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Process 

Main function of an operating system 

a. Accept a set of jobs 
b. Provide them their desired resources 
c. Execute them and store the results to be collected by users. 

User perception:  Every user thinks that he/she has the entire machine, even though a number of users are 
serviced by the O/S simultaneously. 

Formally:  An operating system creates one Virtual Machines for one user. 

To manage a virtual machine the O/S must keep track of 

a. Memory uses. 
b. Data/Files used by jobs 
c. Status of every job (failed, running etc.). 
d. Association of CPU with a job. 

Program:  Sequence of instructions representing relevant operations for manipulating data to get the desired 
result.  In other words it is the coding of the solution of a problem in a programming language.  It does not 
contain any command to the O/S. 

Job:  A sequence of commands to O/S and the program.  The sequence of commands tells the OS how to 
treat the program, what to do with the result (print or save etc.) and how to terminate the program. 

Convention:  We will use job or program to refer to the same thing.  Whenever necessary we will make the 
distingtion. 

Behavior of the CPU:  CPU is shared among a number of jobs.  An instruction of a program tells the CPU the 
operation to be performed.  Before the execution begins, all necessary information, such as, program size, 
object code location, files to be used, priority etc., about the job is saved in a special place.  During execution 
this information may change and such changes are recorded.  When this happens we say that the status of 
the jobs is "being in execution" but not necessarily being executed at a particular moment.  When a job 
enters this state, i. e., when all information about the job and its intention is know to the system to put it in 
"being in execution" status then the program does not remain a program but termed as a process.  
Operationally, a process is a job specifying (dynamically) a sequence of actions and some information that 
represents its current state. 

 We, therefore, realize that inside a system it is meaningless to talk in terms of programs, since a program 
does not exist there, everything is a process.  From now on, we will be using process to indicate a 
job/program.  Sometime we will not differentiate among process, job and program.  However, when 
confusion is likely to arise, we will be specific. 

 From the above description it is obvious that a program must be converted into a process before it can be 
executed by the O/S.  This implies that one cannot build an O/S without defining process.  The O/S must 
know the intention of a program and it is only possible if the program becomes "alive", i.e., converted into a 
process.  It is the process which communicates with the O/S in behalf of a program. 

 There are a number of additional properties of a process.  Strictly speaking a process must finish in a 
finite time.  If a program runs for an infinite amount of time then it is not regarded a process.  However, there 
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are some system routines that run continuously as long as the system is up.  Some of the poling routines, 
routines that checks the status of peripheral devices, etc., must run continuously and the have no 
termination point.  These modules are also called process.  But we will use the formal definition where a 
process must terminates in a finite time. 

 Since it is impossible to keep track of the speed of the execution of a process, i.e., how fast a process is 
progressing forward, we assume that the speed of a process is unpredictable. 

Process Implementation 

 Implementation of a process means making available the requirements of a program to the O/S.  A lot of 
information is associated with a process.  This must be stored in a place in the memory and easily accessible 
to O/S during the lifetime of the process.  This information is stored in a table called:  Process Control Block 
(PCB).  A typical PCB may look like as follows: 

Memory 
 

Process name 

Owner Id 

Authorization code 

Scheduling prioroty 

Program status word 

Interrupt mask 

Channel pointer 

Program data area 

Data upper bound 

Program area 

Program upper bound 

General register 1 

                         • 

                         • 

Data

Program

 

Process Control Block 

 There is a reserved portion of the memory for a PCB.  This area can only be accessed by O/S.  A PCB 
contains pointers to other parts of the memory that holds data and object code of your process as shown in 
the above diagram.  The data used by your process can also be used by other processes, i.e., data can be 
shared among a number of processes.  In this case there are pointers from many processes to the same set of 
data.  This creates the problem of process synchronization and will be studied in detail later.  A set of PCBs 
can be scattered all over the main memory and at one time only one PCB will be referenced by the O/S.  In 
many cases a procedure is also shared by many processes.  If a code sharing is allowed then the O/S must 
guarantee that the code is pure (pure procedure or reentrant procedure), i.e., the code is not changed by a 
process or it does not modify itself. 
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So in a multiprogramming system the state of the system at any time may look like: 

PCB 1
Program for P1Program for P1

Data for P1

Multiprogramming allocated to usersMPL  allocated 
to System

PCB 3
Program for P1

Data for P3

Program for P3

PCB 2
Data for P2

Program for P1Program for P2

 

Memory 

Process Creation:  Creating (spawning) a new process requires that the program to be executed be identified 
and that the process be given a name.  In addition, data relevant to process startup may be communicated. 

Example:  EDIT MYFILE    System call: CREATE 

Steps 

1. Locate the load module file for EDIT. 
2. Allocate memory for a PCB 
3. Allocate a swap file for the new process and copy the program image (object code) into it. 
4. Complete the various fields of the PCB, storing name, program size, disk swap file address, null 

base register value (the process is initially swapped out), save PSW pointing to the first instruction 
of the program, and so on. 

5. Send a message containing the initialization text :MYFILE. 
6. Notify the dispatcher that new process is to be initiated and its PCB placed in the ready queue. 

