Chapter 5 - Mutual exclusion and synchronization

Interprocess Synchronization

A critical section is a section code in which a process(or thread) competes in a potentially
destructive way with another process(thread) for access to a shared data item or file. We
discussed this particular example in the previous section:

for (i = 0; i < loopcount; i++)
get | ock(id);
val = shared;
/* if ((i %1000) == 0)
printf("% - %d - %d \n", id, i, shared); */
val += 1;

shared = val
free_| ock(id);

If two processes are allowed to concurrently be in competing critical sections, then incorrect
results may be computed.

The process of ensuring that this destructive interaction does no occur is called mutual exclusion

(mutex). Failure to ensure that mutex is provided when required can have literally fatal
consequences is medical and military systems

Objective

proc 1 proc 2

while(1) while(1)

{ {
magic bullet other processing
C.S. magic bullet
other processing c.s.

other processing

-->  The magic bullet
ensures only 1 process in the critical section at any time



Properties Desired in a mutex algorithm:

- Safe: both processes can't be in critical section at the same time.
- Deadlock Free (Definite infinite postponement )
- Starvation Free (Indefinite postponement )

- Doesn't require strict alternation ( if other process doesn't need access to c.s., then a
process should be able to enter immediately )



Possible application level approaches to Mutual Exclusion that do and don't work:

1. Have a single turn variable to control access.

int turn = 1; /* must be in shared nenory */
pl:
f{/\,hile (1)
while(turn == 2); /* must be in shared nmenory */
/* this is a LOOP */
C.S.;
turn = 1;
ot herstuff ;
}
p2:
while (1)
{
while(turn == 1); /[* must be in shared nenory */
/* this is a LOOP *
C.S.;
turn = 1;
ot herstuff ;
}
Problems:

Requires alternating access to c.s. Suppose pl spends 5 hours in “otherstuff”
versus 5 seconds for p2.)

Fails even if a process dies outside of the c.s.



2. Use 2 variables to control access with test then set:

i nt

plusi ng, p2using; /* must be in shared nenory */

Pl
?hlle(l)

while( p2using == 1 ); [* loop...busy-wait */
/*IF PREEMPTED HERE--BOTH PROCESSES CAN GET INTO CS */

plusi ng = 1;
C.S.;
plusing = 0 ;
ot herstuff ;
}
pe:
whi | e( 1)

while( plusing == 1 ); [* loop...busy-wait */
/*IF PREEMPTED HERE--BOTH PROCESSES CAN GET INTO CS */

p2usi ng = 1;
c.s. ;
p2using = 0 ;

ot herstuff ;

This "solution"

Doesn't require alternating access.

Process failure outside the c.s. is not a problem.

But is UNSAFE... Both processes can be in c.s. at the same time.

Even though the solution is UNSAFE it may appear to operate correctly for months or

even years, depending upon the relative size of ¢s and otherstuff.

For failure to occur the following sequence of events is necessary:

pl preempted after testing p2using but before setting plusing
p2 dispatched and then preempted in the cs
pl redispatched and enters the C.S.



3. Use 2 variables to control access with set then test:

int plusing, p2using; /* must be in shared nmenory */
pl:
whi | e(1)
{
plusing = 1;

/* | F PREEMPTED HERE--BOTH PROCESSES CAN DEADLOCK */
while( p2using == 1 ); /[* loop...busy-wait */

C.S.;
plusing = 0 ;
ot herstuff ;

}

p2:

whil e(1)

{

p2using = 1 ;
/* | F PREEMPTED HERE- - BOTH PROCESSES CAN DEADLOCK */
while( plusing == 1 ); /* 1oop...busy-wait */
c.S. ;
p2using = 0 ;
ot herstuff ;

}

This "solution"

Doesn't require alternating access.
Solves problem of other process fails.
Is safe

But can cause deadlock.

