
L23 – Synchronization and Deadlock 16.004 – Spring 2001 5/8/01

Synchronization & Deadlock

Handouts: Lecture Slides

L23 – Synchronization and Deadlock 26.004 – Spring 2001 5/8/01

Interprocess Communication
Why communicate?

- Concurrency
- Asynchrony
- Processes as a

programming primitive
- Data/Event driven

How to communicate?
• Shared Memory

(overlapping contexts)...
• Supervisor calls
• Synchronization instructions,

hardware support

P1 P2
Code

Stack
Data

Code

Stack
Data

Shared
Data

L23 – Synchronization and Deadlock 36.004 – Spring 2001 5/8/01

Problems with Concurrency
Suppose you and your friend visit
the ATM at exactly the same
time, and remove $50 from your
account. What happens?

Debit(int account, int amount)
{

t = balance[account];
balance[account] = t – amount;

}

What could possibly happen?

Debit(6004, 50) Debit(6004, 50)

Process # 1 Process #2
LD(R10, balance, R0)
SUB(R0, R1, R0)
ST(R0, balance, R10)
… …

LD(R10, balance, R0)
SUB(R0, R1, R0)
ST(R0, balance, R10)

NET: You have $100, and your bank
balance is $100 less.

L23 – Synchronization and Deadlock 46.004 – Spring 2001 5/8/01

But, what if…
Process # 1 Process #2
LD(R10, balance, R0)

…
LD(R10, balance, R0)
SUB(R0, R1, R0)
ST(R0, balance, R10)
…

SUB(R0, R1, R0)
ST(R0, balance, R10)
…

NET: You have $100 and your bank
balance is $50 less!

We need to be careful when
writing concurrent programs. In
particular, when modifying
shared data.

For certain code segments,
called CRITICAL SECTIONS, we
would like to assure that no
two executions overlap.

This constraint is called
MUTUAL-EXCLUSION.

L23 – Synchronization and Deadlock 56.004 – Spring 2001 5/8/01

Semaphores (Dijkstra)
Programming construct for synchronization:

• NEW DATA TYPE: semaphore, integer-valued
semaphore s = K; /* initialize s to K */

• NEW OPERATIONS (defined on semaphores):
wait(semaphore s)

stall current process if (s <= 0), otherwise s = s – 1
signal(semaphore s)

s = s + 1, (can have side effect of letting other processes proceed)

• SEMANTIC GUARANTEE: A semaphore s initialized to K enforces the
constraint:

wait(s)i+Ksignal(s)i

This is a
precedence

relationship,
meaning that the
(i+K)th call to wait
cannot complete

before the
ith call to

signal completes.

L23 – Synchronization and Deadlock 66.004 – Spring 2001 5/8/01

Implementing Mutual Exclusion
semaphore lock = 1;
…
Debit(int account, int amount)
{

wait(lock); /* Wait for exclusive access */
t = balance[account];
balance[account] = t – amount;
signal(lock); /* Finished with lock */

}

ISSUES:
Granularity of lock

1 lock for whole balance database?
1 lock per account?
1 lock for all accounts ending in 004?

Implementation of wait() and signal() functions

L23 – Synchronization and Deadlock 76.004 – Spring 2001 5/8/01

Semaphores as Supervisor Call
wait_h()
{

int *addr;
addr = User.Regs[R0]; /* get arg */
if (*addr <= 0) {

User.Regs[XP] = User.Regs[XP] – 4;
sleep(addr);

} else
*addr = *addr - 1;

}

signal_h()
{

int *addr;
addr = User.Regs[R0]; /* get arg */
*addr = *addr + 1;
wakeup(addr);

}

Calling sequence:
…
; put address of lock
; into R0
CMOVE(lock, R0)
SVC(WAIT)

SVC call is not
interruptible since it
is executed in
supervisory mode.

L23 – Synchronization and Deadlock 86.004 – Spring 2001 5/8/01

H/W support for Semaphores
TCLR(RA, literal, RC) test and clear location

PC ←←←← PC + 4
EA ←←←← Reg[Ra] + literal
Reg[Rc] ←←←← MEM[EA]
MEM[EA] ←←←← 0

Executed ATOMICALLY (cannot be interrupted)
Can easily implement mutual exclusion using binary semaphore

wait: TCLR(R31, lock, R0)
BEQ(R0,wait)
… critical section …
CMOVE(1,R0)
ST(R0, lock, R31)

wait(lock)

signal(lock)

L23 – Synchronization and Deadlock 96.004 – Spring 2001 5/8/01

More Advanced Example

P
C

PRODUCER
CONSUMER

loop: <xxx>;
send(c);
goto loop

loop: c = rcv();
<yyy>;
goto loop

PRODUCER-CONSUMER Problem:

Examples: UNIX pipeline, Word processor/Printer Driver,
Preprocessor/Compiler, Compiler/Assembler

L23 – Synchronization and Deadlock 106.004 – Spring 2001 5/8/01

Synchrony of Communication

Precedence
Constraints:

• Can’t CONSUME data
before it’s PRODUCED

• Producer can’t
“OVERWRITE” data
before it’s consumed

PRODUCER CONSUMER

2<xxx>

3<xxx>

<xxx> 1
send 1

<yyy> 1

rcv 1

send 2

<yyy> 2

rcv 2

send 3

<yyy> 3

rcv 3

loop: <xxx>;
send(c);
goto loop

loop: c = rcv();
<yyy>;
goto loop

sendi rcvi

rcvi sendi+1

L23 – Synchronization and Deadlock 116.004 – Spring 2001 5/8/01

FIFO Buffering

RELAXES interprocess synchronization constraints. Buffering
relaxes the following OVERWRITE constraint.

P CN-character
FIFO buffer

<xxx>;
send(c0);

rcv(); //c0
<yyy>;

<xxx>;
send(c1);

rcv(); //c1
<yyy>;

<xxx>;
send(c2);

rcv(); //c2
<yyy>;

<xxx>;
send(c3);

time

c0 c1 c2c0 c0 c1 c0 c1 c2 c0 c1 c2 c3 c0 c1 c2 c3c0 c1 c2

rcvi sendi+N

Read ptr

Write ptr

L23 – Synchronization and Deadlock 126.004 – Spring 2001 5/8/01

Example: Bounded Buffer Problem

send(char c)
{

buf[in] = c;
in = (in+1)% N;

}

char rcv()
{ char c;

c = buf[out];
out = (out+1)% N;
return c;

}

PRODUCER: CONSUMER:

char buf[N]; /* The buffer */
int in=0, out=0;

SHARED MEMORY:

Problem: Doesn’t enforce precedence constraints
(i.e. rcv() could be invoked prior to any send())

Problem: Doesn’t enforce precedence constraints
(i.e. rcv() could be invoked prior to any send())

L23 – Synchronization and Deadlock 136.004 – Spring 2001 5/8/01

Using Semaphores for Resource Allocation

ABSTRACT PROBLEM:
• POOL of K resources
• Many processes, each needs resource for occasional

uninterrupted periods
• MUST guarantee that at most K resources are in use at any time.

Semaphore Solution:

In shared memory:
semaphore s = K; /* K resources */

In each process:
...
wait(s); /* Allocate one */
... /* use it for a while */
signal(s); /* return it to pool */
...

L23 – Synchronization and Deadlock 146.004 – Spring 2001 5/8/01

Bounded Buffer Problem w/Semaphores

send(char c)
{

buf[in] = c;
in = (in+1)%N;
signal(chars);

}

char rcv()
{ char c;

wait(chars);
c = buf[out];
out = (out+1)%N;
return c;

}

PRODUCER: CONSUMER:

char buf[N]; /* The buffer */
int in=0, out=0;
semaphore chars=0;

SHARED MEMORY:

RESOURCE managed by semaphore: Characters in FIFO.
DOES IT WORK?

L23 – Synchronization and Deadlock 156.004 – Spring 2001 5/8/01

Flow Control Problems

Q: What keeps PRODUCER from putting N+1 characters into the N-
character buffer?

A: Nothing.

Result: OVERFLOW. Randomness. Havoc. Smoke. Pain. Suffering.

WHAT we’ve got thus far: WHAT we still need:

P CN-character
FIFO buffer

rcvi sendi+Nsendi rcvi

L23 – Synchronization and Deadlock 166.004 – Spring 2001 5/8/01

Bounded Buffer Problem w/^Semaphores

RESOURCEs managed by semaphore: Characters in FIFO, Spaces in FIFO

send(char c)
{

wait(space);
buf[in] = c;
in = (in+1)%N;
signal(chars);

}

char rcv()
{

char c;
wait(chars);
c = buf[out];
out = (out+1)%N;
signal(space);
return c;

}

PRODUCER: CONSUMER:

char buf[N]; /* The buffer */
int in=0, out=0;
semaphore chars=0, space=N;

SHARED MEMORY:

more

L23 – Synchronization and Deadlock 176.004 – Spring 2001 5/8/01

Atomicity Problems

BUG: Producers interfere with each other, MUTUAL EXCLUSIONBUG: Producers interfere with each other, MUTUAL EXCLUSION

Consider multiple PRODUCER processes:

P1 CN-character
FIFO buffer P2

...

buf[in] = c;

in = (in+1) % N;

...

