
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@cs.rice.edu

Mutual Exclusion:
Classical Algorithms for Locks

COMP 422 Lecture 18 21 March 2006

2

Motivation

Ensure that a block of code manipulating a data structure is
executed by only one thread at a time

• Why? avoid conflicting accesses to shared data (data races)
—read/write conflicts
—write/write conflicts

• Approach: critical section

• Mechanism: lock
—methods

– acquire
– release

• Usage
—acquire lock to enter the critical section
—release lock to leave the critical section

3

Properties of Good Lock Algorithms

• Mutual exclusion (safety property)
—critical sections of different threads do not overlap

– cannot guarantee integrity of computation without this property

• No deadlock
—if some thread attempts to acquire the lock, then some thread will

acquire the lock

• No starvation
—every thread that attempts to acquire the lock eventually succeeds

– implies no deadlock

Notes

• Deadlock-free locks do not imply a deadlock-free program
—e.g., can create circular wait involving a pair of “good” locks

• Starvation freedom is desirable, but not essential
—practical locks: many permit starvation, although it is unlikely to occur

• Without a real-time guarantee, starvation freedom is weak property

4

Topics for Today

Classical locking algorithms using load and store

• Steps toward a two-thread solution
—two partial solutions and their properties

• Peterson’s algorithm: a two-thread solution

• Filter lock: an n-thread solution

• Lamport’s bakery lock

5

Classical Lock Algorithms

• Use atomic load and store only, no stronger atomic primitives

• Not used in practice
—locks based on stronger atomic primitives are more efficient

• Why study classical algorithms?
—understand the principles underlying synchronization

– subtle
– such issues are ubiquitous in parallel programs

6

Toward a Classical Lock for Two Threads

• First, consider two inadequate but interesting lock algorithms
—use load and store only

• Assumptions
—only two threads
— each thread has a unique value of self_threadid ∈ {0,1}

7

Lock1

class Lock1: public Lock {
 private:

 volatile bool flag[2];
public:

 void acquire() {
 int other_threadid = 1 - self_threadid;
 flag[self_threadid] = true;
 while (flag[other_threadid] == true);
 }
 void release() {
 flag[self_threadid] = false;
 }
}

set my flag

wait until other flag
is false

8

Using Lock1

flag[0] = true
while(flag[1] == true);

flag[1] = true

flag[0] = false

CS0

CS1

flag[1] = false

wait

thread 0 thread 1

while(flag[0] == true);

9

Lock1 Provides Mutual Exclusion

Proof

• Suppose not. Then ∃ j, k ∈ integers

• Consider each thread’s acquire before its jth (kth) critical section
write0(flag[0] = true) → read0(flag[1] == false) → CS0 (1)
write1(flag[1] = true) → read1(flag[0] == false) → CS1 (2)

• However, once flag[1] == true, it remains true while thread 1 in CS1

• So (1) could not hold unless
read0(flag[1] == false) → write1(flag[1] = true) (3)

• From (1), (2), and (3)
write0(flag[0] = true) → read0(flag[1] == false) → (4)

write1(flag[1] = true) → read1(flag[0] == false)

• By (4) write0(flag[0] = true) → read1(flag[0] == false): a contradiction

!

CS
0

j
"CS

1

k/

!

CS
1

k
"CS

0

j/and

10

Using Lock1

flag[0] = true

while(flag[1] == true);
flag[1] = true

flag[1] = false

wait

thread 0 thread 1

while(flag[0] == true);

wait

deadlock!

