The Complexity of Intersecting Finite Automata Having Few Final States

Michael Blondin Pierre McKenzie

Département d'informatique et de recherche opérationnelle, Université de Montréal, Québec

July 7, 2012

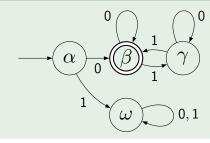
An automaton is a 5-tuple:

- \blacksquare Ω (finite set of *states*)
- ∑ (finite alphabet)
- $\delta: \Omega \times \Sigma \to \Omega$ (transition function)
- \bullet $\alpha \in \Omega$ (initial state)
- $F \subseteq \Omega$ (final states)

Transition monoid $\mathcal{M}(A)$ of A:

$$\langle \{ T_{\sigma} : \sigma \in \Sigma \} \rangle$$
 where $T_{\sigma}(\gamma) = \delta(\gamma, \sigma)$.

Example



$$T_{011} = \begin{pmatrix} \alpha & \beta & \gamma & \omega \\ \beta & \beta & \gamma & \omega \end{pmatrix}$$

 $AutoInt_b(X)$ (Automata nonemptiness intersection problem)

Input: Automata A_1, \ldots, A_k on alphabet Σ with $\mathcal{M}(A_i) \in X$

and at most b final states.

Question: $\bigcap^{\kappa} \text{Language}(A_i) \neq \emptyset$?

i=1

Definitions
Motivation and Prior Work
Complexity Classes
Our Results

Kozen 77

AutoInt and AutoInt₁ are PSPACE—complete.

Galil 76

AutoInt is NP-complete when $\Sigma = \{a\}$.

AutoInt interesting because generalizes:

Definition

Memb(X) (Membership problem)

Input: $g, g_1, \ldots, g_k : [m] \to [m]$ such that $\langle g_1, \ldots, g_k \rangle \in X$.

Question: $g \in \langle g_1, \ldots, g_k \rangle$?

AutoInt interesting because generalizes:

Definition

Memb(X) (Membership problem)

$$\textit{Input:} \qquad \textit{g},\textit{g}_1,\ldots,\textit{g}_k:[m]\to[m] \; \text{such that} \; \langle \textit{g}_1,\ldots,\textit{g}_k\rangle\in\textit{X}.$$

Question: $g \in \langle g_1, \ldots, g_k \rangle$?

Connections with graph isomorphism led to deep results on group problems. It is known that $Memb(Groups) \in NC$.

 AC^k : languages accepted by Boolean circuits of poly size and depth $O(\log^k n)$. NC^k : similar with gates of indegree 2.

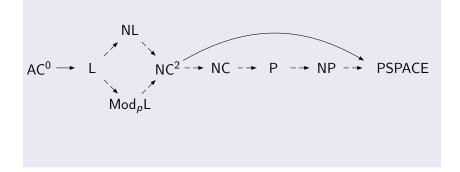
$$NC = AC = \bigcup_{k \ge 0} NC^k$$

L: languages accepted by log-space Turing machines.

NL: languages accepted by log-space non deterministic Turing machines.

 $\mathsf{Mod}_p\mathsf{L}$: languages S s.t. $w\in S$ iff # accept paths $\equiv 0 \pmod p$ for some NL machine.

Inclusion chain of complexity classes



Main result: completeness results for AutoInt $_b(X)$

	Maximum number of final states		
	1	2	3+
$\Sigma = \{a\}$	L	L	NP
$\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$	⊕L	⊕L	NP
$\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$	Mod _p L	NP	NP
Abelian groups	$\in NC^3, FL^{ModL}/poly$	NP	NP
Groups	$\in NC$	NP	NP
J ₁	$\in AC^0$	NP	NP

Our classification.

Will appear in journal version (Blondin, Krebs & McKenzie).

Beaudry 88.

Main result: completeness results for AutoInt $_b(X)$

	Maximum number of final states		
	1	2	3+
$\Sigma = \{a\}$	L	L	NP
$\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$	⊕L	$\oplus L$	NP
$\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$	Mod _p L	NP	NP
Abelian groups	$\in NC^3, FL^{ModL}/poly$	NP	NP
Groups	$\in NC$	NP	NP
J_1	$\in AC^0$	NP	NP

Theorem

AutoInt₂(X) is hard for NP for any X beyond $\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$.

Proof sketch

 $X \nsubseteq \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$ implies aperiodic monoid or cyclic group \mathbb{Z}_q , q > 2, in X.

Reduction from CIRCUIT-SAT to AutoInt $_2(X)$ in both cases.

Theorem

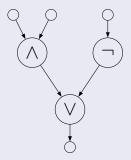
AutoInt₂(X) is hard for NP for any X beyond $\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$.

Proof sketch

 $X \nsubseteq \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$ implies aperiodic monoid or cyclic group \mathbb{Z}_q , q > 2, in X.

Reduction from CIRCUIT-SAT to AutoInt $_2(X)$ in both cases.

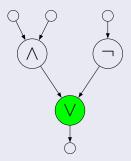
Given a circuit, we let Σ be the set of gates.



$$\Sigma = \{\circ_0, \circ_1, \circ_2, \wedge_0, \neg_0, \vee_0, \circ_3\}$$

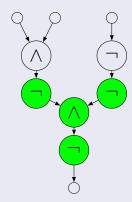
Proof sketch: CIRCUIT–SAT reduces to AutoInt $_2(\mathbb{Z}_q)$

Given a circuit, we let Σ be the set of gates.



$$\Sigma = \{\circ_0, \circ_1, \circ_2, \wedge_0, \neg_0, \vee_0, \circ_3\}$$

Given a circuit, we let Σ be the set of gates.



