
1

11 1CS163, B. D. Fleisch

Stallings Chapter 5 (cont.)Stallings Chapter 5 (cont.)

Lecture 12Lecture 12

Concurrency: Mutual Exclusion Concurrency: Mutual Exclusion
and Synchronization (2)and Synchronization (2)

CS163, B. D. Fleisch 2

The testThe test--andand--set instruction(1)set instruction(1)

n A C++ description of
test-and- set instruction:

n Example that uses
test&set for Mutual
Exclusion:
u Shared variable lock

is initialized to 0
u Only the first Pi who

sets lock enter CS
bool test&set(int& i)
{
if (i==0) {
i=1;
return true;

} else {
return false;

}
}

Process Pi:
repeat
repeat{}
until test&set(lock);

CS
lock:=0;

RS
forever

CS163, B. D. Fleisch 3

The testThe test--andand--set instruction (2)set instruction (2)

n Mutual exclusion is preserved: if Pi enters
the CS, the other Pjs are busy waiting

n Problem: solution uses busy waiting
n When Pi exits the CS, the selection of the Pj

that enters the CS is arbitrary: no bounded
waiting. Hence starvation is possible

n Processors (ex: Pentium) often provide an
atomic xchg(a,b) instruction that swaps the
values of a and b. Also called swap(a,b).

n xchg(a,b) suffers from the same problems
as test-and-set

CS163, B. D. Fleisch 4

Using Using xchg xchg (or Swap) for mutual exclusion(or Swap) for mutual exclusion
n Shared variable lock

is initialized to 0
n Each Pi has a local

variable called key

n The only Pi that can
enter CS is the one
who finds lock=0

n This Pi excludes all
the other Pj by setting
lock to 1

Process Pi:
repeat
key:=1
repeat xchg(key,lock)
until key=0;

CS
lock:=0;

RS
forever

2

CS163, B. D. Fleisch 5

Software solutionsSoftware solutions

n We consider first the case of 2 process solutions
u Algorithm 1 - 3 are incorrect
u Algorithm 4 is correct (Peterson’s algorithm)

n Then we generalize to n processes
u Lamport’s Bakery algorithm

n Notation
u We have 2 processes: P0 and P1
u When presenting process Pi, Pj always denote the

other process (i != j)

CS163, B. D. Fleisch 6

Algorithm 1Algorithm 1

n The shared variable turn is
initialized (to 0 or 1) before
executing any Pi

n Pi’s critical section is executed
iff turn = i

n Pi is busy waiting if Pj is in CS:
mutual exclusion is satisfied

n Progress requirement is not
satisfied since it requires strict
alternation of CSs

Process Pi:
repeat
while(turn!=i){};

CS
turn:=j;

RS
forever

CS163, B. D. Fleisch 7

Algorithm 2Algorithm 2

n Keep a Boolean variable for
each process: flag[0] and
flag[1]

n Pi signals that it is ready to
enter it’s CS by: flag[i]:=true

n First check flag[] other
process before proceeding

n Does not satisfy correctness
requirement

Process Pi:
repeat
while(flag[j]){};
flag[i]:=true;

CS
flag[i]:=false;

RS
forever

CS163, B. D. Fleisch 8

Algorithm 3Algorithm 3
n Keep a Boolean variable for

each process: flag[0] and
flag[1]

n Pi signals that it is ready to
enter it’s CS by: flag[i]:=true

n ME is satisfied but not the
progress requirement

n If we have the sequence:
u T0: flag[0]:=true
u T1: flag[1]:=true

n Both process will wait forever
to enter their CS: we have a
deadlock

Process Pi:
repeat
flag[i]:=true;
while(flag[j]){};

CS
flag[i]:=false;

RS
forever

3

CS163, B. D. Fleisch 9

Algorithm 4 (Peterson’s algorithm)Algorithm 4 (Peterson’s algorithm)
n Initialization:

flag[0]:=flag[1]:=false
turn:= 0 or 1

n Willingness to enter
CS specified by
flag[i]:=true

n If both processes
attempt to enter their
CS simultaneously,
turn value arbitrates

n Exit section: specifies
that Pi is unwilling to
enter CS

Process Pi:
repeat
flag[i]:=true;
turn:=j;
do {} while
(flag[j]and turn=j);

CS
flag[i]:=false;

RS
forever

CS163, B. D. Fleisch 10

Analysis of which Process Enters FirstAnalysis of which Process Enters First

Process Pi:
repeat
flag[i]:=true;
turn:=j;
do {} while
(flag[j]and
turn=j);

CS
flag[i]:=false;

RS
forever

Process Pj:
repeat
flag[j]:=true;
turn:=i;
do {} while
(flag[i]and
turn=i);

CS
flag[j]:=false;

RS
forever

CS163, B. D. Fleisch 11

Algorithm 4: proof of correctnessAlgorithm 4: proof of correctness

n Mutual exclusion is preserved since:
uP0 and P1 are both in CS only if flag[0] =

flag[1] = true and only if turn = i for each Pi
(impossible)

n We now prove that the progress and bounded
waiting requirements are satisfied:
uPi cannot enter CS only if stuck in while() with

condition flag[j] = true and turn = j.
u If Pj is not ready to enter CS then flag[j] =

false and Pi can then enter its CS

CS163, B. D. Fleisch 12

Algorithm 4: proof of correctness (cont.)Algorithm 4: proof of correctness (cont.)

n If Pj has set flag[j]=true and is in its while(),
then either turn=i or turn=j

n If turn=i, then Pi enters CS. If turn=j then Pj
enters CS but will then reset flag[j]=false
on exit: allowing Pi to enter CS

n but if Pj has time to reset flag[j]=true, it
must also set turn=i

n since Pi does not change value of turn
while stuck in while(), Pi will enter CS after
at most one CS entry by Pj (bounded
waiting)

4

CS163, B. D. Fleisch 13

What about process failures?What about process failures?
n If all 3 criteria (ME, progress, bounded

waiting) are satisfied, then a valid solution
will provide robustness against failure of a
process in its remainder section (RS)
u since failure in RS is just like having an

infinitely long RS
n However, no valid solution can provide

robustness against a process failing in its
critical section (CS)
uA process Pi that fails in its CS does not

signal that fact to other processes: for the
others Pi is still in its CS

