Reachability in Two-Dimensional Vector Addition Systems with States is PSPACE-complete

Michael Blondin^{1,2} Alain Finkel¹ Stefan Göller¹ Christoph Haase¹ Pierre McKenzie^{1,2}

¹LSV, ENS Cachan & CNRS, France

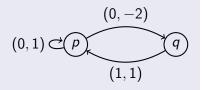
²DIRO, Université de Montréal, Canada

July 6, 2015

Definition Runs

Vector addition system with states (VASS)

d-VASS:

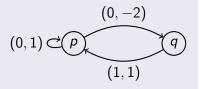


Definition Runs

Vector addition system with states (VASS)

d-VASS:

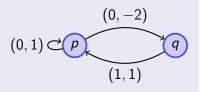
• $d \geq 1$ (dimension)



Vector addition system with states (VASS)

d-VASS:

- $d \ge 1$ (dimension)
- Q finite set (*states*)



(0,1)

Vector addition system with states (VASS)

d-VASS:

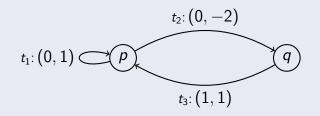
- $d \ge 1$ (dimension)
- *Q* finite set (*states*)
- $T \subseteq Q \times \mathbb{Z}^d \times Q$ finite (*transitions*) (0, -2)

a

(1,1)

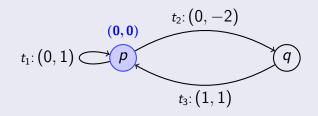
Definition **Runs**

Runs



Definition **Runs**

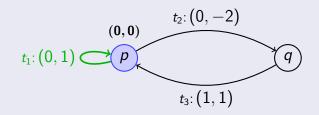
Runs



p(0,0)

Definition **Runs**

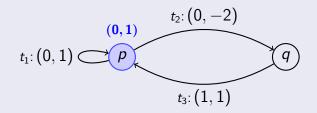
Runs



p(0,0)

Definition **Runs**

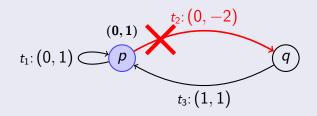
Runs



 $p(0,0) \xrightarrow{t_1} p(0,1)$

Definition **Runs**

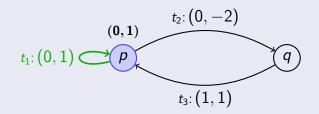
Runs



 $p(0,0) \xrightarrow{t_1} p(0,1)$

Definition **Runs**

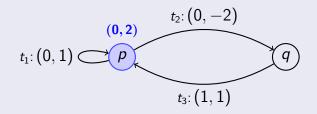
Runs



 $p(0,0) \xrightarrow{t_1} p(0,1)$

Definition **Runs**

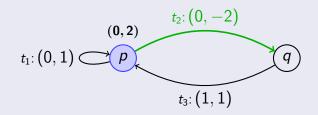
Runs



 $p(0,0) \xrightarrow{t_1} p(0,1) \xrightarrow{t_1} p(0,2)$

Definition **Runs**

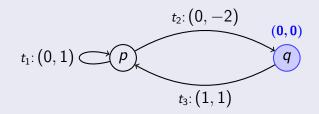
Runs



 $p(0,0) \xrightarrow{t_1} p(0,1) \xrightarrow{t_1} p(0,2)$

Definition **Runs**

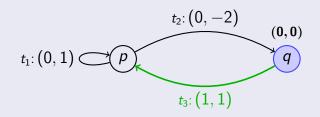
Runs



 $p(0,0) \xrightarrow{t_1} p(0,1) \xrightarrow{t_1} p(0,2) \xrightarrow{t_2} q(0,0)$

Definition **Runs**

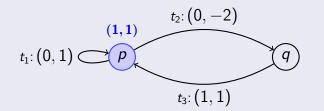
Runs



 $p(0,0) \xrightarrow{t_1} p(0,1) \xrightarrow{t_1} p(0,2) \xrightarrow{t_2} q(0,0)$

