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An automaton is a 5-tuple:

m Q (finite set of states)

¥ (finite alphabet)

d: Q x X — Q (transition function)
m « € Q (initial state)

m F C Q (final states)
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Transition monoid M(A) of A:

({T, : 0 € L}) where T,(y) = (v, 0).
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Definition

Autolnt,(X) (Automata nonemptiness intersection problem)

Input: Automata Ay, ..., A on alphabet © with M(A;) € X
and at most b final states.
k
Question: ﬂ Language(A;) # 07
i=1
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Autolnt and Autolnt; are PSPACE—complete.

Galil 76

Autolnt is NP—complete when ¥ = {a}.
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Autolnt interesting because generalizes:

Definition
Memb(X) (Membership problem)

Input: g,81,---,8k: [m] — [m] such that (g1,...,8k) € X.
Question: g € (g1,...,8k)?
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Autolnt interesting because generalizes:

Definition
Memb(X) (Membership problem)

Input: g,81,---,8k: [m] — [m] such that (g1,...,8k) € X.
Question: g € (g1,...,8k)?

Connections with graph isomorphism led to deep results on group
problems. It is known that Memb(Groups) € NC.
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Definition
ACK: languages accepted by Boolean circuits of poly size and depth
O(log" n). NC: similar with gates of indegree 2.

NE = AC = U NCK
k>0
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Definition

L: languages accepted by log-space Turing machines.

NL: languages accepted by log-space non deterministic Turing
machines.

Mod,L: languages S s.t. w € S iff # accept paths = 0 (mod p) for
some NL machine.
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Inclusion chain of complexity classes

ACO— L NC2~+ NC -+ P - NP -+ PSPACE
N
Mod,
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Main result: completeness results for Autolnt,(X)

Maximum number of final states
1 2 3+
Y ={a} L L NP
Lo X -+« X Lp eL eL NP
Zp X -+ X Lp Mod,L NP NP
Abelian groups | € NC3, FLM°dL/po|y NP NP
Groups e NC NP NP
J1 e ACY NP | NP

I:l Our classification.

Will appear in journal version (Blondin, Krebs & McKenzie).
Beaudry 88.
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Autolntz(X) is NP—complete
Autolnta(Z2 X - -+ X Z2) is L—complete

Automata Intersection Problem

Theorem
Autolnty(X) is hard for NP for any X beyond Zp X - -+ X Zs.

Proof sketch
X € Zp x --- x Zo implies aperiodic monoid or cyclic group Zg,
qg>2,in X

Reduction from CIRCUIT-SAT to Autolnty(X) in both cases.
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s NP —complete

Automata Intersection Problem
X ) is ®L—complete

Proof sketch: CIRCUIT-SAT reduces to Autolnty(Zg)

Given a circuit, we let  be the set of gates.

1

Y = {og, 01,02, Ao, 0, Vo, 03}
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Autolntz(X) is NP—complete
Autolnta(Z2 X - -+ X Z2) is L—complete

Automata Intersection Problem

Proof sketch: CIRCUIT-SAT reduces to Autolnty(Zg)

Given a circuit, we let  be the set of gates.

2 = {007 01, 02, /\Oa 05 71, T2y /\203}
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Automata Intersection Problem L
¢ complete

Proof sketch: CIRCUIT-SAT reduces to Autolnty(Zg)

For each gate o, we build automata A such that M(A) = Z,.
Strategy:

m Occurrences of 0 mod p encode assignment to o (0 or 1),
m Automata verify soundness locally,

m Intersection represents satisfying assignments.
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Autolntz(X) is NP—complete

Automata Intersection Problem Autolnta(Za X - -+ X Z2) is GL—complete

Proof sketch: CIRCUIT-SAT reduces to Autolnty(Zg)

For each o € ¥, we accept words w such that |w|, = 0,1 (mod gq).