PSW:  Program Status Word.  Special purpose register (hardware). 
 

run/wait 
 

sys/proc mask map condition code program counter 

Run/wait: One bit. Indicates whether the process is running or waiting. 
System/process: One bit.  Indicates operation in either the system state or process state, with the 

primary objective being the authorization to execute privileged instructions. 
Mask: Bit string specifies which interrupt classes are enabled (e.g., I/O or timer 

interrupt) 
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Map: One bit. Indicates whether or not memory address mapping is enabled 
Condition code: Bit string holds the result of the last operation. 
Program counter:  Holds the address of the next instruction to be executed or of the current 

instruction if an error occurs. 

Process State: A process is a dynamic entity, so it can go into several states: 

1. Being executed by the CPU: Running. 
2. Waiting for a resource: Waiting. 
3. Ready for execution (waiting only for  CPU): Ready. 
4. Blocked by another process: Blocked. 
5. Suspended (temporary hold): Suspended. 

Process state transition:  A process may move from one state to another many times during its execution life.  
Such movement of processes is caused by a number of factors.  Processes change state mainly to improve 
resource utilization and to satisfy scheduling policy.  If there is an infinite number of resources (CPU, files, 
I/O processors, peripherals, etc.) then a process's request for a resource will never be denied.  In this 
situation the state transition becomes meaningless.  No computer system can have an infinite number of 
resources.  If there are n processes then at time T at least the resource request of process i may not be 
satisfied and the O/S then must force process i to wait by moving it to the relevant state.  Since there are a 
number of transitions possible a set of rules is defined to manage state transition. 

State transition rules:  State transition is represented by a State Transition Diagram (a digraph).  It indicates 
the next possible state of a process and the operation that initiates the transition.  State transition must 
follow certain rules.  Some transitions are not logically possible.  A simple state transition diagram look like: 

Diasp
atc

h Block

Wakeup

Tim
err

un
ou

t

Running

BlockedReady

 
Process State Transition 

 A process changes its state when some event occurs.  For example, if a process is waiting (blocked) for a 
line printer that is being used by another process, then the waiting process goes to ready state when the line 
printer becomes available (event). 

State transition modules 

Dispatcher: changes the state from ready to running (assignment of CPU to a ready process is called 
dispatching). 

dispatch (process_name): ready ----->  running 

Timerrunout:  processes timeshare CPU resource (typically less than 1 microsecond).  If the process does 
not voluntarily relinquish the CPU before the time interval expires, the clock generates an interrupt causing 
the operating system to regain control and the following state transition takes place: 
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timerrunout (process_name): running ----->  ready  dispatch (process_name): ready ------>  running 

Block:  if a running process initiates an I/O operation before its CPU share expires, the running process 
voluntarily relinquishes the CPU (i.e., the process blocks itself pending the completion of the I/O operation).  
This state transition is: 

block (process_name): running  ----->  blocked 

Wakeup:  when the required I/O completes, the blocked process is activated and the transition is: 

wakeup (process_name): blocked  ----->  ready 

IMPORTANT:  the only state transition initiated by the user process itself is block; the other three 
transitions are initiated by entities external to the process. 

 Sometime it becomes necessary to force a state change externally (by human operator).  For example, if a 
process is using a significant amount of CPU resource or a process needs a data that has not yet been 
created by another process, for some reason a process is slowing down the performance of the system, etc.  
In these situations the operator can move a process to one of the suspension states. 

Short term suspension: process P1 is waiting for some input from process P2, and P2 has not produced the 
desired input then P1 will be suspended, not blocked or ready, until P2 sends the data to P1.  When P1 gets 
the data, it goes to ready state. 

Long term suspension:  a process is not likely to get its desired resources for sometime or the process is 
affecting other parts of the system (performance etc.) or the operator may wish to suspend a process for the 
following reasons: 

a. System is functioning poorly and may fail. 
b. A user suspicious about the partial results of a process may suspend it (rather than aborting it). 
c. In response to short-term fluctuations in system load, . 

Two new states for managing process suspension, 

Suspendready:  Suspension of ready process:   suspend (process_name):  ready  ---->  suspendready 
 A suspendready process may be resumed:  resume (process_name):  suspendready  ----->  ready 

Suspendblocked:  Suspension of a blocked process:  suspend (process_name): blocked --->  
suspendblocked 

 It is possible that a suspendblocked process may be changed to suspendeready on the completion of the 
desired I/O.  In this case the transition is: 

completion (process_name):  suspendblocked  ----->  suspendready. 

 To keep track of all processes, the O/S maintains list of PCBs allowed.  In general, there is a ready list, 
which contains PCBs of all ready processes, a waiting list which contains PCBs of all waiting processes, etc.  
By means of these lists, the O/S forms pools of processes in similar states which are examined by the O/S 
resource allocation routine when a resource becomes available. 
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Process State Transition Diagram 

State change :  Occurrence of some event may lead to a state change.  A state change is achieved by moving 
the relevant PCB from one list to another appropriate list.  Since PCBs are always on the move the common 
data structure for their management is a linked list.  To improve system performance a linked list with 
multiple pointers are used. 

 Process hierarchy (Spawning) and process creation:  A process may spawn a new process.  The creating 
process is called the parent process and the created process is called the child process.  In turn the child 
process may create another process and thus a hierarchical process structure is created. 

 Processes may be dynamically created or destroyed.  In a simple O/S, a set of processes already exist.  In 
such a simple system no more processes are ever required.  In more complex systems there are system calls 
to create a process or child process dynamically.  In this way, at any time a tree of processes may exist in the 
system.  For example, during system initialization a special process called boot loads the O/S.  It then 
creates a process for each terminal connected to the system.  The following diagram gives a snapshot of an 
O/S state: 

A

B C

D E F
 

Management of process hierarchy:  In many system when a parent process dies then all its children also 
die since there is only one PCB for the entire process tree.  In other systems the elimination of parent process 
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does not affect children process.  This however, is difficult to manage since the O/S must create separate 
PCBs for each child or grandchild.  It must maintain a link between the ancestors and dependents since a 
dependent any time may request some information from its parent.  These requirements make the O/S very 
complex. 