Definition **Runs**

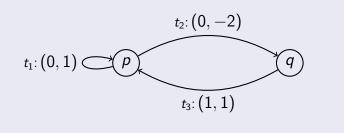
Runs



 $p(0,0) \xrightarrow{t_1} p(0,1) \xrightarrow{t_1} p(0,2) \xrightarrow{t_2} q(0,0) \xrightarrow{t_3} p(1,1)$

Definition **Runs**

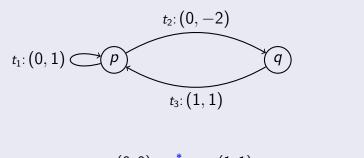
Runs



 $p(0,0) \xrightarrow{t_1 t_1 t_2 t_3} p(1,1)$

Definition **Runs**

Runs



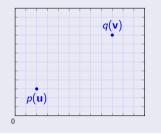
$$p(0,0) \xrightarrow{*} p(1,1)$$

Reachability problem

Input: d-VASS V

Reachability problem

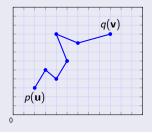
Input: d-VASS V and $p(\mathbf{u}), q(\mathbf{v}) \in Q \times \mathbb{N}^d$

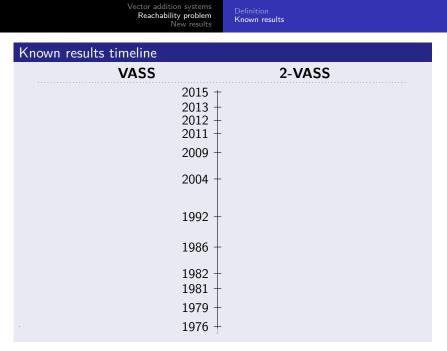


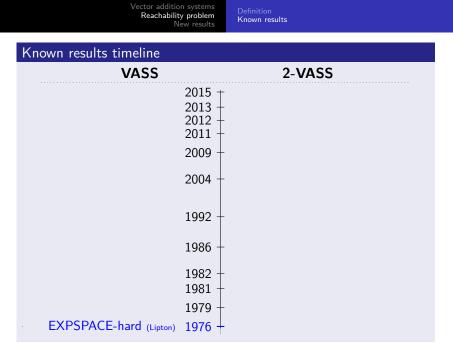
Reachability problem

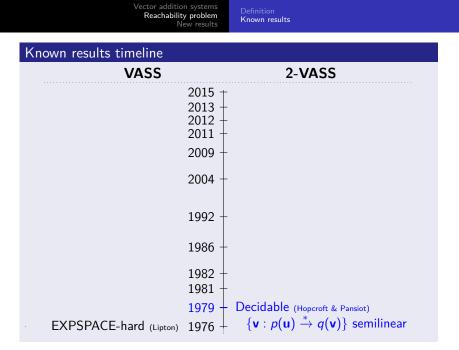
Input: d-VASS V and $p(\mathbf{u}), q(\mathbf{v}) \in Q \times \mathbb{N}^d$

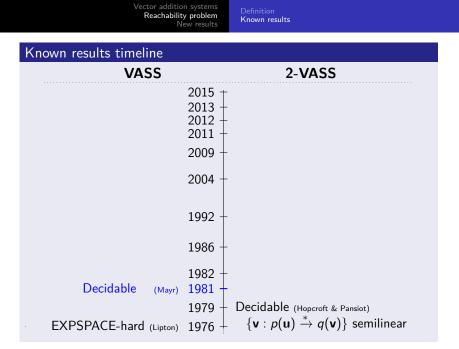
Question: $p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v})$?