11

Summary of Lock1 Properties

• If one thread executes acquire before the other, works fine
—Lock1 provides mutual exclusion

• However, Lock1 is inadequate
—if both threads write flags before either reads → deadlock

12

Lock2

class Lock2: public Lock {
 private:

 volatile int victim;
public:

 void acquire() {
 victim = self_threadid;
 while (victim == self_threadid); // busy wait
 }
 void release() { }
}

13

Using Lock2

victim = 0

while(victim == 0);
victim = 1

wait

thread 0 thread 1

while(victim == 1);

victim = 0

while(victim == 0);

wait

14

Lock2 Provides Mutual Exclusion

Proof

• Suppose not. Then ∃ j, k ∈ integers

• Consider each thread’s acquire before its jth (kth) critical section
write0(victim = 0) → read0(victim == 1) → CS0 (1)
write1(victim = 1) → read1(victim == 0) → CS1 (2)

• For thread 0 to enter the critical section, thread 1 must assign victim = 1
write0(victim = 0) → write1(victim = 1) → read0(victim == 1) (3)

• Once write1(victim = 1) occurs, victim does not change

• Therefore, thread 1 cannot read1(victim == 0) and enter its CS

• Contradiction!

!

CS
0

j
"CS

1

k/

!

CS
1

k
"CS

0

j/and

15

Using Lock2

thread 0

wait

deadlock!

victim = 0
while(victim == 0);

16

Summary of Lock2 Properties

• If the two threads run concurrently, acquire succeeds for one
—provides mutual exclusion

• However, Lock2 is inadequate
—if one thread runs before the other, it will deadlock

17

Combining the Ideas

Lock1 and Lock2 complement each other

• Each succeeds under conditions that causes the other to fail
—Lock1 succeeds when CS attempts do not overlap
—Lock2 succeeds when CS attempts do overlap

• Design a lock protocol that leverages the strengths of both…

18

Peterson’s Algorithm: 2-way Mutual Exclusion

class Peterson: public Lock {
 private:

 volatile bool flag[2];
 volatile int victim;

public:
 void acquire() {
 int other_threadid = 1 - self_threadid;
 flag[self_threadid] = true; // I’m interested
 victim = self_threadid // you go first
 while (flag[other_threadid] == true &&
 victim == self_threadid);
 }
 void release() {
 flag[self_threadid] = false;
 }
}

Gary Peterson. Myths about the Mutual Exclusion Problem.
Information Processing Letters, 12(3):115-116, 1981.

19

Peterson’s Lock: Serialized Acquires

flag[0] = true
victim = 0

while(flag[1] == true
&& victim == 0); flag[1] = true

victim = 1

flag[0] = false

CS0

CS1

flag[1] = false

wait

thread 0 thread 1

while(flag[0] == true
 && victim == 1);

20

Peterson’s Lock: Concurrent Acquires

flag[0] = true
victim = 0

while(flag[1] == true
&& victim == 0);

flag[1] = true
victim = 1

flag[0] = false

CS0

CS1

flag[1] = false

wait

thread 0 thread 1

while(flag[0] == true
 && victim == 1);

21

Peterson’s Algorithm Provides Mutual Exclusion

• Suppose not. Then ∃ j, k ∈ integers

• Consider each thread’s lock op before its jth (kth) critical section
write0(flag[0] = true) → write0(victim = 0) →

 read0(flag[1] == false) → read0(victim == 1) → CS0 (1)
write1(flag[1] = true) → write1(victim = 1) →
 read1(flag[0] == false) → read1(victim == 0) → CS1 (2)

• Without loss of generality, assume thread 0 was the last to write victim
write1(victim = 1) → write0(victim = 0) (3)

• Equation (3) implies that thread 0 reads victim == 0 in (1)
• Since thread 0 nevertheless enters its CS, it must have read flag[1]==false
• From (1), it must be the case that

 write0(victim = 0) → read0(flag[1] == false)
• From (1), (2), and (3) and transitivity,

write1(flag[1] = true) → write1(victim = 1) → (4)
 write0(victim = 0) → read0(flag[1] == false)

• From (4), it follows that write1(flag[1] = true) → read0(flag[1] == false)
• Contradiction!

!

CS
0

j
"CS

1

k/

!