Interrupt 

 Sometime it is necessary to alter the normal execution of a process.  This is done by generating an 
interrupt.  Such break in the execution of a process may be generated by the process itself or by the operating 
system.  An interrupt generated by the operating system (register overflow, division by zero, addressing 
error, etc.) is usually termed as trap and the interrupt generated by the user process is regarded as a normal 
interrupt. 

Example :  pressing control and C key on the keyboard during the execution of a process.  Switching off the 
line printer while printing result, etc. 

Management of interrupts:  When an interrupt occurs the following steps are taken 

1. OS takes control. 
2. Save status of the process during which interrupt occurred. 
3. Decide which interrupt routine is to be used to manage the interrupt. 
4. Load and execute that routine. 
5. At the end of interrupt processing resume normal execution of the process saved in step 2. 

Example 

Event:  During printing line printer ran out of paper. User process:  P1. 
An I/O interrupt was generated by the I/O program handling the printing process. 

1. Save status of the printing process (how far executed, what is the next instruction when stopped 
and many other things) 

2. OS takes control. 
3. Looks at the interrupt code and decides which interrupt routine is responsible for detecting the 

problem. 
4. Loads this routine from the library. 
5. Creates process (system process) to run this routine. 
6. This interrupt routine prints message "LP out of paper". 
7. Operator loads paper. 
8. Interrupt routine detects this and passes control to OS. 
9. OS removes the interrupt process and loads P1. 
10. End of interrupt processing. 
11. Resumes execution of P1. 

Interrupt facility improves CPU efficiency.  Interrupts can be generated by hardware or software.  All 
interrupts can be categorized into six different classes: 

SVC (supervisor call):  A user process, if requires more memory or any other resource asks the OS by SVC 
instruction.  An interrupt is generated and the request is either denied or granted. 

I/O interrupt:  Generated by I/O system (hardware and software combination) during I/O processing.  
They can be generated when an I/O completes, error during file transfer, printing etc. 

External interrupt:  External to the system.  By operator or by another CPU in a multiprocessor system. 
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Restart interrupt: Bootstrap.  System reloading. 

Program check interrupt:  Interrupt during normal execution of a process.  For example, register overflow, 
division by zero etc. 

Machine check interrupt:  By hardware. 

Context Switching:  CPU is taken away from one process and assigned to another process.  The PCB of the 
process that has to give up the CPU is saved some place in the memory or on the disk and the new process 
uses the CPU. 

Inter-process Communication 

 Processes during execution may interact with each other.  Such interaction can be categorized as 
follows: 

Interprocess Synchronization:  Concurrent processes need to synchronize their execution over the use of 
common resources to preserve system integrity.  For example, the execution of read and write operation on a 
common file, use of a common line printer, etc. 

Interprocess Signalling:  Concurrent processes may need to exchange some timing signal among each other 
to coordinate their collective execution.  For example, in real-time systems a process may need to signal 
another process to begin processing the data produced by the first process. 

Interprocess Communication:  Concurrent processes may need to communicate to each other for 
exchanging data, reporting progress, etc.  For example, communication among different O/S modules can 
be as follows: 

User process                   File process                   Disk process                  Print process
 

Problems in process communication 

Race Condition:  A race condition exists when two or more processes give different results for same set of 
data (if they need data) when executed at different times.  We give some examples.  We observe the 
following: 

a. We know nothing about the relative speed of processes. 
b. Reading and Writing are independent indivisible operations. 

Example 1:  Suppose an installation has one card reader and one line printer which are shared between 
process P1 and P2. 
 
 P1 P2 
 again:  read (a, b, c); ------------- 
  if (a = b) then ------------- 
       write ('I am first') again:  read (x, y, z); 
     if (x = y) then 
          write ('I am second') 
   else 
   ----------   else  
  goto again;     ------------ 
    goto again; 
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If these processes are allowed to use these resources in an uncontrolled manner then the following incorrect 
output may be generated: 

 I am first                OR I am second 
 I am second I am first 
 I am first                I am second 
 
Example 2 
 
 Consider a system with many time sharing terminals.  Suppose it is desired to monitor continuously the 
total number of lines that user(s) have entered through these terminals since the day began.  Assume each 
terminal is monitored by different process.  Each time one of these processes receive a line from a user 
terminal it increments a global shared variable (accessible to all processes): LINECOUNT which acts as a 
counter.  We can visualize our system as follows.  N and M are local variables for P1 and P2 respectively. 
 
 user 1 (process P1)  user 2 (Process P2) 

LINECOUNT  =  9 (initial value) 
 
 load  N  LINECOUNT  
 add  1  N    load  M  LINECOUNT 
 store  N  LINECOUNT  add  1  M 
     store  M  LINECOUNT 
 
Execution 

 N = 9   ------ 
 N = N+1 ( = 10)  M = 9 
 End of timeslice  M = M+1 (= 10) 
    store  M  (in LINECOUNT) 
    End of P2 
 -- Resumes execution -- 
 goes back to the ready queue 
 store N (in LINECOUNT) 
 End of P1 
 
Final result: 10 (incorrect).  Correct value: 11. 