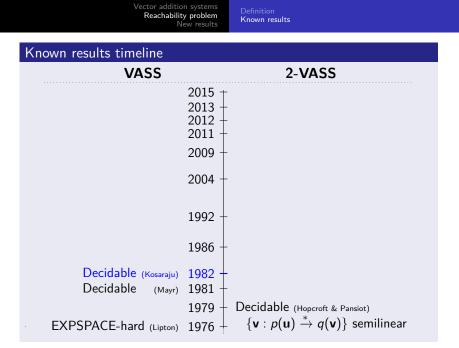


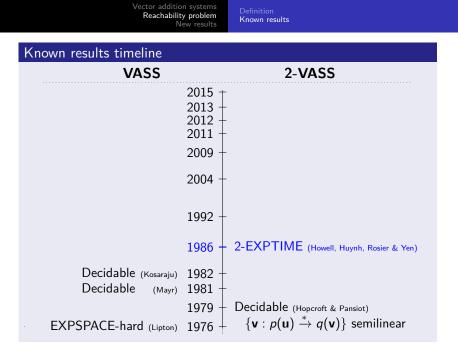


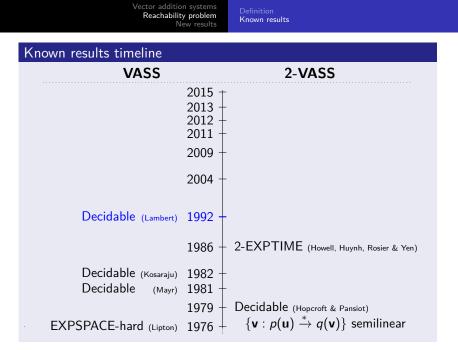


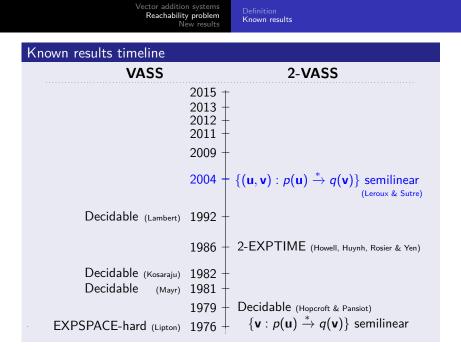


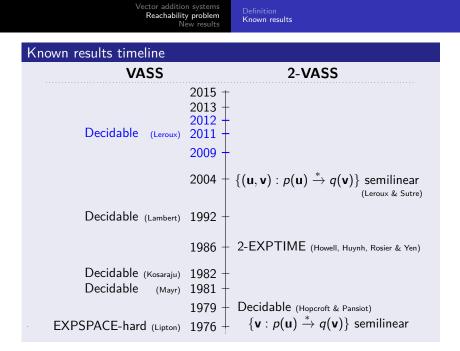


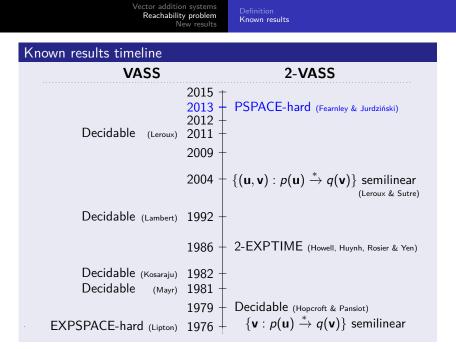


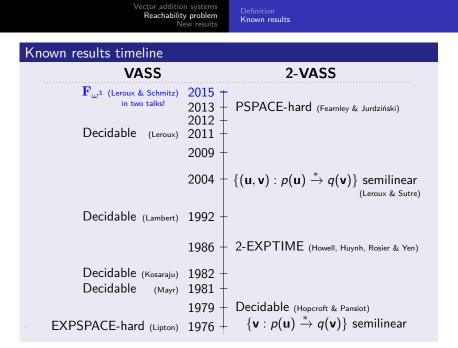










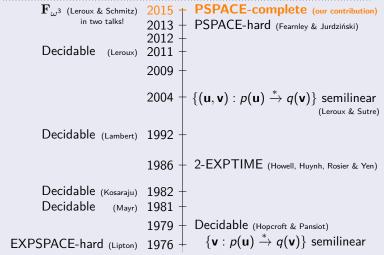


Definition Known results

Known results timeline

VASS

2-VASS



Vector addition systems Reachability problem New results Main theorem Proof sketch

Our main theorem

There exists $c \in \mathbb{N}$ s.t. for every 2-VASS V

$$p(\mathbf{u}) \stackrel{*}{ o} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{ o} q(\mathbf{v}) \;\; ext{where} \;\; |\pi| \leq c^{|V|}$$

