Concurrency: Mutual Exclusion
and Synchronization (2)

Stallings Chapter 5 (cont.)

Lecture 12

The test-and-set instruction(1)

A C++ description of
test-and-set instruction:

bool testé&set(int& i)
{
if (i==0) {
i=1;
return true;
} else {
return false;

Example that uses
test&set for Mutual
Exclusion:

+ Shared variable lock
is initialized to 0

+ Only the first Pi who
sets lock enter CS

Process Pi:
repeat
CS

RS
forever

The test-and-set instruction (2)

Mutual exclusion is preserved: if Pi enters
the CS, the other Pjs are

Problem: solution uses busy waiting

When Pi exits the CS, the selection of the Pj
that enters the CS is arbitrary:

. Hence is possible
Processors (ex: Pentium) often provide an
atomic (a,b) instruction that swaps the
values of aand b. Also called (a,b).
xchg(a,b) suffers from the same problems
as test-and-set

Using xchg (or Swap) for mutual exclusion

Shared variable lock
is initialized to 0
Each Pi has alocal
variable called key
The only Pi that can
enter CSis the one
who finds lock=0
This Pi excludes all
the other Pj by setting
lock to 1

Process Pi:
r epeat

Cs

RS
forever

Software solutions

We consider first the case of 2 process solutions
¢ Algorithm 1 - 3 are incorrect
o Algorithm 4 is correct (Peterson’s algorithm)
Then we generalize to n processes
o Lamport’s Bakery algorithm
Notation

Algorithm 1

The shared variable is
initialized (to 0 or 1) before
executing any P; Process Pi:

Pi’s critical section is executed repeat
iff turn =i

Piis if Pjis in CS: cs
mutual exclusion is satisfied

+ We have 2 processes: PO and P1 Pro_gr_ess r.equit?ement_ is not . ¢ RS
« When presenting process Pi, Pj always denote the satisfied since it requires strict ' O" €Ver
other process (i !=j) alternation of CSs
Algorithm 2 Algorithm 3
Keep a Boolean variable for
Keep a Boolean variable for ﬁg(éf[llﬁroceSS: flag[0] and
each process: flag[0] and - S o i
ﬂag[l’]) o Process Pi: Pi signals that it is ready to Fgogztss P
S . repeat enter it's CS by: flag[i]:=true P

Pi signals that it is ready to - T
enter it's CS by: flag[i]:=true MrI(E) '?ssi'fg'e&r%%grﬂt the
First check flag[] other cs Prog q) cs
process before proceeding If we have the sequence:
Does not satisfy correctness RS +TO: flag[0]:=true . RS
requirement forever * T1: flag[1]:=true orever

Both process will wait forever
to enter their CS: we have a

Algorithm 4 (Peterson’s algorithm)

Initialization:
flag[0]:=flag[1]:=false
turn:=0or 1

Willingness to enter Process Pi:
CS specified by repeat
flag[i]:=true

If both processes
attempt to enter their
CS simultaneously,

t ur n value arbitrates Cs
Exit section: specifies
that Pi is unwilling to
enter CS

RS
forever

Analysis of which Process Enters First

Process Pi: Process Pj:
repeat r epeat

cs CSs

RS RS
forever forever

Algorithm 4: proof of correctness

Mutual exclusion is preserved since:

¢ PO and P1 are both in CS only if flag[0] =
flag[1] = true and only if turn =i for each Pi
(impossible)

We now prove that the progress and bounded

waiting requirements are satisfied:

« Pi cannot enter CS only if stuck in while() with

condition flag[j] =true and turn =j.

« If Pjis not ready to enter CS then flag[j] =
false and Pi can then enter its CS

Algorithm 4: proof of correctness (cont.)

If Pj has set flag[j]=true and is in its while(),
then either turn=i or turn=j

If turn=i, then Pi enters CS. If turn=j then Pj
enters CS but will then reset flag[j]=false
on exit: allowing Pi to enter CS

but if Pj has time to reset flag[j]=true, it
must also set turn=i

since Pi does not change value of turn
while stuck in while(), Pi will enter CS after
at most one CS entry by Pj (bounded
waiting)

What about process failures?

If all 3 criteria (ME, progress, bounded
waiting) are satisfied, then a valid solution
will provide robustness against failure of a
process in its remainder section (RS)
e since failure in RS is just like having an
infinitely long RS
However, no valid solution can provide
robustness against a process failing in its
critical section (CS)
+ A process Pi that fails in its CS does not
signal that fact to other processes: for the
others Pi is still in its CS