Reason:  process P2 was allowed to change the value of LINECOUNT when process P1 was working with 
LINECOUNT. 

Process management 

 To eliminate race condition and some other problems (we will discuss very soon) processes must be 
executed in a way that will guarantee the correctness of the final results and the integrity of the entire 
system.   We study such schemes under the heading of Process management. 

Critical Section:  A critical section of a process is a set of instructions which operates on global variables. 
   
In LINECOUNT program the critical sections of P1 and P2 are: 
 
 load  N    LINECOUNT   load  M LINECOUNT 
 store  N    LINECOUNT   store  M LINECOUNT 
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So 
a. LINECOUNT should not be accessed for writing by more than one process. 
b. Reading of LINECOUNT should be allowed by concurrent processes since read operation does 

not change the value of the variable. 

Mutual Exclusion:  Mutual exclusion of processes with respect to a given critical section means that no 
more than one process can be in the critical section at a given time. 

Formally:  No more than one process should be allowed to enter into the critical section at one time, i.e., 
processes should mutually exclude each other over the use of common (global) variables. 

 While a process is in its critical section, other processes may certainly continue executing outside their 
critical sections.  When a process leaves the critical section, then one of the waiting processes should be 
allowed to proceed (if there is a waiting process). 

 Inside a critical section a process has exclusive access to shared data, and all other processes currently 
requiring access to that data are kept waiting.  Therefore critical section must execute as quickly as possible, 
a process must not block within its critical section, and critical section must be carefully coded (to avoid the 
possibility of infinite loop, for example).  Therefore, to manage processes correctly an algorithm must satisfy 
the following requirements: 

i. Concurrent processes with critical section (with respect to each other) must be mutually excluded 
from simultaneous execution of their critical sections. 

ii. A process stopped (crashing or terminating) outside the critical section should not affect the ability 
of other contending processes to access the shared resource. 

iii. When more than one process wishes to enter the critical section then only one process should be 
granted the permission to enter in a finite time. 

Concurrent Processes:  Concurrency means two or more operations can proceed in parallel if each 
operation has a CPU available to it.  If there is only one CPU then such concurrency is implemented by time-
slicing.   Let us first look at some example of parallel operations which would produce the same result as 
sequential operations.  Consider the following sequence of instructions: 

       1.  a := x + y;  3.  b := z + 1; 
       2.  c := a - b;  4.  w := c + 1; 
 
No. of CPU = 1. 
Sequential execution result = P. (Correct result) 
 
No. of CPUs = 4. 
Parallel execution, (one instruction on one CPU) result = Q. 
P ?  Q (Q is not correct) 
 
Reason for incorrect result:  Dependency among statements. 

Example :  last three instructions are dependent on each other since they use common variables b and c, and 
they cannot be executed on several CPUs.  Similarly the first and the second also cannot be executed on 
several CPUs because of the common variable a. 
 
 Now consider the following example: 
 
       1.  a := m+1; 3.  b := x+1; 
       2.  c := r +1;  4.  d := c +2; 
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 The first three instructions can run on three CPUs or on one CPU in any order and they will produce the 
same result every time since there is no dependency.  The last two instructions have a common variable and 
so the c := r + 1 must be run before  d := c + 2.  We are going to formalize these ideas and discuss several new 
concepts which evolve from concurrency. 
 
 While a process is in its critical section, other processes may certainly continue executing outside their 
critical sections.  When a process leaves the critical section, then one of the waiting processes should be 
allowed to proceed (if there is a waiting process). 

 Inside a critical section a process has exclusive access to shared data, and all other processes currently 
requiring access to that data are kept waiting.  Therefore critical section must execute as quickly as possible, 
a process must not block within its critical section, and critical section must be carefully coded (to avoid the 
possibility of infinite loop, for example). 
 
Synchronization Mechanisms 

 A number of simple solutions is presented.  We use the results of these solutions to identify the depth of 
process management problems and then present improved solutions that are used by almost all operating 
systems.  We use terms "parabegin" and "paraend" to indicate that enclosing statements can be executed in 
parallel in multi-processor systems or concurrently in uniprocessor systems. 

Solution 1: begin integer turn; 
        turn := 1; 
        parabegin 
         P1: begin  L1: if turn = 2 then goto L1; 
            critical section 1; 
            turn := 2; 
            more statements; 
            goto L1 
                end 
         P2: begin  L2: if turn = 1 then goto L2; 
            critical section 2; 
            turn := 1; 
            more statements; 
            goto L2 
           end 
        paraend 
     end; 
Problems: 
 

a. Busy wait.  Waste of CPU time. 
b. If turn is not set to 1 by the process which set it to 2 then other waiting processes will go into infinite 

loop. 
c. Not very suitable for large number of processes. 
d. Too restrictive; the critical sections can be entered only in the order P1, P2, P1, P2, ....  This violates 

the requirement ii (above) since a process stopped outside its critical section can hold up the 
progress of the other, supposedly independent process. 

 Taking this into account, consider a second solution which uses two flags, C1 and C2, to indicate when 
a process is in its critical section.  C1 = 0 means P1 is in its critical section; C1 = 1 means P1 is outside its 
critical section.  Likewise for C2 and P2. 