Vector addition systems Reachability problem New results Main theorem Proof sketch

Our main theorem

There exists $c \in \mathbb{N}$ s.t. for every 2-VASS V

$$p(\mathbf{u}) \stackrel{*}{ o} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{ o} q(\mathbf{v}) \;\; ext{where} \;\; |\pi| \leq c^{|V|}$$

Corollary

Reachability for 2-VASS \in PSPACE

Vector addition systems Reachability problem New results Main theorem Proof sketch

Our main theorem

There exists $c \in \mathbb{N}$ s.t. for every 2-VASS V

$$p(\mathbf{u}) \stackrel{*}{ o} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{ o} q(\mathbf{v}) \;\; ext{where} \;\; |\pi| \leq c^{|V|}$$

Corollary: proof

Exp. length runs \implies exp. intermediate counter values

Our main theorem

There exists $c \in \mathbb{N}$ s.t. for every 2-VASS V

$$p(\mathbf{u}) \stackrel{*}{ o} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{ o} q(\mathbf{v}) \;\; ext{where} \;\; |\pi| \leq c^{|V|}$$

Corollary: proof

Exp. length runs \implies exp. intermediate counter values

 \Rightarrow poly. size intermediate counter values

Our main theorem

There exists $c \in \mathbb{N}$ s.t. for every 2-VASS V

$$p(\mathbf{u}) \stackrel{*}{ o} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{ o} q(\mathbf{v}) \;\; ext{where} \;\; |\pi| \leq c^{|V|}$$

Corollary: proof

- Exp. length runs \implies exp. intermediate counter values
 - \implies poly. size intermediate counter values
 - \implies guess run on the fly

Our main theorem

There exists $c \in \mathbb{N}$ s.t. for every 2-VASS V

$$p(\mathbf{u}) \stackrel{*}{ o} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{ o} q(\mathbf{v}) \;\; ext{where} \;\; |\pi| \leq c^{|V|}$$

How to prove this theorem?

Main theorem Proof sketch

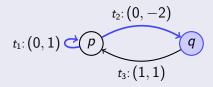
Bounding the runs



Runs from *p* to *q*:

Main theorem Proof sketch

Bounding the runs

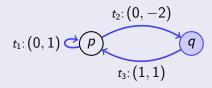


Runs from p to q:

 $t_1^* t_2$

Main theorem Proof sketch

Bounding the runs

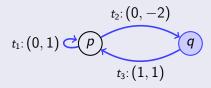


Runs from p to q:

 $t_1^* t_2 (t_3 t_1^* t_2)$

Main theorem Proof sketch

Bounding the runs

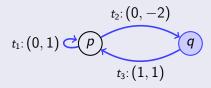


Runs from *p* to *q*:

 $t_1^* t_2 (t_3 t_1^* t_2) (t_3 t_1^* t_2)$

Main theorem Proof sketch

Bounding the runs

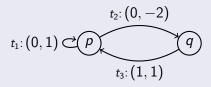


Runs from p to q:

 $t_1^*t_2(t_3t_1^*t_2)(t_3t_1^*t_2)\cdots(t_3t_1^*t_2)$

Main theorem Proof sketch

Bounding the runs

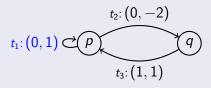


Runs from *p* to *q*:

$$t_1^*t_2(t_3t_1^*t_2)(t_3t_1^*t_2)\cdots(t_3t_1^*t_2)$$

Main theorem Proof sketch

Bounding the runs

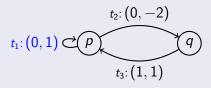


Runs from p to q:

$$t_1^*t_2(t_3t_1^*t_2)(t_3t_1^*t_2)\cdots(t_3t_1^*t_2)$$

Main theorem Proof sketch

Bounding the runs

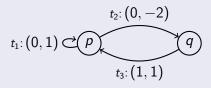


Runs from *p* to *q*:

 $t_1^* t_2 (t_3 t_2) (t_3 t_2) \cdots (t_3 t_2)$

Main theorem Proof sketch

Bounding the runs

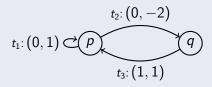


Runs from p to q:

 $t_1^* t_2 (t_3 t_2) (t_3 t_2) \cdots (t_3 t_2)$

Main theorem Proof sketch

Bounding the runs

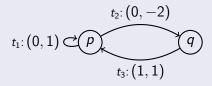


Runs from *p* to *q*:

 $t_1^* t_2 (t_3 t_2)^*$

Main theorem Proof sketch

Bounding the runs



Runs from *p* to *q*:

 $t_1^* t_2 (t_3 t_2)^*$

Main theorem Proof sketch

2-VASS can always be flattened (Leroux & Sutre '04)

$$\exists S = \bigcup \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$

finite

Main theorem Proof sketch

2-VASS can always be flattened (Leroux & Sutre '04)

$$\exists S = \bigcup_{\text{finite}} \underbrace{\alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k}_{\text{linear path scheme}}$$

2-VASS can always be flattened (Leroux & Sutre '04)

$$\exists S = \bigcup_{\text{finite}} \underbrace{\alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k}_{\text{linear path scheme}} \text{ such that}$$

$$p(\mathbf{u}) \stackrel{*}{\rightarrow} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

2-VASS can always be flattened (Leroux & Sutre '04)

 $\exists S = \bigcup_{\text{finite}} \underbrace{\alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k}_{\text{linear path scheme}} \text{ such that}$

$$p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v}) \implies p(\mathbf{u}) \xrightarrow{\pi \in S} q(\mathbf{v})$$

2-VASS have small linear path schemes (our contribution)

 $|\alpha_i|, |\beta_i| \leq (|Q| + ||T||)^{O(1)}$

2-VASS can always be flattened (Leroux & Sutre '04)

$$\exists S = \bigcup_{\text{finite}} \underbrace{\alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k}_{\textit{linear path scheme}} \text{ such that}$$

$$p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v}) \implies p(\mathbf{u}) \xrightarrow{\pi \in S} q(\mathbf{v})$$

2-VASS have small linear path schemes (our contribution)

$$|\alpha_i|, |\beta_i| \le (|Q| + ||T||)^{O(1)}$$

$$\bullet \quad k \quad \in O(|Q|^2)$$

2-VASS can always be flattened (Leroux & Sutre '04)

$$\exists S = \bigcup_{\text{finite}} \underbrace{\alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k}_{\text{linear path scheme}} \text{ such that}$$

$$p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v}) \implies p(\mathbf{u}) \xrightarrow{\pi \in S} q(\mathbf{v})$$

2-VASS have small linear path schemes (our contribution)

$$|\alpha_i|, |\beta_i| \le (|Q| + ||T||)^{O(1)}$$

• *-exponents $\leq (|Q| + ||T|| + ||\mathbf{u}|| + ||\mathbf{v}||)^{O(1)}$

2-VASS can always be flattened (Leroux & Sutre '04)

$$\exists S = \bigcup_{\text{finite}} \underbrace{\alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k}_{\textit{linear path scheme}} \text{ such that}$$

$$p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v}) \implies p(\mathbf{u}) \xrightarrow{\pi \in S} q(\mathbf{v})$$

2-VASS have small linear path schemes (our contribution)

- $|\alpha_i|, |\beta_i| \leq exponential$
- $k \in polynomial$
- *-exponents ≤ exponential

2-VASS can always be flattened (Leroux & Sutre '04)

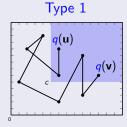
$$\exists S = \bigcup_{\text{finite}} \underbrace{\alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k}_{\textit{linear path scheme}} \text{ such that}$$

$$p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v}) \implies p(\mathbf{u}) \xrightarrow{\pi \in S} q(\mathbf{v})$$

How to obtain such linear path schemes?