For deadlock to occur:

pl must be preempted after setting plusing but before testing p2using
p2 must then be dispatched and try to enter the cs.

This “solution” is more likely to fail than the unsafe one.



4. Two variables, set then test, with yielding

pl: p2:
while(1) while(1)
{ {
RESTART: RESTART?2:
plusing=1; p2using =1 ;
if( p2using==1) if (plusing==1))
{ {
plusing=0; p2using =0 ;
goto RESTART ; goto RESTART?2 ;
} }
C.S.; C.S.;
plusing=0; p2using =0 ;
otherstuff ; otherstuff ;

Can result in LiveLock.

If only one process yields, then the other thread has priority and the solution becomes livelock

free.



4. Dekker's Algorithm (Correct) Two variables, set then test with alternating yielding.
P1:

while(1)

{

lusing =1 ;
prusimg == If not my turn
while (p2using == 1)

{ then I yield
if (turn ==2) &
{
lusing = 0; -
P l?smg I unset my variable and
while (turn ==2); €4— . .
. wait until my turn
plusing = 1;
}
}
critical-section
turn = 2;
plusing = 0;
otherstuff ;
}
P2:
while(1)
{
p2using =1 ;
while (plusing == 1)
{
if (turn == 1)
{
p2using = 0;
while (turn == 1);
p2using = 1;
}
}
critical-section
turn = 1;
p2using = 0;
otherstuff ;
}



Peterson's Algorithm

P1: P2:

while (1) while (1)

{ {
plusing=1; p2using = 1;
turn = 1; turn = 2;
while( (p2using ==1) && (turn==1)); while( (plusing ==1) &&

(turn==2));

C.S; c.s
plusing =0; p2using = 0;
other-stuff; other-stuff

} }

Notes:

If only one process is trying to access the critical section the furn variable is irrelevant
because the other processes using variable will be 0.

If both processes are racing to enter the critical section, both using variables will be 1, but
the rurn variable can only have a single value: either 1 or 2.

Thus the process that sets furn last will get stuck in the loop.
The order of the setting of the "using" and the turn variable is critical.

If the order is reversed and a process is preempted after setting the turn variable but before
setting the using variable, then both processes can get into the critical section!!



In summary:

Preemption can occur anywhere.

The OS doesn't interrupt a process... the hardware does.

The OS could decide not to preempt a process..
This would require a system call like "OSEnterCriticalSection"
Would also require processes not to abuse this privilege.

Dekker's & Peterson's Algorithms are:
Safe (as long as the SMP hardware enforces strict read after write mem access order)
Deadlock free

Starvation free
Don't require strict alternation

Disadvantages of application level mutual exclusion

However, they have several disadvantages :

Each employs busy-waiting
One process loops while other process is in critical section

Busy-waits can be fatal on a UP with strict priority scheduling.
Low priority process enters C.S.
High priority process gets unblocked and tries to enter C.S.
High priority process will loop for every
Work for only two processes (modulo westall's hack 2)
May not work at all on some MP's with write buffering (modulo westall's hack 1)

Therefore, according to most texts, these are of little use the the real-world.

(Though I actually found a real world use after 15 years of searching)



Westall's hack #1 (overcoming the SMP write buffering problem)

In a multiprocessor system with write buffering, this is not only susceptible do deadlock,
it can actually be unsafe.

plusing = 1; p2using = 1;

while (p2using == 1); while (plusing = 1);
c.s. c.s.

plusing = 0; p2using = 0;

Westall's hack will defeat this problem (assuming you can determine FIFO).

plusing = 1 p2using = 1;
for (i = 0; i < FIFO; i++) for (i = 0; 1 < FIFO; i++)
dummy(i] =1; dummy(i] = 1;
while (p2using == 1); while (plusing = 1);
c.s. c.s.
plusing = 0; p2using = 0;
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Westall's hack #2

Can be used to provide mutex to any number of competing threads or processes. We will assume
the number is a power of 2. A process wishing to enter the critical section must traverse a binary
tree of Peterson type lock obstacles and win the competition at the root of the tree.

