions can be fired from initial marking

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing by numbering places/transitions (Verma, Seidl \& Schwentick '05)

Encoding the firing set conditions

Backward coverability modulo \qquad
if target marking m is not \mathbb{Q}-coverable:
return False
 Polynomial time

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable: return False
$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking m_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$ Q-coverability pruning
if $B=\emptyset:$ return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False SMT solver guidance
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

Backward coverability modulo \mathbb{Q}-coverability

if target marking \boldsymbol{m} is not \mathbb{Q}-coverable:

return False

$X=\{$ target marking $\boldsymbol{m}\}$
while (initial marking \boldsymbol{m}_{0} not covered by X):
$B=$ markings obtained from X one step backward
$B=B \backslash\{\boldsymbol{b} \in B: \neg \varphi(\boldsymbol{b})\}$
if $B=\emptyset$: return False
$\varphi(\boldsymbol{x})=\varphi(\boldsymbol{x}) \wedge \bigwedge_{\text {pruned } \boldsymbol{b}} \mathbf{x} \nsupseteq \boldsymbol{b}$
$X=X \cup B$
return True

An implementation: QCOVER

python

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NumPy/SCIPY
- experimental parallelism support

An implementation: QCOVER

python

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NumPy/SCIPY
- experimental parallelism support

An implementation: QCOVER

python ${ }^{-1}$

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NumPy/SCIPY
- experimental parallelism support

An implementation: QCOVER

python ${ }^{-1}$

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NumPY/SCIPY
- experimental parallelism support

An implementation: QCOVER

python

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NumPy/SCIPY
- experimental parallelism support

An implementation: QCOVER

P python

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NumPy/SCIPY
- experimental parallelism support

SMT solver: Z3 (Microsoft research)

- $\mathrm{FO}(\mathbb{Q} \geq 0,+,<)$ formula satisfiability
- Fraca \& Haddad "polynomial time" algorithm
(rational linear programming with <)

An implementation: QCOVER

P python

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NumPY/SCIPY
- experimental parallelism support

SMT solver: Z3 (Microsoft research)

- $\mathrm{FO}(\mathbb{Q} \geq 0,+,<)$ formula satisfiability
- Fraca \& Haddad "polynomial time" algorithm
(rational linear programming with <)

An implementation: QCOVER

P python

- 760 lines of code
- uses the MIST . spec format for counter machines
- supports dense/sparse matrices through NumPy/SCIPY
- experimental parallelism support

SMT solver: Z3 (Microsoft research)

- $\mathrm{FO}\left(\mathbb{Q}_{\geq 0},+,<\right)$ formula satisfiability
- Fraca \& Haddad "polynomial time" algorithm (rational linear programming with <)

Benchmarks

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin \& Van Begin '07
- BFC: Kaiser, Kroening \& Wahl '14
- PeTRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer \& Niksic '14

Benchmarks

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin \& Van Begin '07
- BFC: Kaiser, Kroening \& Wahl '14
- PeTRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer \& Niksic '14

Benchmarks

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin \& Van Begin '07
- BFC: Kaiser, Kroening \& Wahl '14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer \& Niksic '14

Benchmarks

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin \& Van Begin '07
- BFC: Kaiser, Kroening \& Wahl '14
- PeTRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer \& Niksic '14

Benchmarks

- 176 Petri nets: average of 1054 places \& 8458 transitions
- Drawn from 5 existing suites

Benchmarks

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin \& Van Begin '07
- BFC: Kaiser, Kroening \& Wahl '14
- PeTRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer \& Niksic '14

Benchmarks

- 176 Petri nets: average of 1054 places \& 8458 transitions
- Drawn from 5 existing suites including
- Multithreaded C programs with shared memory (BFC)
- Mutual exclusion, communication protocols, etc. (MIST)
- ERLANG concurrent programs (SOTER, D’Osualdo, Kochems \& Ong '13)
- Message analysis of a medical and a bug tracking system
(Petrinizer)

Benchmarks

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin \& Van Begin '07
- BFC: Kaiser, Kroening \& Wahl '14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer \& Niksic '14

Benchmarks

- 176 Petri nets: average of 1054 places \& 8458 transitions
- Drawn from 5 existing suites including
- Multithreaded C programs with shared memory (BFC)
- Mutual exclusion, communication protocols, etc. (MIST)
- ERLANG concurrent programs (SOTER, D’Osualdo, Kochems \& Ong '13)
- Message analysis of a medical and a bug tracking system
(Petrinizer)

Benchmarks

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin \& Van Begin '07
- BFC: Kaiser, Kroening \& Wahl '14
- PeTRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer \& Niksic '14

Benchmarks

- 176 Petri nets: average of 1054 places \& 8458 transitions
- Drawn from 5 existing suites including
- Multithreaded C programs with shared memory (BFC)
- Mutual exclusion, communication protocols, etc. (MIST)
- ERLANG concurrent programs (SOTER, D’Osualdo, Kochems \& Ong '13)
- Message analysis of a medical and a bug tracking system
(Petrinizer)

Benchmarks

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin \& Van Begin '07
- BFC: Kaiser, Kroening \& Wahl '14
- PeTRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer \& Niksic '14

Benchmarks

- 176 Petri nets: average of 1054 places \& 8458 transitions
- Drawn from 5 existing suites including
- Multithreaded C programs with shared memory (BFC)
- Mutual exclusion, communication protocols, etc. (MIST)
- ERLANG concurrent programs (SOTER, D’Osualdo, Kochems \& Ong '13)
- Message analysis of a medical and a bug tracking system
(Petrinizer)

Benchmarks

Instances proven safe

Benchmarks

Instances proven safe

Benchmarks

Instances proven safe

Instances proven safe or unsafe

Benchmarks

Markings pruning efficiency across all iterations

inv. cumulative \% pruned markings

Future work

- Combine our approach with a forward algorithm to better handle unsafe instances

Future work

- Combine our approach with a forward algorithm to better handle unsafe instances

Future work

- Combine our approach with a forward algorithm to better handle unsafe instances
- Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin \& Van Begin '04)

Future work

- Combine our approach with a forward algorithm to better handle unsafe instances
- Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin \& Van Begin '04)
- Extend to Petri nets with transfer/reset arcs

Thank you! Dank u!

