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Motivation

Ensure that a block of code manipulating a data structure is
executed by only one thread at a time

• Why? avoid conflicting accesses to shared data (data races)
—read/write conflicts
—write/write conflicts

• Approach: critical section

• Mechanism: lock
—methods

– acquire
– release

• Usage
—acquire lock to enter the critical section
—release lock to leave the critical section
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Properties of Good Lock Algorithms

• Mutual exclusion (safety property)
—critical sections of different threads do not overlap

– cannot guarantee integrity of computation without this property

• No deadlock
—if some thread attempts to acquire the lock, then some thread will

acquire the lock

• No starvation
—every thread that attempts to acquire the lock eventually succeeds

– implies no deadlock

Notes

• Deadlock-free locks do not imply a deadlock-free program
—e.g., can create circular wait involving a pair of “good” locks

• Starvation freedom is desirable, but not essential
—practical locks: many permit starvation, although it is unlikely to occur

• Without a real-time guarantee, starvation freedom is weak property
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Topics for Today

Classical locking algorithms using load and store

• Steps toward a two-thread solution
—two partial solutions and their properties

• Peterson’s algorithm: a two-thread solution

• Filter lock: an n-thread solution

• Lamport’s bakery lock
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Classical Lock Algorithms

• Use atomic load and store only, no stronger atomic primitives

• Not used in practice
—locks based on stronger atomic primitives are more efficient

• Why study classical algorithms?
—understand the principles underlying synchronization

– subtle
– such issues are ubiquitous in parallel programs
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Toward a Classical Lock for Two Threads

• First, consider two inadequate but interesting lock algorithms
—use load and store only

• Assumptions
—only two threads
— each thread has a unique value of self_threadid ∈ {0,1}
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Lock1

class Lock1: public Lock {
  private:

  volatile bool flag[2];
public:

    void acquire() {
      int other_threadid = 1 - self_threadid;
      flag[self_threadid] = true;
      while (flag[other_threadid] == true);
    }
    void release() {
      flag[self_threadid] = false;
    }
}

set my flag

wait until other flag
is false
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Using Lock1

flag[0] = true
while(flag[1] == true);

flag[1] = true

flag[0] = false

CS0

CS1

flag[1] = false

wait

thread 0 thread 1

while(flag[0] == true);
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Lock1 Provides Mutual Exclusion

Proof

• Suppose not. Then ∃ j, k ∈  integers

• Consider each thread’s acquire before its jth (kth) critical section
write0(flag[0] = true) → read0(flag[1] == false) → CS0           (1)
write1(flag[1] = true) → read1(flag[0] == false) → CS1           (2)

• However, once flag[1] == true, it remains true while thread 1 in CS1

• So (1) could not hold unless
read0(flag[1] == false) → write1(flag[1] = true)                        (3)

• From (1), (2), and (3)
write0(flag[0] = true) → read0(flag[1] == false) →                   (4)

write1(flag[1] = true) → read1(flag[0] == false)

• By (4) write0(flag[0] = true) → read1(flag[0] == false): a contradiction
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Using Lock1

flag[0] = true

while(flag[1] == true);
flag[1] = true

flag[1] = false

wait 

thread 0 thread 1

while(flag[0] == true);

wait 

deadlock!
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Summary of Lock1 Properties

• If one thread executes acquire before the other, works fine
—Lock1 provides mutual exclusion

• However, Lock1 is inadequate
—if both threads write flags before either reads → deadlock
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Lock2

class Lock2: public Lock {
  private:

  volatile int victim;
public:

    void acquire() {
      victim = self_threadid;
      while (victim == self_threadid); // busy wait
    }
    void release() { }
}
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Using Lock2

victim = 0

while(victim == 0);
victim = 1

wait 

thread 0 thread 1

while(victim == 1);

victim = 0

while(victim == 0);

wait 
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Lock2 Provides Mutual Exclusion

Proof

• Suppose not. Then ∃ j, k ∈  integers

• Consider each thread’s acquire before its jth (kth) critical section
write0(victim = 0) → read0(victim == 1) → CS0           (1)
write1(victim = 1) → read1(victim == 0) → CS1           (2)

• For thread 0 to enter the critical section, thread 1 must assign victim = 1
write0(victim = 0) → write1(victim = 1) → read0(victim == 1)  (3)

• Once write1(victim = 1) occurs, victim does not change

• Therefore, thread 1 cannot read1(victim == 0) and enter its CS

• Contradiction!
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Using Lock2

thread 0

wait 

deadlock!

victim = 0
while(victim == 0);
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Summary of Lock2 Properties

• If the two threads run concurrently, acquire succeeds for one
—provides mutual exclusion

• However, Lock2 is inadequate
—if one thread runs before the other, it will deadlock
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Combining the Ideas

Lock1 and Lock2 complement each other

• Each succeeds under conditions that causes the other to fail
—Lock1 succeeds when CS attempts do not overlap
—Lock2 succeeds when CS attempts do overlap

• Design a lock protocol that leverages the strengths of both…
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Peterson’s Algorithm: 2-way Mutual Exclusion

class Peterson: public Lock {
  private:

  volatile bool flag[2];
    volatile int victim;

public:
    void acquire() {
      int other_threadid = 1 - self_threadid;
      flag[self_threadid] = true;   // I’m interested
      victim = self_threadid        // you go first
      while (flag[other_threadid] == true &&
             victim == self_threadid);
    }
    void release() {
      flag[self_threadid] = false;
    }
}

