Mutual Exclusion:

Classical Algorithms for Locks

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@cs.rice.edu

COMP 422 Lecture 18 21 March 2006

Motivation

Ensure that a block of code manipulating a data structure is
executed by only one thread at a time

* Why? avoid conflicting accesses to shared data (data races)

—read/write conflicts
—write/write conflicts

* Approach: critical section

* Mechanism: lock
—methods
— acquire
— release

* Usage
—acquire lock to enter the critical section
—release lock to leave the critical section

Properties of Good Lock Algorithms

Mutual exclusion (safety property)

—critical sections of different threads do not overlap
— cannot guarantee integrity of computation without this property

No deadlock

—if some thread attempts to acquire the lock, then some thread will
acquire the lock

No starvation

—every thread that attempts to acquire the lock eventually succeeds
— implies no deadlock

Notes

Deadlock-free locks do not imply a deadlock-free program
—e.g., can create circular wait involving a pair of “good” locks

Starvation freedom is desirable, but not essential
—practical locks: many permit starvation, although it is unlikely to occur

Without a real-time guarantee, starvation freedom is weak property 3

Topics for Today

Classical locking algorithms using load and store

Steps toward a two-thread solution
—two partial solutions and their properties

Peterson’s algorithm: a two-thread solution
Filter lock: an n-thread solution

Lamport’s bakery lock

Classical Lock Algorithms

* Use atomic load and store only, no stronger atomic primitives

* Not used in practice
—locks based on stronger atomic primitives are more efficient

* Why study classical algorithms?

—understand the principles underlying synchronization
— subtle
— such issues are ubiquitous in parallel programs

Toward a Classical Lock for Two Threads

* First, consider two inadequate but interesting lock algorithms
—use load and store only

* Assumptions

—only two threads
— each thread has a unique value of self _threadid € {0,1}

Lock1

class Lockl: public Lock {
private: set my flag
volatile bool flag[2];
public:
void acquire() {
int other threadid = 1 - self threadid;
flag[self threadid] = true; <
while (flag[other threadid] == true);
}
void release() {
flag[self threadid] = false;

} ' wait until other flag

is false

Using Lock1

thread 0 thread 1

flag[0] = true
while(flag[1] == true);
f‘

flag[1] = true
CS,< while(flag[0] == true);

flag[0] = false™ r

CS, <

flag[1] = false

Lock1 Provides Mutual Exclusion

Proof

Suppose not. Then 1 j, k € integers |
. i i .
CS({ = CSl and CSl +> CS({
Consider each thread’s acquire before its jt" (kth) critical section
write,(flag[0] = true) — read(flag[1] == false) — CS, (1)
write,(flag[1] = true) — read,(flag[0] == false) — CS, (2)

However, once flag[1] == true, it remains frue while thread 1 in CS,

So (1) could not hold unless

read,(flag[1] == false) — write,(flag[1] = true) (3)
From (1), (2), and (3)
write,(flag[0] = true) — read(flag[1] == false) — (4)

write,(flag[1] = true) — read,(flag[0] == false)
By (4) write,(flag[0] = frue) — read,(flag[0] == false): a contradiction
9

Using Lock1

thread 0 thread 1

flag[0] = true
g[0] = tru flag[1] = true

while(flag[1] == true): while(flag[0] == true):

J/

> wait

(G

Y
2
=

flag[1] = false

«

deadlock!

<

10

Summary of Lock1 Properties

* If one thread executes acquire before the other, works fine
—Lock1 provides mutual exclusion

* However, Lock1 is inadequate
—if both threads write flags before either reads — deadlock

11

Lock?2

class Lock2: public Lock {
private:
volatile int victim;
public:
void acquire() {
victim = self threadid;
while (victim == self threadid); // busy wait
}

void release() { }

12

Using Lock2

thread 0 thread 1
victim=0 T
victim = 1

while(victim == 0); while(victim == 1);

J

> wait

victim=0
while(victim == 0);

}wait

v
13

Lock2 Provides Mutual Exclusion

Proof
Suppose not. Then 3 j, k € integers I
J k k J
CS/ +> CSF and CS! + CS; |
Consider each thread’s acquire before its jth (kth) critical section
writey(victim = 0) — read,(victim == 1) — CS, (1)
write,(victim = 1) — read,(victim == 0) — CS, (2)

For thread 0 to enter the critical section, thread 1 must assign victim =1
writey(victim = 0) — write,(victim = 1) — read(victim == 1) (3)

Once write,(victim = 1) occurs, victim does not change
Therefore, thread 1 cannot read,(victim == 0) and enter its CS

Contradiction!

14

Using Lock2

thread 0

victim=0
while(victim == 0);

J/

Y
<
=

(G

deadlock!

<

15

Summary of Lock2 Properties

* If the two threads run concurrently, acquire succeeds for one
—provides mutual exclusion

* However, Lock2 is inadequate
—if one thread runs before the other, it will deadlock

16

Combining the Ideas

Lock1 and Lock2 complement each other

* Each succeeds under conditions that causes the other to fail
—Lock1 succeeds when CS attempts do not overlap
—Lock2 succeeds when CS attempts do overlap

* Design a lock protocol that leverages the strengths of both...

17

Peterson’s Algorithm: 2-way Mutual Exclusion

class Peterson: public Lock {
private:
volatile bool flag[2];
volatile int victim;
public:
void acquire() {
int other threadid = 1 - self threadid;
flag[self threadid] = true; // ’'m interested

victim = self threadid /Il you go first
while (flag[other threadid] == true &&
victim == self threadid);

}

void release() {
flag[self threadid] = false;

}

Gary Peterson. Myths about the Mutual Exclusion Problem.
Information Processing Letters, 12(3):115-116, 1981.