...

buf[in] = c;

in = (in+1) % N;

...

P1 P2

L23 – Synchronization and Deadlock 186.004 – Spring 2001 5/8/01

Bounded Buffer Problem w/^Semaphores

send(char c)
{

wait(space);
wait(mutex);
buf[in] = c;
in = (in+1)%N;
signal(mutex);
signal(chars);

}

char rcv()
{ char c;

wait(chars);
wait(mutex);
c = buf[out];
out = (out+1)%N;
signal(mutex);
signal(space);
return c;

}

PRODUCER: CONSUMER:

char buf[N]; /* The buffer */
int in=0, out=0;
semaphore chars=0, space=N;
semaphore mutex=1;

SHARED MEMORY:

even more

L23 – Synchronization and Deadlock 196.004 – Spring 2001 5/8/01

The Power of Semaphores

send(char c)
{

wait(space);
wait(mutex)
buf[in] = c;
in = (in+1)%N;
signal(mutex);
signal(chars);

}

char rcv()
{ char c;

wait(chars);
wait(mutex);
c = buf[out];
out = (out+1)%N;
signal(mutex);
signal(space);
return c;

}

PRODUCER: CONSUMER:

char buf[N]; /* The buffer */
int in=0, out=0;
semaphore chars=0, space=N;
semaphore mutex=1;

SHARED MEMORY: A single
synchronization
primitive that
enforces both:

Precedence
relationships:

sendi rcvi

rcvi sendi+N

Mutual-exclusion
primitives:

protect variables
in and out

L23 – Synchronization and Deadlock 206.004 – Spring 2001 5/8/01

Problems with Mutual Exclusion
The indiscriminate use of mutual exclusion can introduce

its own set of problems. Particularly when a process
requires access to more than one
protected resource.

Transfer(int account1, int account2, int amount)
{

wait(lock[account1]);
wait(lock[account2]);
balance[account1] = balance[account1] - amount;
balance[account2] = balance[account2] + amount;
signal(lock[account2]);
signal(lock[account1]);

} Transfer(6004, 6001, 50)

Transfer(6001, 6004, 50)

L23 – Synchronization and Deadlock 216.004 – Spring 2001 5/8/01

Toy Problem: Dining Philosophers

• • • • Take LEFT stick
• • • • Take RIGHT stick
• • • • EAT
• • • • Replace both sticks

PHILOSOPHER'S ALGORITHM:

Philosophers do one of two things.
They either think, or they eat. And,
when they eat, they always eat
spaghetti (with chopsticks no
less). Unfortunately, when they
are hungry, they are unable to
think. Philosophers also obey a
strict protocol when eating
(albeit, and unsanitary one). This
protocol is described in the
algorithm below.

L23 – Synchronization and Deadlock 226.004 – Spring 2001 5/8/01

Deadlock!

CONDITIONS:

1) Mutual exclusion - only
one process can hold a
resource at a given time

2) Hold-and-wait - a
process holds allocated
resources while waiting for
others

3) No preemption - a
resource can not be
removed from a process
holding it

4) Circular Wait SOLUTIONS: Avoidance -or- Detection and Recovery

No one can make progress because they are all waiting for an unavailable resource

L23 – Synchronization and Deadlock 236.004 – Spring 2001 5/8/01

One Solution

• • • • Take LOW stick
• • • • Take HIGH stick
• • • • EAT
• • • • Replace both sticks. 1

2
3

4
5

KEY: Assign a unique number to each chopstick

New Algorithm:

SIMPLE PROOF:

Deadlock means that each philosopher is waiting for a resource held by
some other philosopher …

But, the philosopher holding the highest numbered chopstick can’t be
waiting for any other philosopher (no hold-and-wait) …

Thus, there can be no deadlock

L23 – Synchronization and Deadlock 246.004 – Spring 2001 5/8/01

Dealing with Deadlocks
Cooperating processes:

- Establish a fixed ordering to shared resources and require all locks
are acquired according to it

Transfer(int account1, int account2, int amount)
{

int a, b;
if (account1 > account2) { a = account1; b = account2; } else {a = account2; b = account1; }
wait(lock[a]);
wait(lock[b]);
balance[account1] = balance[account1] - amount;
balance[account2] = balance[account2] + amount;
signal(lock[b]);
signal(lock[a]);

}

Independent processes:
- O/S discovers circular wait & kills waiting process
- Reserve all resources prior to process execution
- Hard problem