When it completes the critical section it must unlock each Peterson type lock it held in the reverse
order it locked them.

If there are N competing threads or processes there must be N-1 lock structures arranged in
log2(N) tree levels

@ ovovrooLovoe O

The lock structures look like:
struct pete_lock_type

{

int using[2]; /* 0 =left 1 =right */
int turn; /* Ditto */
} locks[7];

Each thread has a path to the root:

struct pete_path_type

{
int lockid;
int side; /* =left 1 = right */

} paths[8][3] =

{{0, 0}, {4, 0}, {6,0}, // thread O path
{0, 1}, {4,0}, {6,0}, //thread 1 path

{3, 1}, {5, 1}, {6, 1} } // thread 7 path
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In general Dekker and Peterson should be last resorts

OS based mutex/synchronization mechanisms are preferred for application code.

They don't use busy waiting

They don't require the application programmer to understand the subtle ways in which ad
hack mechanisms may fail.

They (should) support any number of competing threads / processes

Semaphores
Invented by Djkstra in late '60s
Support any number of processes
Eliminate busy-waiting

The semaphore is an abstract data type that supports two operations,

wait( s )
signal( s )

Operation of wait & signal system calls..

wait( s )

If ( s.value ==
suspend( self ) ;
el se
s.value = s.value -1 ;

signal ( s )

I f (processes are suspended on s)
unsuspend(exactly one of them ;
el se
s.value = s.value + 1
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Semaphore example

For n processes to synchronize, all they have to do is create a semaphore and then use it.

semaphore : sem; /* value defaults 1 */

process 1: process 2: process 3:

while( 1) while( 1) while( 1)

{ { {
wait( sem ); wait( sem ); wait( sem );
cs; cs; cs;
signal( sem ); signal( sem ); signal( sem );
otherstuff; otherstuff; otherstuff;

} } }
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Implementation of Semaphores

Semaphore structure:

value
lock
queue
I
I
\Y%
pcb ---> pcb ---> pcb

struct semtype

{

int value; /* A non-negative value */
unsigned char lock; /* Used to serialize access to value */
struct pcbtype *queue ; /* Queue of blocked(waiting) pcbs */
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A (broken) implementation of wait()

wait( struct semtype *sem ) /* *sem, a pointer to the semaphore stucture */
{

if( sem->value > 0)
sem->value = sem->value — 1;
else
suspend-self( sem->queue); /* suspend me on the semaphore queue */
This implementation can fail if:
Two processes attempt to wait on the same semaphore.
The value of the semaphore is 1 and

process 1 is preempted after test of sem->value but before it is decremented.

==> Testing and resetting of the semaphore value is itself a critical section

15



Possible solutions:

Disable interrupts before entering a critical section
Reenable interrupts after exiting the critical section.

This guarantees no preemption withing the critical section.
This solution is correct for a single CPU system.

Setting a global “don't preempt” flag will also work.

Using a global “don't preempt” policy in kernel mode as is the case with traditional Unix
implementations will also work.

ALL these “solutions” will fail on a multiprocessor system

because two processors could be running the semaphore code in lock step.
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The Test and Set Mechanism

When Computer Science “hits the wall” its common to call upon Computer Engineering to
provide a hardware mechanism that provides the solution.

The test and set instruction provides a hardware locking mechanism that can be use to safely
implement semaphores in a SMP system.

void setlock(
int *lock-var)

{

CLI /* Disable interrupts. */
RETRY:
CMPI lock-var, 0 /* read the lock-var and see how it looks.  */
INZ  retry /* if not zero retry it. */
TS lock-var /* 1t will unconditionally set lock-var to 1. it will set a condition
flag to indicate the value ( 0 or 1) before TS is executed */
INZ  retry /* jump not zero; 1 => locked, 0 => available */
RET

void rlselock(

int *lock-var)

{
MOVI lock-var, 0 /* Unlock the lock */
STI /* Enable interrupts */
RET
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TS hardware support serializes access to shared memory by all processors.