T\ {o} T\ {0}
; E > %

T\ {0}
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Autolntz(X) is NP—complete
Autolnta(Z2 X - -+ X Z2) is L—complete

Automata Intersection Problem

Proof sketch: CIRCUIT-SAT reduces to Autolnty(Zg)

For output gate o, we accept words w such that |w|, = 1 (mod g).
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Automata Intersection Problem WP =cmmpEe
-+ X Z3) is DL—complete

Proof sketch: CIRCUIT-SAT reduces to Autolntz(Zg)

For each —-gate o with input ¢/, we accept words w such that
‘W|0 + |W’J’ =1 (mOd q)-

¥\ {0, 0’} X\ {o,0'}

o,0

Y\ {o,0'}

Y\ {o,0'}
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Autolntz(X) is NP—complete

Automata Intersection Problem Autolnta(Za X - - - X Z2) is BL—complete

Proof sketch: CIRCUIT-SAT reduces to Autolnty(Zg)

For each A-gate o with inputs ¢/, 0", we accept words w such that
|w|y + |W|or — 2 |w|, = 0,1 (mod q).

o'd"oc | o' Nod" =0 | o/ +0" — 20
000 1 0
001 0 -2
010 1 1
011 0 -1
100 1 1
101 0 -1
110 0 2
111 1 0
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Autolntz(X) is NP—complete

Automata Intersection Problem

Proof sketch: CIRCUIT-SAT reduces to Autolnty(Zg)
Problems when g = 3 since —2 =1 (mod 3).
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Autolntz(X) is NP—complete

Automata Intersection Problem

Proof sketch: CIRCUIT-SAT reduces to Autolnty(Zg)
When g = 3, we also build |w|, + |w|,» — |w|s = 0,1 (mod 3).

od’"c | ' No" =0 | o' +0"—-20 | 0/ +0" -0
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Automata Intersection Problem Complete

X Z32) is GL—complete

Proof sketch: CIRCUIT-SAT reduces to Autolnty(Zg)

bs

IS

=) A satisfying assignment yields a word afl -0 accepted by

the automata.

<) A word w accepted by the intersection yields a sastisfying
assignment o; < |w/|,, mod p. O
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. Autolntz(X) is NP—complete
Automata Intersection Problem Autolnta(Za X - - - X Z2) is BL—complete

Complexity of Autolntp(Z X -+ X Za)

Maximum number of final states
1 2 3+
Y ={a} L L NP
Lo X -+ X Lo @L ®L NP
Zp X -+ X Lp Mod,L NP NP
Abelian groups | € NC3, FLM°dL/po|y NP NP
Groups e NC NP NP
J1 e AC? NP | NP
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Autolntz(X) is NP—complete

Automata Intersection Problem Autolnta(Za X - - - X Z2) is BL—complete

Hint for Autolnta(Zy x -+ X Zp) € &L

We solve Autolnt;(Abelian groups) with congruences. Extending it
to Autolnty(Zy X - - X Zjp) yields systems of the form:

3x BxX=b(mod2) V BX=b"(mod 2).

It is equivalent to

= X 1
5 0 1 1
3%, y,y (B b b’) y|= 0] (mod 2).
y 0
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. Autolntz(X) is NP—complete
Automata Intersection Problem Autolnta(Za X - - - X Z2) is BL—complete

Gap from Autolnty(Zs) to Autolnty(Zg)

Maximum number of final states
1 2 3+
Y ={a} L L NP
Lo X -+ X Lo oL ®L NP
Lp X -+ X Lp Mod,L NP NP
Abelian groups | € NC3, FLM°dL/pon NP NP
Groups e NC NP NP
J1 e AC? NP | NP
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Conclusion

Relationships between algebraic problems and Autolnt,(X)

Extensive classification of Autolnty

Close relationship between complexity of Memb and Autolnt;

Surprising gap from Autolntz(Z2) to Autolnta(Z3)

What is the complexity of Autolnt;(X) for other X such that
Memb(X) is in between P and NP?
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Conclusion

Cnacubo! Thank you! Mercil
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