CS
1

k
"CS

0

j/and

22

Peterson’s Algorithm is Starvation-Free

• Suppose not: WLG, suppose that thread 0 waits forever in acquire
—it must be executing the while statement

– waiting until flag[1] == false or victim == 1

• What is thread 1 doing while thread 0 fails to make progress?
—perhaps entering or leaving the critical section

– if so, thread 1 will set victim to 1 when it tries to re-enter the CS
– once it is set to 1, it will not change
– thus, thread 0 must eventually return from acquire

 contradiction!
—waiting in acquire as well

– waiting for flag[0] == false or victim == 0
– victim cannot be both 1 and 0, thus both threads cannot wait

 contradiction!

• Corollary: Peterson’s lock is deadlock-free as well

23

From 2-way to N-way Mutual Exclusion

• Peterson’s lock provides 2-way mutual exclusion

• How can we generalize to N-way mutual exclusion, N > 2?

• Filter lock: direct generalization of Peterson’s lock

24

Filter Lock

class Filter: public Lock {
 private:
 volatile int level[N]; volatile int victim[N-1];

public:
 void acquire() {
 for (int j = 1; j < N; j++) {
 level [self_threadid] = j;
 victim [j] = self_threadid;
 // wait while conflicts exist
 while (sameOrHigher(self_threadid,j) &&
 victim[j] == self_threadid);
 }
 }
 bool sameOrHigher(int i, int j) {
 for(int k = 0; k < N; k++)
 if (k != i && level[k] >= j) return true;
 return false;
 }
 void release() {
 level[self_threadid] = 0;
 }
}

25

Understanding the Filter Lock

• Peterson’s lock used two-element Boolean flag array

• Filter lock generalization: an N-element integer level array
—value of level[k] = highest level thread k is interested in entering
—each thread must pass through N-1 levels of exclusion

• Each level has it’s own victim flag to filter out 1 thread,
excluding it from the next level
—natural generalization of victim variable in Peterson’s algorithm

• Properties of levels
—at least one thread trying to enter level k succeeds
—if more than one thread is trying to enter level k, then at least one

is blocked

• For proofs, see Herlihy and Shavit’s manuscript

26

Lamport’s N-way Bakery Algorithm

class LamportBakery: public Lock {
 private:
 volatile bool flag[N]; volatile Label label[N];

public:
 void acquire() {
 int i = self_threadid;
 flag[i] = true;
 label[i] = max(label[0], …, label[N-1]) + 1;
 while (exists k != i such that
 flag[k] && (label[k],k)<<(label[i],i));
 }
 void release() {
 flag[self_threadid] = 0;
 }
}

27

Bakery Algorithm Intuition

• Data structure components
—flag[A] = Boolean indicating whether A wants to enter the CS
—label[A] = integer that indicates the thread’s turn to enter the bakery

• Protocol operation
—when a thread tries to acquire the lock, it generates a new label

– reads all other thread labels in some arbitrary order
– generates a label greater than the largest it read
– notes:

 if 2 threads select labels concurrently, they may get the same
—algorithm uses lexicographical order on pairs of (label, thread_id)

– (label[j], j) << (label[k],k)
 iff (label[j] < label[k]) || ((label[j] == label[k]) && j < k)

—in the waiting phase
– a thread repeatedly rereads the labels
– waits until

 no thread with its flag set has a smaller (label, thread_id) pair

• Proofs: See Herlihy and Shavit manuscript (deadlock-free, FIFO, ME)

28

Observations

• Bakery algorithm is concise, elegant and fair

• Why is it not practical?
—must read N distinct locations; N could be very large
—threads must be assigned unique ids between 0 and n-1

– awkward for dynamic threads

• Is there a more clever lock using only atomic load/store that
avoids these problems?
—No. Any deadlock-free algorithm requires reading or writing at

least N distinct locations in the worst case.
—See Herlihy and Shavit manuscript for the proof.

29

References

• Maurice Herlihy and Nir Shavit. “Multiprocessor
Synchronization and Concurrent Data Structures.” Chapter 3
“Mutual Exclusion.” Draft manuscript, 2005.

• Gary Peterson. Myths about the Mutual Exclusion Problem.
Information Processing Letters, 12(3), 115-116, 1981.