CPU memory in a multiprocessor system

CPU CPU CPU CPU
I I I I
cache cache cache cache
I I I I
——————————————————————————————————————————————————————————————————————————— SYSTEM BUS
I
Main Memory

18



Considerations in the use of TS:
Interrupts must be disabled while holding a TS lock because
on a single- CPU system with priority dispatching
a low-priority process is preempted holding the lock,
a high-priority process tries to obtain the lock...

then the two processes are deadlocked.

on a 2 CPU process, the deadlock is not guaranteed but can occur if.
number of processes contending for a lock = number of processors

When releasing the lock, the enabling of interrupts MUST FOLLOW, NOT PRECEDE,
the release of the lock.

On a single processor system, the semaphore implementation...
Is safe without the lock.. causes no harm if the locking code is included.
The cost is a few extra instructions.

On a single CPU, the TS will always succeed on the first try
(Or else you have what is commonly called a system crash)
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The complete implementation of wait:

wait( struct semtype *sem ) /* *sem, a pointer to the semaphore stucture */

{

setlock(&sem->lock);
if( sem->value >0 )

{
sem->value = (sem-1) ;
rlselock(&sem->lock);

else
suspend-self( sem->queue); /* suspend me on the semaphore queue */
/* must release lock after PCB on sem queue */

As an exercise, implement signal().
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Comparison of Semaphores and Locks:

Locks
Use busy waiting (loop while waiting)
Held only inside OS code
Holder must not be preempted
Holding time must be short.

Semaphores
Use blocked waiting (suspended while waiting)
Application and (some OS) code may use them
Holder may be preempted
Holding time can be arbitrarily long.

Binary vs. Counting Semaphores

Binary sems only take on values of O or 1

Signaling a binary semaphore with value 1 is typically a sign of a logic error.

Counting semaphores can have any positive value.

Binary semaphores are totally sufficient for mutex.

Counting semaphores provide extra capability useful in other synchronization problems.
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Simulating Semaphores in Unix

Original Unix had no semaphore support.
Recent Unix versions support both shared memory and semaphores via a painful API

Its easy to emulate a counting semaphore using a pipe.
Creating a semaphore corresponds to:

int pipedef[2];
pipe(pipedef); /* Create a single pipe and get back read and write handles */

Signaling a semaphore corresponds to:
write(pipedef[1], "T", 1);

pipedef[1] is the write handle

b

The "T" represents a 1 byte “token’
The 1 says write 1 byte into the pipe.

Waiting on the semaphore corresponds to:
read(pipedef[0], buff, 1);

pipedef[0] is the read handle
buff[0] will recieve the "T"
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Classical Cooperating Process Problems

The Producer / Consumer Problem
a.k.a (Bounded buffer Il Circular buffer)
Problem involves both
mutex and
general synchronization
The buffer is a circular array of “slots”

Two indices/pointers are used to manage buffer access

in_slot identifies the next slot in the buffer in which a new item will be placed
out_slot identifies the next slot in the buffer from which an item will be taken

When implemented in hardware such buffers are commonly called FIFOs
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Synchronization problems

When the buffer is empty consumers must be blocked until an item is produced
When the buffer is full producers must be blocked until space is available in the buffer.

Counting semaphores that count both free slots and available items can accomplish both of these
missions.

Mutex problems

If there are multiple competing producers, two or more of them must not be allowed to produce

into the same slot.

If there are multiple competing consumers, two or more of them must not be allowed to consume

the same item.