18

Peterson’s Lock: Serialized Acquires

thread 0

flag[0] = true
victim=0
while(flag[1] == true
&& victim == 0);

CS, <

r

flag[0] = false

thread 1

flag[1] = true

victim =1
while(flag[0] == true
&& victim == 1);

wait

cs,

flag[1] = false

19

Peterson’s Lock: Concurrent Acquires

thread 0 thread 1
flag[0] = true
victim=0 flag[1] = frue
victim = 1
while(flag[1] == true while(flag[0] == true
&& victim == O)L && victim == 1); ~

CS
0= wait

Y

flag[0] = false™~
CS,
flag[1] = false

20

Peterson’s Algorithm Provides Mutual Exclusion

* Suppose not. Then 3 j, k € integers | |

: X X :
CS; +CS' and CS;| += CS{
* Consider each thread’s lock op before its jt" (kt") critical section
write,(flag[0] = true) — writey(victim = 0) —

read,(flag[1] == false) — read,(victim == 1) — CS, (1)
write,(flag[1] = true) — write,(victim =1) —
read,(flag[0] == false) — read,(victim == 0) — CS, (2)
* Without loss of generality, assume thread 0 was the last to write victim
write,(victim = 1) — writey(victim = 0) (3)

* Equation (3) implies that thread 0 reads victim == 0 in (1)
* Since thread 0 nevertheless enters its CS, it must have read flag[1]==false

* From (1), it must be the case that
writey(victim = 0) — read,(flag[1] == false)
* From (1), (2), and (3) and transitivity,
write,(flag[1] = true) — write,(victim =1) — (4)
write,(victim = 0) — read,(flag[1] == false)
* From (4), it follows that write,(flag[1] = true) — read(flag[1] == false)
* Contradiction! 21

Peterson’s Algorithm is Starvation-Free

Suppose not: WLG, suppose that thread 0 waits forever in acquire

—it must be executing the while statement
— waiting until flag[1] == false or victim ==

What is thread 1 doing while thread 0 fails to make progress?
—perhaps entering or leaving the critical section
— if so, thread 1 will set victim to 1 when it tries to re-enter the CS
— once itis set to 1, it will not change
— thus, thread 0 must eventually return from acquire
contradiction!
—waiting in acquire as well
— waiting for flag[0] == false or victim ==
— victim cannot be both 1 and 0, thus both threads cannot wait
contradiction!

Corollary: Peterson’s lock is deadlock-free as well

22

From 2-way to N-way Mutual Exclusion

* Peterson’s lock provides 2-way mutual exclusion
* How can we generalize to N-way mutual exclusion, N > 2?

* Filter lock: direct generalization of Peterson’s lock

23

Filter Lock

class Filter: public Lock {
private:
volatile int level[N]; volatile int victim[N-1];
public:
void acquire() {
for (int j = 1; j < N; j++) {
level [self threadid] = j;
victim [j] = self threadid;

while (sameOrHigher(self threadid,j) &&
victim[j] == self threadid);
}
}

bool sameOrHigher(int i, int j) {
for(int k = 0; k < N; k++)

if (k != i && level[k] >= j) return true;
return false;

}

void release() {
level[self threadid] = O0;

}
24

Understanding the Filter Lock

Peterson’s lock used two-element Boolean flag array

Filter lock generalization: an N-element integer 1level array
—value of level[k] = highest level thread k is interested in entering
—each thread must pass through N-1 levels of exclusion

Each level has it’s own victim flag to filter out 1 thread,
excluding it from the next level

—natural generalization of victim variable in Peterson’s algorithm

Properties of levels
—at least one thread trying to enter level k succeeds

—if more than one thread is trying to enter level k, then at least one
iIs blocked

For proofs, see Herlihy and Shavit’s manuscript

25

Lamport’s N-way Bakery Algorithm

class LamportBakery: public Lock {
private:
volatile bool flag[N]; volatile Label label[N];
public:
void acquire() {
int i = self threadid;
flag[i] = true;
label[i] = max(label[0], .., label[N-1]) + 1;
while (exists k != i such that
flag[k] && (label[k],k)<<(label[i],i));
}

void release() {
flag[self threadid] = O0;

}

26

Bakery Algorithm Intuition

Data structure components
—flag[A] = Boolean indicating whether A wants to enter the CS
—Ilabel[A] = integer that indicates the thread’s turn to enter the bakery

Protocol operation
—when a thread tries to acquire the lock, it generates a new label
— reads all other thread labels in some arbitrary order
— generates a label greater than the largest it read
— nhotes:
if 2 threads select labels concurrently, they may get the same
—algorithm uses lexicographical order on pairs of (label, thread_id)
— (label[j], j) << (label[k],k)
iff (label[j] < label[k]) || ((label[j] == label[k]) && j < k)
—in the waiting phase
— athread repeatedly rereads the labels
— waits until
no thread with its flag set has a smaller (label, thread_id) pair

Proofs: See Herlihy and Shavit manuscript (deadlock-free, FIFO, ME)
27

Observations

* Bakery algorithm is concise, elegant and fair

* Why is it not practical?
—must read N distinct locations; N could be very large
—threads must be assigned unique ids between 0 and n-1
— awkward for dynamic threads

* Is there a more clever lock using only atomic load/store that
avoids these problems?

—No. Any deadlock-free algorithm requires reading or writing at
least N distinct locations in the worst case.

—See Herlihy and Shavit manuscript for the proof.

28

References

* Maurice Herlihy and Nir Shavit. “Multiprocessor
Synchronization and Concurrent Data Structures.” Chapter 3
“Mutual Exclusion.” Draft manuscript, 2005.

* Gary Peterson. Myths about the Mutual Exclusion Problem.
Information Processing Letters, 12(3), 115-116, 1981.

29