Solution 2: 
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begin    integer C1, C2; 
C1:= 1; C2 := 1; 
parabegin 

P1: begin  L1: if C2 = 0 then goto L1; 
   C1 := 0;  (*P1 is in CS *) 

critical section 1; 
C1 := 1; 
more statements; 
goto L1 

      end 
P2: begin  L2: if C1 = 0 then goto L2; 
   C2 := 0;  (* P2 in CS *) 

critical section 2; 
C2 := 1; 
more statements; 
goto L2 

      end 
paraend 

end; 

Problems: 

a. Both processes can pass the test on C variables at the same time, thereby, determining that it is 
safe to proceed, entering their CS at the same time, violating requirement 1. 

b. Busy wait may happen. 

 The problem is that setting the inside/outside flags (the C's) is not protected from simultaneous 
execution.  Solution 3 remedies this problem by having a process set its own flag before testing the other 
process' flag. 

Solution 3:  begin    integer C1, C2; 
C1:= 1; C2 := 1; 
parabegin 

P1: begin  A1: C1 := 0;   (* P1 in CS *) 
    L1: if C2 = 0 then goto L1; 

critical section 1; 
C1 := 1; 
more statements; 
goto A1 

      end 
P2: begin  A2: C2 := 0;   (* P2 in CS *) 
    L2: if C1 = 0 then goto L2; 

critical section 2; 
C2 := 1; 
more statements; 
goto A2 

      end 
paraend 

end; 

Mutual exclusion:  Yes. 
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Problem:  P1 and P2 may deadlock.  The problem is that each process waits for entry into critical section 
with its inside/outside flag set wrong.  That is, it waits with the flag indicating it is in its critical section 
when in fact it is not.  Solution 4 tackles this problem by removing the inside flag while waiting: 

Solution 4: 
begin    integer C1, C2; 

C1:= 1; C2 := 1; 
parabegin 

P1: begin  L1: C1 := 0; 
   if C2 = 0 then begin  C1 := 1;  goto L1;  end 

critical section 1; 
C1 := 1; 
more statements; 
goto L1; 

      end 
P2: begin  L2: C2 := 0; 
   if C1 = 0 then  begin  C2 := 1;  goto L2;  end; 

critical section 2; 
C2 := 1; 
more statements; 
goto L2 

      end 
paraend 

end; 

Deadlock:  No. 

Problem:  what if P1 and P2 happen to proceed together?  They can get into an infinite loop.  This violates 
requirements c. 

 The first correct solution of this control problem is by Dekker.  The problem with his solution is that it 
works only for two processes and cannot be easily extended beyond that number.  Thus its theoretical 
significance cannot be overlooked but its applicability in practice is non-existent. 

Solution 5: 
     begin    integer C1, C2, turn; 
      C1:= 1; C2 := 1; turn := 1; 
 parabegin 
       P1: begin A1: C1 := 0; 

    L1: if C2 = 0 then 
    begin  if turn = 1 then goto L1; 
     C1 := 1; 
     B1:  if turn = 2 then goto B1; 
     goto A1; 
    end 

         critical section 1; 
         turn := 2; 
         C1 := 1; 
         more statements; 
         goto A1 

         end 
      P2: begin A2: C2 := 0; 
        L2: if C1 = 0 then 
        begin  if turn = 2 then goto L2; 
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         C2 := 1; 
         B2:  if turn = 1 then goto B2; 
         goto A2; 
        end 
        critical section 2; 
        turn := 1; 
        C1 := 1; 
        more statements; 
        goto A2 

        end 
 paraend 

 end; 

Peterson's Algorithm 

turn is an int variable.  interested is an int array.  All elements of interested is initialized to 0 (false) 

interested [process] := TRUE; turn := process 
while (turn = process AND  interested [other] =True)

Time

other is a local int variable 
 
enter_region (process); other := 1 - process enter_region (process); other := 1 - process

interested [process] := TRUE;  turn := process

while (turn = process AND  interested [other] =True)

Process 0                                                                                              Process 1

other is a local int variable

leave_region (process) 
interested [process] := false

Enters Critical Section

Enters Critical Section

leave_region (process) 
interested [process] := false

 
Problem with Peterson's solution 
 
PH = high priority process.  PL = low priority process.  The process scheduler works on priority.  Execution 
pattern: 
 
PH ___|--------------|_  _  _  _  _  _  _  _  _|_  _  _  _  _  _  _  _  
              I/O        Scheduled but         Scheduled but 
                  busy waits           busy waits 
 
            PL________|_________________• Time slice expired 
                        PL is in critical section 
 
So probably PH will never get a chance to run. 

Semaphore and Busy-Wait Implementation 

 Originally Dijkstra proposed a solution which is based on Semaphore and Primitives.  His solution is 
very commonly used in most of the systems today. 
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Semaphore:  A protected variable.  A semaphore can be manipulated only by special operations (may be 
primitives).  There are two types of semaphore: 

Binary Semaphore :  It can take only two values; = 0  resource is free and = 1 resource is busy. 
Counting semaphore  (also called General semaphore): it may take n (n > 2) number of values. 
Primitive: A special operation with only two states: done or not done. 
Not done:  If a primitive fails to complete then ignore all its operations done so far. 

Example:   Read A.  Fails after reading only 10 bits of the data.  The variable A would not contain 10 bits.  
The effect of reading 10 bits will be removed from the system.  This is equivalent to Read operation was 
never started.  

Done:  If a primitive has started then it cannot be interrupted.  It will stop when it has completed its entire 
operation. 