If there is only a single producer and a single consumer, the mutex problems don't exist but the

syncrhonization problem remains critical.
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The producer solution

#defi ne SLOTS 32 [/ or whatever

sem cnutex;
sem pnut ex;
sem slot _free;
sem itemavail;
int in_slot;
int out_slot;

producer () /* This thread contains the producer code */

/* Initialize slot_free semaphore */

for( i =0 ; i <SLOTS ; i++)
signal (slot_free) ;

wait(slot free) ;
wait (prutex ) ;

buffer[in_slot] = produce_iten();
in_slot = (in_slot + 1) % SLOTIS ;

signal (pmutex ) ;
signal (1temavail) ;
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The consumer solution

consuner () /* This thread contains the consuner code */

out _slot =0 ;
}{/\,hile( 1)

wait( itemavail) ;
wait(cnutex ) ;

consuned_item = buffer[out_slot] ;
out _slot = (out_slot + 1) % SLOTS ;

signal (cnutex ) ;
signal ( slot_free ) ;
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Mutex Considerations

Single producer and single consumer:
Mutexes not needed for a correct solution.
Multiple producers or consumers:
Separate consumer mutex and producer mutex as shown allows most parallelism

Use of a single mutex can work but more care must be taken.
Order of waits (but not signals) becomes critical.

If a single mutex used by both the producer and the consumer:
If wai t (mut ex) occurs before
wait(slot free) orwait(itemavail):

If the consumer gets the waits in the wrong order, the system can deadlock when
the the buffer is empty. If the consumer starts before the producer starts.
The consumer will block on it em avai | while holding mut ex.

The producer then starts up and blocks permanently on mut ex.

If the producer gets the waits in the wrong order deadlock can occur only when the
buffer is full. In this case the producer will block on sl ot _free while holding
mut ex.  The consumer will then block permanently on nmut ex when it tries to

consume an item.

With pmutex for producers and cmutex for consumers, the order of waits is irrelevant. The
order of signals is always irrelevant because signal never blocks.

Shared mutex is undesirable because it prevents overlapped production and consumption.
Can each producer and each consumer have it's own semaphore?
NO, that would break the code completely.

By definitition for a mutex semaphore to work at all, all processes requiring

mutual exclusion must use the same mutex semaphore!
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Can a process be both a producer and a consumer?

Yes...
Child2 in mp1 was one

Process 1 Process 2 Process 3

Producer Consumer-Producer Consumer
Lo e
buffer 1 buffer 2

Process 2 will have the following organization:

while( 1)
{

usual consumer code for buffer 1 ;

possibly perform some manner of operation on consumed data

usual producer code for buffer 2 ;

(producer code may or may not be called based on result of operation )

Can producer/consumer problems be solved without using semaphores?

Certainly! Your e-mail filter program is a classic example!
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The Readers and Writers problem
Framework of the Problem:
A resource exists that can be read or can be written to.
Multiple processes that can safely read concurrently
Only one process can write at a time and only if nobody is reading.

There are 3 possible solution objectives:

Reader priority - Arriving readers may pass waiting writers to join existing readers. This

may lead to writer starvation.

Writer priority — Arriving writers by pass waiting readers in the queue. This maximizes
concurrent reading but may lead to reader starvation.

Strict FIFO — No passing by either readers or writers. This minimizes the level of
concurrent reading, but eliminates starvation... but with a potential nasty side effects if
readers read for a VERY LONG TIME.

There are semaphore based solutions to these but they are very tricky.

A safe (but defective) solution

writer() reader()

{ {
I I
wait( wsem ) ; wait(wsem);
write() ; read();
signal( wsem ) ; signal(wsem);

This “solution” doesn't allow concurrent reading.
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The Reader Priority Solution

readers bypass waiting writers to join existing readers.