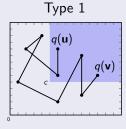
Main theorem Proof sketch

Obtaining linear path schemes for 3 types of runs



Main theorem Proof sketch

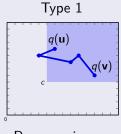
Obtaining linear path schemes for 3 types of runs



Remove zigzags

Main theorem Proof sketch

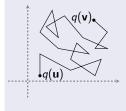
Obtaining linear path schemes for 3 types of runs



Remove zigzags

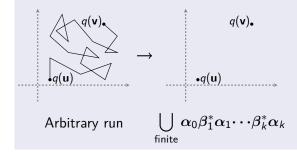
Main theorem Proof sketch

Type 1: removing zig-zags

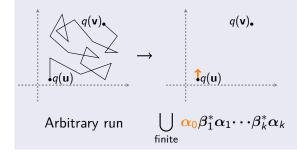


Arbitrary run

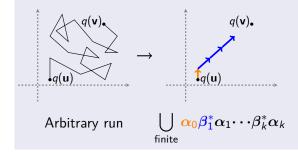
Main theorem Proof sketch



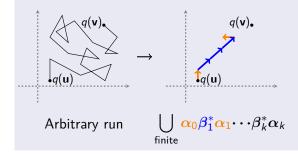
Main theorem Proof sketch



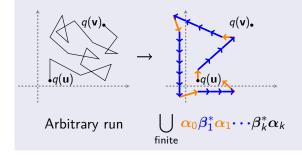
Main theorem Proof sketch

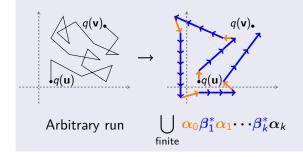


Main theorem Proof sketch

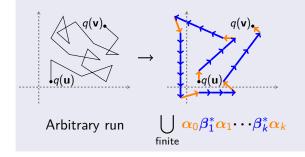


Main theorem Proof sketch

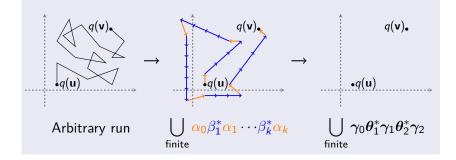




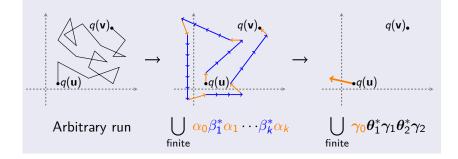
Main theorem Proof sketch



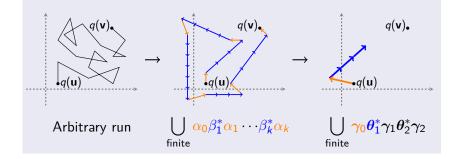
Main theorem Proof sketch



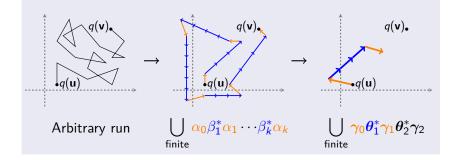
Main theorem Proof sketch



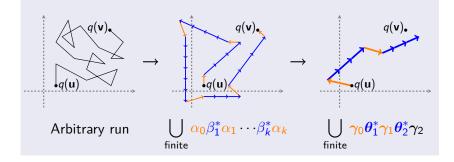
Main theorem Proof sketch



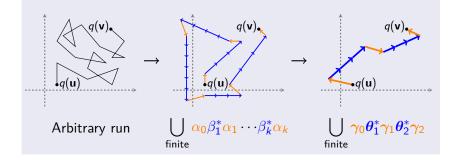
Main theorem Proof sketch



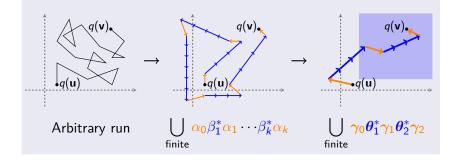
Main theorem Proof sketch

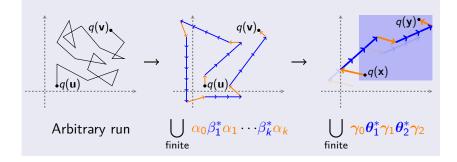


Main theorem Proof sketch



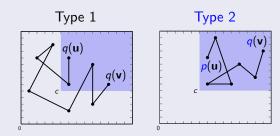
Main theorem Proof sketch





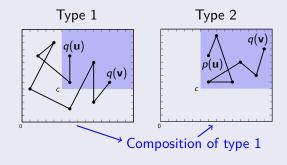
Main theorem Proof sketch

Obtaining linear path schemes for 3 types of runs

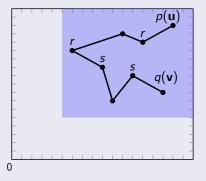


Main theorem Proof sketch

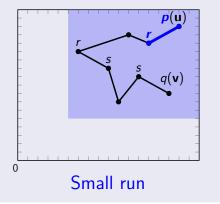
Obtaining linear path schemes for 3 types of runs