We define two primitives:  WAIT and SIGNAL  (originally called P and V by Dijkstra).  These primitives 
operate on semaphore S (binary or general).  We define the working of these primitives on S: 

WAIT (S):  Decrement the value of its argument, S, as soon as it is non-negative. 
       if  S > 0  then S := S - 1 
       else  wait on S 

SIGNAL (S):  Increment the value of its argument, S and wake up a process waiting on semaphore S: 
       if (one or more processes are waiting on S) then 
        wakeup one process; 
       S := S + 1 

Example:  We present an example to show the use of WAIT and SIGNAL. 

var mutex: semaphore; {binary} 
 mutex := 1; 

 parabegin 
  process p1; 
  begin 
   while true do 
   begin 
    wait (mutex); 
    Critical section; 
    signal (mutex); 
    other statements; 
   end {while} 
  end; 

 process p2; 
 begin 
  wait (mutex); 
  Critical section; 
  signal (mutex); 
  other statements; 
  end {while} 
 end; 

 process p2; 
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 begin 
  wait (mutex); 
  Critical section; 
  signal (mutex); 
  other statements; 
  end {while} 
 end; 
paraend; 

 The following table is a log of the execution of p1, p2 and p3.  Mutex = 0 (free) = 1 (busy).  Before 
activating the three processes, mutex is initialized to 1.  This initialization is indicated in time T1.  The table 
represents the execution history for a multiprocessor system where all processes (p1, p2 and p3) can go in 
parallel.  Under a uniprocessor system, there is always a small time lag between the execution of any two 
processes and the table should be read accordingly.  This means p1 executes wait (mutex) and then 
immediately after this either p2 or p3 executes wait (mutex). 
 
Time p1 p2 p3 mutex processes in CS  wishes to enter 

T1 - - - 1 - - 
T2 wait (mutex) wait (mutex) wait (mutex) 0 - p1, p2, p3 
T3 in CS waiting waiting 0 p1  p2, p3 
T4 signal (mutex) waiting waiting 1 - p2, p3 
T5 other statements in CS waiting 0 p2 p3 
T6 wait (mutex) in CS waiting 0 p2 p3, p1 
T7 waiting signal (mutex) waiting 1 - p3, p1 
T8 in CS other statements waiting 0 p1 p3 

 Semaphores may be provided in a programming language, as shown in the example, or as the O/S 
service invoked via system calls.  When provided by the O/S, semaphore variables are not declared and 
manipulated in the language, but are manipulated through system calls such as CREATE_SEMAPHORE, 
ATTACH_TO_SEMAPHORE, WAIT, SIGNAL, AND CLOSE_SEMAPHORE. 

 Semaphore mechanism does not define any scheduling policy.  For example, if p1 and p3 are waiting 
then the synchronization program does not decide who should enter the CS.  It is taken by the scheduler.  A 
faulty scheduling policy may force some process to wait for ever (starve).  To avoid starvation, a FIFO 
scheduling policy can also be used and this implementation of servicing is sometimes referred to as a 
"strong implementation of semaphores". 

Semaphore Granularity 

Small:  One semaphore for each sharable resource (software and hardware).  This provides high 
concurrency but makes it difficult to manage such large number of semaphores.  Maintenance of 
semaphores are expensive. 

Coarse:  A set of resources is associated with a semaphore.  This setting decreases the run-time overhead but 
increases the conflicts among processes thus increasing wait time and may have some scheduling 
problems. 

 A common scenario in O/S:  A producer produces data and stores them into a common buffer for a 
consumer to consume.  For example, a user program (producer) generates data for the line printer and the 
printer routine (consumer) empties the buffer and prints the data on the line printer.  The sharing of the 
common buffer must be synchronized so that the producer should not try to put data items in a full buffer 
and the consumer should not try to read data from an empty buffer 
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Common buffer

Capacity = N

Critical section (enter item)

Critical section (consume item)
 

Program:       S1, S2 : semaphore;  S1 := 1; S2 := 0; 

Time
Producer Consumer 

begin 
 
    while true do 
  
    begin 
 
       produce item; 
        
       Wait (S1);  
       
       enter item; 
 
       Signal (S2); 
 
    end 
 
end

 
 
begin 
 
    while true do 
 
    begin 
 
      Wait  (S2); 
 
       get item; 
 
       Signal (S1); 
         
        print item; 
 
    end 
 
end

 

Problems with semaphores 

 Most criticisms revolve around the two main themes: 

1. Semaphores are unstructured:  they make synchronization, and ultimately the system integrity, 
dependent on strict adherence of all concerned systems programmers to the specific 
synchronization protocols devised for the problem at hand.  Reversing P and V primitives, 
forgetting either of them, or simply jumping around them may easily corrupt or block the entire 
system. 

Example 

A. Suppose that a process interchanges the operations on the semaphore S.  That is, it executes: 

V(S); 
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..... 
Critical section 
..... 
P(S); 

 Result:  Several processes may be executing in their critical section simultaneously, violating 
the mutual exclusion requirement.  This time-dependent error may be discovered only if 
several processes are simultaneously active in their CS.  Note that this situation may not 
always be reproducible. 

B. Suppose that a process exchanges V(S) with P(S).  That is, it executes: 

P(S); 
...... 
critical section; 
...... 
P(S); 

 Result:  A deadlock. 

C. Suppose that a process omits the P(S) or the V(S) or both. 
 Result:  Mutual exclusion is violated or a deadlock will occur. 