writer() // same as in the defective solution

{
I
wait( wsem ) ;
write() ;
signal( wsem ) ;
I

}
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reader()
{
I
wait( rmutex ) ;
rcount +=1 ; /* count of readers in system, increment */
if( rcount == 1) /* no pre-existing readers, this is the first */
wait( wsem ) ;
signal( rmutex ) ;

read() ;
wait( rmutex ) ;
rcount =1 ; /* decrement count of readers */
if( rcount ==0)
signal( wsem ) ;
signal( rmutex ) ;
If writing is taking place when readers arrive:
First reader gets blocked on wsem...
Subsequent readers get blocked on rmutex
Subsequent writers get blocked on wsem
Whenever one reader is allowed to read, all existing readers will join it.
last arriving —------==mm oo first arriving
Example: Wir Wtr Rdr Rdr Rdr Wtr Wir Wu Wi Wir
blocked on: wmtx wmtx rmtx rmtx wsem wsem Wwsem wsem Wwsem writing
Never more than one reader blocked on wsem.

Starvation issues:

Writers can get blocked out forever ( starvation ) if there are enough readers.
Reader starvation is NEVER possible.
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The Strict FIFO solution

With Strict FIFO, a reader can't bypass waiting writers to join existing readers.
Semaphore-based implementation exists and but is even more complex!

Rdr Rdr Wtr Rdr Rdr Rdr Wtr Wtr Il Rdr/Rdr/Rdr

An easier approach is to just invent a new O/S system call designed specificially for this purpose
(This mechanism is sometimes called a monitor).

This implementation is used to serialize readers and writers is the enqueue and dequeue
mechanism provided by MVS--

Enqueue and dequeue are

higher-level primitives than wait and signal
They are implemented in the MVS kernel.

To gain access to the resource an application makes the system call:
enqueue( Resource ID, "r" ) or enqueue( Resource ID, "w"
When complete the process makes the system call:

dequeue( Resource 1D)
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A possible implementation:

The operating system is responsible for managing a FIFO queue of waiting PCB's associated with
each resource.

16 struct geltype

17 {

18 struct pcbtype *pcb; /* Pointer to PCB */

19 i nt action; /* Read or wite */

20 } struct geltype *gnext; /* Next elenment in list */

21 };

28 struct qcbtype

29 {

30 int state; /* 0 Free, 1 Read, 2 wite */
31 i nt nunusi ng; /* Active of readers/witers */
32 i nt numaai ting; /[* Waiting readers/witers */
33 i nt | ock; [* TS lock for serialization */
34 struct geltype *ghead; /* Head of wait queue */
35 struct qgeltype *qtail; [* Tail of wait queue. */

36 };

voi d enqueue(struct qcbtype *qcb, int action)

get | ock(&qch- >l ock);
i f (qcb->state == FREE)

qcb->nunusi ng += 1,
gch->state = action;
got o out;

if ((action == READ) && (qcb->state == READ) &&
(gcb->numiai ting == 0))

gcb->nunusi ng += 1;
goto out;

}

qel = get_qel ();

gel ->pcb = current;

gel - >action = action;

gel _queue_tail (qcb, gel);
rl se_| ock(&qcb- >l ock);
schedul e();

return;

out :
ri se | ock(&qcb- >l ock);
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Condition Variables

A synchronization primitive that is more general than the semaphore which can be used to solve
the Readers and Writers Problem (and other problems).

Declaring:
pt hread_cond _t Cv;
pt hread_nut ex_t nt x;
Initializing:

pt hread_cond_init(&cv, NULL);
pthread_nmutex_init(&nx, NULL);

Usage: One thread is waiting for some condition to become true (for example, there is an item in a
buffer)

pt hr ead_nut ex_| ock( &nt x) ;

whil e (sonme-condition-is-not-true)
pt hread _cond_wait (&cv, &ntx);

pt hread_nut ex_unl ock( &nt x) ;

Another thread causes something to happen (places an item in the buffer)

pt hread nut ex_| ock( &nt x) ;

make- sone- condi ti on- becomne-true
pt hread_cond_broadcast ( &cv);

pt hr ead_rnut ex_unl ock( &t x) ;