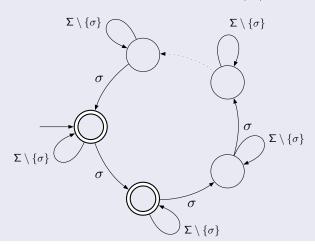
$$\Sigma = \{\circ_0, \circ_1, \circ_2, \wedge_0, \neg_0, \neg_1, \neg_2, \wedge_2 \circ_3\}$$

For each gate σ , we build automata A such that $\mathcal{M}(A) = \mathbb{Z}_p$.

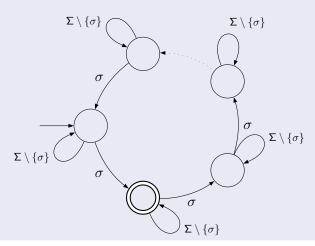
Strategy:

- Occurrences of σ mod p encode assignment to σ (0 or 1),
- Automata verify soundness locally,
- Intersection represents satisfying assignments.

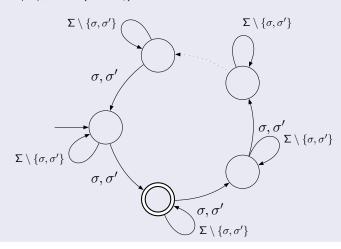
For each $\sigma \in \Sigma$, we accept words w such that $|w|_{\sigma} \equiv 0, 1 \pmod{q}$.



For output gate σ , we accept words w such that $|w|_{\sigma} \equiv 1 \pmod{q}$.



For each \neg -gate σ with input σ' , we accept words w such that $|w|_{\sigma} + |w|_{\sigma'} \equiv 1 \pmod{q}$.



For each \wedge -gate σ with inputs σ', σ'' , we accept words w such that $|w|_{\sigma'} + |w|_{\sigma''} - 2|w|_{\sigma} \equiv 0, 1 \pmod{q}$.

$\sigma'\sigma''\sigma$	$\sigma' \wedge \sigma'' = \sigma$	$\sigma' + \sigma'' - 2\sigma$
000	1	0
001	0	-2
010	1	1
011	0	-1
100	1	1
101	0	-1
110	0	2
111	1	0

Proof sketch: CIRCUIT-SAT reduces to $\overline{\text{AutoInt}_2(\mathbb{Z}_q)}$

Problems when q = 3 since $-2 \equiv 1 \pmod{3}$.

$\sigma'\sigma''\sigma$	$\sigma' \wedge \sigma'' = \sigma$	$\sigma' + \sigma'' - 2\sigma$
000	1	0
001	0	-2
010	1	1
011	0	-1
100	1	1
101	0	-1
110	0	2
111	1	0

When q=3, we also build $|w|_{\sigma'}+|w|_{\sigma''}-|w|_{\sigma}\equiv 0,1$ (mod 3).

$\sigma'\sigma''\sigma$	$\sigma' \wedge \sigma'' = \sigma$	$\sigma' + \sigma'' - 2\sigma$	$\sigma' + \sigma'' - \sigma$
000	1	0	0
001	0	1	2
010	1	1	1
011	0	2	0
100	1	1	1
101	0	2	0
110	0	2	2
111	1	0	1

 \Rightarrow) A satisfying assignment yields a word $\sigma_1^{b_1} \cdots \sigma_s^{b_s}$ accepted by the automata.

 \Leftarrow) A word w accepted by the intersection yields a sastisfying assignment $\sigma_i \leftarrow |w|_{\sigma_i} \mod p$.

Complexity of AutoInt₂($\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$)

	Maximum number of final states		
	1	2	3+
$\Sigma = \{a\}$	L	L	NP
$\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$	⊕L	$\oplus L$	NP
$\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$	Mod _p L	NP	NP
Abelian groups	$\mathbf{n} \in NC^3, FL^{ModL}/poly$	NP	NP
Groups	$\in NC$	NP	NP
J ₁	$\in AC^0$	NP	NP

Hint for $AutoInt_2(\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2) \in \oplus L$

We solve $AutoInt_1(Abelian groups)$ with congruences. Extending it to $AutoInt_2(\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2)$ yields systems of the form:

$$\exists \vec{x} \ B\vec{x} \equiv b \pmod{2} \lor B\vec{x} \equiv b' \pmod{2}$$
.

It is equivalent to

$$\exists \vec{x}, y, y' \quad \begin{pmatrix} \vec{0} & 1 & 1 \\ B & b & b' \end{pmatrix} \begin{pmatrix} \vec{x} \\ y \\ y' \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \pmod{2}.$$

Gap from $AutoInt_2(\mathbb{Z}_2)$ to $AutoInt_2(\mathbb{Z}_q)$

	Maximum number of final states		
	1	2	3+
$\Sigma = \{a\}$	L	L	NP
$\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$	⊕L	$\oplus L$	NP
$\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$	Mod _p L	NP	NP
Abelian groups	$\in NC^3, FL^{ModL}/poly$	NP	NP
Groups	$\in NC$	NP	NP
J ₁	$\in AC^0$	NP	NP

- Relationships between algebraic problems and AutoInt $_b(X)$
- Extensive classification of AutoInt_b
- Close relationship between complexity of Memb and AutoInt₁
- Surprising gap from $AutoInt_2(\mathbb{Z}_2)$ to $AutoInt_2(\mathbb{Z}_3)$

What is the complexity of $AutoInt_1(X)$ for other X such that Memb(X) is in between P and NP?

Спасибо! Thank you! Merci!