2. Semaphores do not support data abstraction. 

Another example 

 Some scheme define Sleep and Wakeup primitives.  They work as follows: 

Sleep: causes the procedure which called sleep to block.  The process is suspended until another 
process wakes it up. 

Wakeup: causes a suspended process to become ready. 

Producer and Consumer problem solution 

N =  100 (bounded buffer size). count = 0 (no. of items in the buffer) 

 Producer (P)         Consumer (C) 

produce_item () 
              if (count = 0);  sleep ();  {sleeps} 
if (count = N);  {Room in the buffer, does not sleep} 
enter_item () 
count := count + 1 
if (count = 1) then wakeup (C); {P wakes up C*} 
              remove_item 
              count := count - 1 
              if (count = N-1) then wakeup (P) 
              consume item 

Problem with Sleep and Wakeup 

 Consider the following execution: 
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Buffer is empty.  Consumer starts first 

if (count == 0) 
   C reads the value of count (= 0) but before 
   executing the test, time slice is over and 
   C is suspended (not asleep). 

Producer begins, produces item and enters it in the buffer.  Increments count to 1.  It 
then tries to wake up consumer but consumer is not asleep so the signal has no 
effect and therefore is lost. 

Consumer begins execution.  It completes 
the test (count == 0) and finds it 
to be true so it goes to sleep. 

Producer begins and executes count = count + 1,  making it 2.  The next test if 
(count == 1) wakeup (C) will fail and Producer will keep on filling the buffer.  
When the buffer is full the Producer goes to sleep.  Now both are sleeping. 

Hardware support for Mutual Exclusion 

 Semaphore and primitives are very useful and effective tools for managing concurrent processes.  
However, they are no good if the implementation of mutual exclusion via these tools is very difficult and not 
reliable.  If their implementation is feasible at the hardware level then we have to see how efficient they are. 

Disable/Enable Interrupts 

 Almost all O/S provide a facility to disable and enable interrupts generated by any system module or 
processes.  This mechanism can be used to obtain a resource exclusively and then release it after use.  This 
may be accomplished as follows: 

    DI       ;disable interrupts 
     Enter critical section ; use the reserved resource 
    EI       ; enable interrupts 

 The intent of disabling interrupts is to prevent any interference during execution of the critical section.  
This process generally defers recognition of external events that may cause another process to run and 
access the same resource, and also temporarily disables the scheduler in order to prevent preemption due to 
rescheduling.  In effect, whenever a process is in its critical section, interrupt disabling forces the whole 
system into a state of hibernation. 

 The innermost kernels of many commercial O/S employ this mechanism as a quick and easy way to 
allow a process to enter a critical section. 

 This works fine but has a number of serious problems.  If this facility is available to application 
programmers, they can use it for disrupting the scheduler and the normal running of the entire system.  
Users can apply DI and indirectly raise the priority of their program thus affecting the scheduling of real 
higher priority process.  Furthermore, it may bring the entire system to a halt.  For example: 

    DI    ;disable interrupts 
    Halt   ;halt the processor 
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swiftly brings down many a multiprogramming O/S.  WAIT and SIGNAL may be implemented by the 
system by the use of DI and EI.  But this mechanism works only on one CPU.  Thus an operating system for 
a uniprocessor could not be easily  ported to a multiprocessor system. 

Test-and-Set (TS) Instruction 

 A direct hardware support of mutual exclusion.  Basic idea is to test a variable associated with a 
resource to see if the resource is free.  If it is free then first make it busy by resetting the value of this variable 
and use the resource.  When finished reset the value of the variable.  This path is followed by every process 
desiring to use a resource.  Every resource has such variable associated with it.  TS instruction takes only 
one operand and the entire instruction is executed indivisibly. 

TS operand   ;test and set operand 

a. Compare the value of the operand (BUSY or FREE). 
b. If free then set it to busy otherwise wait. 

The WAIT primitive on the semaphore S may be implemented as follows, if TS is available in the hardware 
of a system. 

 WAIT: TS  S    ;request exclusive access 
    BNF WAIT   ;(branch if not free) repeat until granted 
    RETURN    ;proceed to critical section 

Every process execute this set of instructions indivisibly before it can use the resource.  If S = 1 (resource 
busy) then the process loops otherwise sets S to 1 and enters critical section.  IBM/360 were the first systems 
to use the TS instruction in hardware. 

Problems 

 Suppose p1 is executes TS instruction and enters critical section.  While it is in the critical section 
another higher priority process p2 preempts p1 (p1 did not reset S).  p2 will loop, p1 could not resume since 
p2 has not completed its execution.  This problem usually occurs on priority-based systems.  One way to 
avoid this is if the O/S monitors the progress of every user process.  This simple proposition is rarely 
implemented since O/S usually cannot afford the overhead imposed by having to keep track of the nature of 
instructions being executed by user processes.  

A high level solution to some of the process synchronization problems 

Monitor:  All mechanisms discussed so far concern themselves only with making sure that at most one 
process is allowed in CS at any time.  These algorithms have problems.  Monitors are operating system 
structuring mechanism that addresses these issues in a systematic and rigorous manner. 

Basic idea behind monitor:  Provides data abstraction in addition to concurrency control, that is, to control 
not only the timing but also the nature of operations performed on global data (critical section) so as to 
prevent meaningless or potentially harmful updates. 

 In the solutions presented earlier, a procedure operates directly on CS.  That is, it enters into CS and 
manipulates the CS variables.  This way of manipulating CS creates all the problems listed before.   