Operation:
pt hread_cond_wai t (&cv, &ntx);
Release the mutex and block thread
On wakeup reacquire the mutex

pt hread _cond_br oadcast ( &cv) ;
Wake up ALL THREADS waiting on the mutex
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Mutex requirements

Its critical that the waiting thread lock the mutex before testing the condition and potentially going
to sleep. It is also critical that the causing thread lock the mutex ensuring that making-the-
condition-true and broadcasting the condition being atomic.

pt hread nut ex_| ock( &t x) ;

whil e (sone-condition-is-not-true)
pt hread cond_wait (&cv, &ntXx);

pt hr ead_rut ex_unl ock( &t x) ;

Another thread causes something to happen:

pt hr ead_nut ex_| ock( &t x) ;

make- sone-condi ti on- becone-true
pt hr ead_cond_br oadcast ( &cv);

pt hr ead_rnut ex_unl ock( &t x) ;

If not the following events can happen.
thread O — test the condition and find it false
thread 1 — make the condition become true

thread 1 — broadcast the condition variable (no threads are blocked so nothing happens)
thread O — block on the condition variable (possibly forever!!!)

Unlike the counting semaphore the CV does not have a “value” that allows it to “accumulate
broadcast credits”
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Semaphores can be readily constructed with condition variables

struct sentype

{
i nt val ue;
pt hread _cond_t cv;
} pt hread nmutex_t ntx;
goid wai t (struct sentype *s)
pt hread_nut ex_| ock( &s->mnt x) ;
whil e (s->value == 0)
pt hread_cond_wai t (&s->cv, &s->ntXx);
s->value -= 1;
} pt hread_nut ex_unl ock( &s->nt x) ;
goid signal (struct sentype *s)
pt hr ead_nut ex_| ock( &s->nt x) ;
s->val ue += 1;
pt hread _cond_br oadcast ( &s- >cv) ;
} pt hr ead_rut ex_unl ock( &s->nt x) ;

Exercise: Show how in the absence of the mutex in the signal code the semaphore would not
work reliably. Would the failure be hard(every time signal called) or transient(much of the time
it might appear to work correctly)?
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The producer solution

#defi ne SLOTS 32 [/ or whatever

int slots free;
int itenms_avail;
int in_slot;
int out_slot;

pt hread _cond_t scv;
pt hread_nutex_t sntx;

pthread_cond_t icv;
pt hread_nutex_t intx;

pr oducer () /* This thread contains the producer code */

/* Initialize slots free counter */

slots free = SLOTS;

[* “wait” until a slot is available */
pt hread _nut ex_| ock(snt x) ;
while (slots free == 0)
pt hread_cond_wai t (scv, sntx);
pt hr ead_rnut ex_unl ock(snt x) ;
/* produce an iteminto it */

buffer[in_
t =

ot ] produce_iten();
in_slo n

sl
(i sot+1) % SLOTS ;
/* “signal” that an itemis available */

pt hread_nut ex_I ock(i nt x);
Items_avail += 1;

pt hread_cond broadcast(lcv)
pt hr ead_nut ex_unl ock(i nt x) ;
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The consumer solution

consuner () /* This thread contains the consuner code */

out _slot =0 ;
?hile( 1)

/[* wait until an itemis available */
pt hread_nut ex_| ock(i nt x) ;
while (itenms_avail == 0)

pt hread_cond_wai t (icv, intx);

pt hread_rnut ex_unl ock(i nt x) ;

/* Consunme the item */
consuned_item = buffer[out_slot] ;
out _slot = (out_slot + 1) % SLOTS
[* “Signal” a slot is now avail able */
pt hread _nut ex_| ock(snt x) ;
slots_avail += 1;

pthread_cond_broédcast(scv);
pt hr ead_rut ex_unl ock(snt x) ;

Exercise: Will this solution work if:  scv = icv = cv and smitx = imtx = mtx?

Exercise: How should the solution be changed if rwo producers are active??
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