Gary Peterson. Myths about the Mutual Exclusion Problem.
Information Processing Letters, 12(3):115-116, 1981.
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Peterson’s Lock: Serialized Acquires

flag[0] = true
victim = 0

while(flag[1] == true
&& victim == 0); flag[1] = true

victim = 1

flag[0] = false

CS0

CS1

flag[1] = false

wait

thread 0 thread 1

while(flag[0] == true
 && victim == 1);
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Peterson’s Lock: Concurrent Acquires

flag[0] = true
victim = 0

while(flag[1] == true
&& victim == 0);

flag[1] = true
victim = 1

flag[0] = false

CS0

CS1

flag[1] = false

wait

thread 0 thread 1

while(flag[0] == true
 && victim == 1);
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Peterson’s Algorithm Provides Mutual Exclusion

• Suppose not. Then ∃ j, k ∈  integers

• Consider each thread’s lock op before its jth (kth) critical section
write0(flag[0] = true) → write0(victim = 0) →

     read0(flag[1] == false) → read0(victim == 1) → CS0 (1)
write1(flag[1] = true) → write1(victim = 1) →
         read1(flag[0] == false) → read1(victim == 0) → CS1  (2)

• Without loss of generality, assume thread 0 was the last to write victim
write1(victim = 1) → write0(victim = 0) (3)

• Equation (3) implies that thread 0 reads victim == 0 in (1)
• Since thread 0 nevertheless enters its CS, it must have read flag[1]==false
• From (1), it must be the case that

        write0(victim = 0) → read0(flag[1] == false)
• From (1), (2), and (3) and transitivity,

write1(flag[1] = true) → write1(victim = 1) → (4)
   write0(victim = 0) → read0(flag[1] == false)

• From (4), it follows that write1(flag[1] = true) → read0(flag[1] == false)
• Contradiction!
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Peterson’s Algorithm is Starvation-Free

• Suppose not: WLG, suppose that thread 0 waits forever in acquire
—it must be executing the while statement

– waiting until flag[1] == false or victim == 1

• What is thread 1 doing while thread 0 fails to make progress?
—perhaps entering or leaving the critical section

– if so, thread 1 will set victim to 1 when it tries to re-enter the CS
– once it is set to 1, it will not change
– thus, thread 0 must eventually return from acquire

 contradiction!
—waiting in acquire as well

– waiting for flag[0] == false or victim == 0
– victim cannot be both 1 and 0, thus both threads cannot wait

 contradiction!

• Corollary: Peterson’s lock is deadlock-free as well
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From 2-way to N-way Mutual Exclusion

• Peterson’s lock provides 2-way mutual exclusion

• How can we generalize to N-way mutual exclusion, N > 2?

• Filter lock: direct generalization of Peterson’s lock
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Filter Lock

class Filter: public Lock {
  private:
    volatile int level[N]; volatile int victim[N-1];

public:
    void acquire() {
      for (int j = 1; j < N; j++) {
        level [self_threadid] = j;
        victim [j] = self_threadid;
         // wait while conflicts exist
        while (sameOrHigher(self_threadid,j) &&
               victim[j] == self_threadid);
      }
    }
    bool sameOrHigher(int i, int j) {
      for(int k = 0; k < N; k++)
        if (k != i && level[k] >= j) return true;
      return false;
    }
    void release() {
      level[self_threadid] = 0;
    }
}
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Understanding the Filter Lock

• Peterson’s lock used two-element Boolean flag array

• Filter lock generalization: an N-element integer level array
—value of level[k] = highest level thread k is interested in entering
—each thread must pass through N-1 levels of exclusion

• Each level has it’s own victim flag to filter out 1 thread,
excluding it from the next level
—natural generalization of victim variable in Peterson’s algorithm

• Properties of levels
—at least one thread trying to enter level k succeeds
—if more than one thread is trying to enter level k, then at least one

is blocked

• For proofs, see Herlihy and Shavit’s manuscript
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Lamport’s N-way Bakery Algorithm

class LamportBakery: public Lock {
  private:
    volatile bool flag[N]; volatile Label label[N];

public:
    void acquire() {
     int i = self_threadid;
     flag[i] = true;
     label[i] = max(label[0], …, label[N-1]) + 1;
     while (exists k != i such that
       flag[k] && (label[k],k)<<(label[i],i));
    }
    void release() {
      flag[self_threadid] = 0;
    }
}
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Bakery Algorithm Intuition

• Data structure components
—flag[A] = Boolean indicating whether A wants to enter the CS
—label[A] = integer that indicates the thread’s turn to enter the bakery

• Protocol operation
—when a thread tries to acquire the lock, it generates a new label

– reads all other thread labels in some arbitrary order
– generates a label greater than the largest it read
– notes:

 if 2 threads select labels concurrently, they may get the same
—algorithm uses lexicographical order on pairs of (label, thread_id)

– (label[j], j) << (label[k],k)
 iff (label[j] < label[k]) || ((label[j] == label[k]) && j < k)

—in the waiting phase
– a thread repeatedly rereads the labels
– waits until

 no thread with its flag set has a smaller (label, thread_id) pair

• Proofs: See Herlihy and Shavit manuscript (deadlock-free, FIFO, ME)
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Observations

• Bakery algorithm is concise, elegant and fair

• Why is it not practical?
—must read N distinct locations; N could be very large
—threads must be assigned unique ids between 0 and n-1

– awkward for dynamic threads

• Is there a more clever lock using only atomic load/store that
avoids these problems?
—No. Any deadlock-free algorithm requires reading or writing at

least N distinct locations in the worst case.
—See Herlihy and Shavit manuscript for the proof.
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