Solution to these problems:  Do not let procedures work directly on CS via semaphores and primitives, but 
ask a procedure to do the job in behalf of the procedure.  This is just like invoking a library routine 
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(procedure/function) to compute mathematical expressions rather than writing your own 
procedure/function to do the computation.  In the first case an extra level of indirection is added. 

Advantages 

1. The programmer is relieved from worrying about the correctness of the procedure. 
2. Many programs (independent) can invoke the same library routine at the same time.  This cannot be 

done under the second option. 
3. Malfunction probability extremely low. 

 Monitor works on this idea of data abstraction and an extra level of indirection.  It uses semaphores and 
also conditional variables.  Monitors make the CS accessible indirectly and exclusively via a set of publicly 
available procedures.  In terms of procedure/consumer problem, the shared global buffer may be declared 
as belonging to a monitor, and neither producers nor consumers would be permitted direct access to it.  
Instead, procedures may be allowed to call a monitor-provided public procedure and to supply the 
produces item as its argument.  A monitor procedure would then actually append the item to the buffer.  
Likewise consumers may call on a monitor procedure to obtain a produced item from the buffer.  A 
collection of monitor procedures may thus handle buffer management and synchronization of concurrent 
requests internally by means of code and variables hidden from users. 

Monitor structure 

 1. Collection of data    2.  A set of procedures to manipulate them     3.   A set of private variables 

Example of a monitor declaration 

 monitorname:  monitor; 
 begin 
  declaration of private data; {local monitor variable} 
  ---- 
  procedure  public (formal parameters); {public procedures} 
   begin 
    procedure body; 
   end; 
  ---- 
  procedure  private ; {private procedure} 
   ---- 
   initialization of monitor data; 
   ---- 
 end monitorname; 

Properties 
1. Static structure 
2. Becomes active when one of its procedures is invoked by a running process (user process) 
3. Processes executing monitor procedures are allowed to wait on a particular condition without 

affecting other monitor users significantly. 

A sample monitor implementing WAIT and SIGNAL operations 

 wait_signal: monitor; 
 begin 
  busy:  boolean; free : condition; 
  procedure  mwait; 
   begin 
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    if busy  then free.wait;  busy := true 
   end; 
  procedure  msignal; 
   begin 
    busy := false; free.signal 
   end; 
  {monitor body - initialization} 
  busy := false 
 end wait_signal 

Explanation: 

free.wait:  the second name (wait) invokes the monitor primitive WAIT, the first name (free) indicates on 
which condition WAIT should be executed, because there may be several conditions in a monitor and the 
desired one must be identified. 

Execution of free.wait:  after execution the calling procedure is suspended on the queue associated with 
FREE.  If more callers invoke MWAIT while the first one is still in the critical section, they also join the queue 
of suspended process associated with the condition FREE. 

Execution of msignal:  when the first caller finally executes MSIGNAL, BUSY is set to false and condition 
FREE receives a signal.  As a result one of the waiting process is awakened.  If a message is sent and there is 
no process waiting on FREE then the signal is ignored. 

Synchronization of Producer/Consumer using Monitor 

 module m_procedure_Consumer 
 ----- 
 pc : monitor; 
  begin 
   buffer :  array [1..capacity] of item; 
   in, out: (1..capacity);  count: (0..capacity); 
   may produce, mayconsume : condition; 
   procedure  mput(pitem : item); 
    begin 
     if count = capacity  then mayproduce.wait; 
     buffer [in] := pitem; 
     in := (in mod capacity) + 1;  count := count + 1; 
     mayconsume.signal 
    end; {end of mput} 
   procedure  mtake (var citem : item); 
    begin 
     if count = 0  then mayconsume.wait; 
     citem := buffer[out];  out := (out  mod capacity) + 1;  count := count - 1; 
     mayproduce.signal; 
    end; {end of mtake} 
   {monitor body - initialization} 
   in := 1; out := 1; count := 0 
  end pc; 
 end {m_procedure_consumer} 

User process that uses the above monitor code. 

 module u_procedure_consumer; 
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  ----- 
  process producerX; 
   var pitem : item; 
   begin 
    while true  do 
     begin 
      pitem := produce;  pc.mput (pitem); 
      other_X_processing 
     end; {while} 
   end; {producerX} 
   ----- 
   process consumerZ; 
   var citem : item; 
   begin 
    while true  do 
     begin 
      pc.mtake (citem); consume (citem); 
      other_Z_processing 
     end; {while} 
  {parent process} 
  begin 
   initiate procedures, consumers 
  end 
 end {procedures_consumers} 

Explanation 

1. MPUT:  serves producer process. 
2. PITEM:  item generated by producer 
3. (COUNT = CAPACITY) meaning buffer is full caller waits by the condition MAYPRODUCE.WAIT 
4. MAYPRODUCE.SIGNAL is sent by the consumer. 
5. (COUNT = 0) meaning consumers are prevented from executing by being suspended on the 

MAYCONSUME condition. 
6. When an item is produced, a consumer is freed and the monitor completes the execution of the 

MTAKE procedure on the consumer's behalf.  This ultimately provides the consumer with an item 
from the buffer,after signaling MAYPRODUCE to activate a waiting producer, if any. 

7. The common buffer is protected by the monitor, and it cannot be accesses o manipulated in any way 
other than those provided by MPUT and MTAKE procedures. 

Interprocess Communication:  Text book pages 175 - 183. 