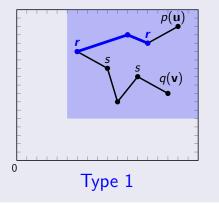
Main theorem Proof sketch



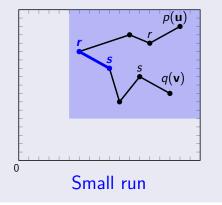
Main theorem Proof sketch



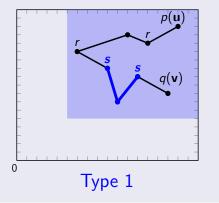
Main theorem Proof sketch



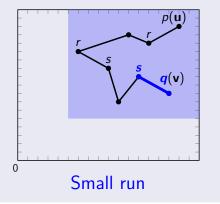
Main theorem Proof sketch



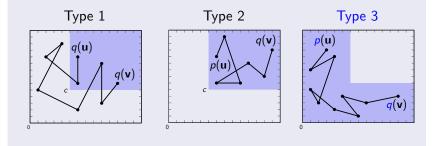
Main theorem Proof sketch



Main theorem Proof sketch

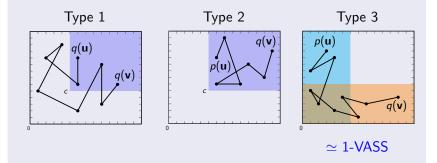


Obtaining linear path schemes for 3 types of runs

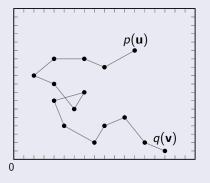


Main theorem Proof sketch

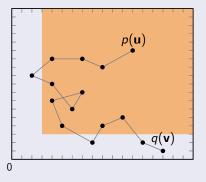
Obtaining linear path schemes for 3 types of runs



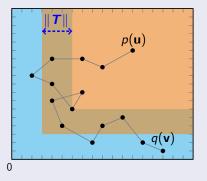
Main theorem Proof sketch



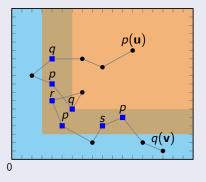
Main theorem Proof sketch



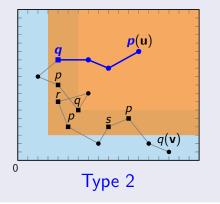
Main theorem Proof sketch



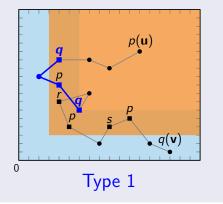
Main theorem Proof sketch



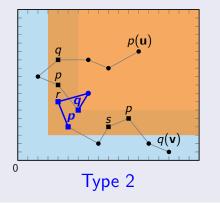
Main theorem Proof sketch



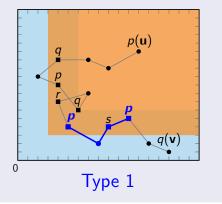
Main theorem Proof sketch



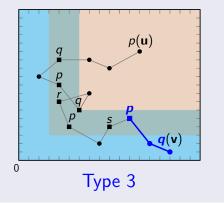
Main theorem Proof sketch



Main theorem Proof sketch



Main theorem Proof sketch



Open questions

2-VASS, unary encoding: NL-hard and \in NP. NL-complete?

Open questions

- 2-VASS, unary encoding: NL-hard and \in NP. NL-complete?
- **3**-VASS: PSPACE-hard and $\in \mathbf{F}_{\omega^3}$. Better bounds?

Thank you!

ありがとうございます! (arigatō gozaimasu)