IFT603-712 - Techniques d'apprentissage


Objectifs du cours

L’apprentissage automatique ou l’apprentissage par machine (Machine Learning) s'intéresse à la conception, l'analyse, l'implémentation et l’application de programmes capables de s’améliorer, au fil du temps, soit sur la base de leur propre expérience, soit à partir des données d'apprentissage. De nos jours, l’apprentissage automatique joue un rôle essentiel dans de nombreux domaines d’applications, tels que la vision par ordinateur, le traitement automatique du langage, la reconnaissance vocale, les systèmes tutoriels intelligents, la modélisation de l’usager, la robotique, la bio-informatique, les finances, le marketing, les jeux vidéos, la télédétection, etc. En fait, la plupart des programmes de l’intelligence artificielle contiennent un module d’apprentissage. Presque tous les systèmes de reconnaissances de formes sont basés sur des techniques d’apprentissage.


Manuel

Il est possible de réussir le cours sans acheter le manuel de référence. Cependant, il est recommandé d'en faire l'achat car le cours en est tiré. Le livre de référence est Pattern Recognition and Machine Learning de Christopher M. Bishop. Il est possible de le commander sur Amazon. Une copie est également à la bibliothèque des sciences et de génie.

Pour ceux et celles qui ne rechignent pas à l'idée de lire un livre sur un écran d'ordinateur, le manuel de Bishop est disponible en format pdf .

Un autre très bon manuel de référence est Mathematics for Machine Learning par Deisenroth, Faisal et Ong. Je recommande tout particulièrements les chapitres 2 à 6 pour ceux et celles qui souhaitent revoir les notions de base requisent pour ce cours en algèbre linéaire, probabilités et calcul différentiel et intégral. Ce manuel est également disponible gratuitement en ligne.


Méthode pédagogique

La méthode pédagogique employée pour ce cours diffère de celles de la plus part des cours magistraux universitaires. En effet, à chaque semaine, vous serez invité à visionner de 60 à 90 minutes de vidéos en ligne. Il est important de visionner ces vidéos car elles couvrent environ 70% de la matière totale du cours. L'horaire des vidéo est donnée dans le tableau ci-bas.

Lors des séances magistrales en classe, je reverrai avec vous certains concepts mathématiques de base parfois oubliés (vous vous souvenez des probabilités conditionnelles? des vecteurs propres? de la dérivée en chaîne?) ainsi que certaines preuves mathématiques en lien avec la matière vue dans les vidéos ainsi que des mise en contexte et des exercices pratiques et théoriques. Cette méthode pédagogique fait suite à de nombreux commentaires émis par les étudiants.es au fil des années. Cette approche pédagogique a donc pour objectif de vous aider!

Les séances magistrales devraient prendre une à deux heures par semaine. Vous serez également invités à poser des questions quant à la matière vue dans les vidéos. L'heure restante sera passée au laboratoire pour vous aider avec les travaux pratiques (autre requête formulées par les élèves des années antérieures).


Notes de cours et vidéos à visualiser à la maison

Semaine Contenu Sections
du livre
Semaine 0 Mise à niveau
 • Tutoriel Python avec interface en ligne
 • Tutoriel Python approfondi
 • Tutoriel Python - Stanford
 • Dérivées
 • Dérivées partielles
 • Algèbre linéaire (sections 2.1,2.2,2.3.1,2.3.4,4.2)
 • Stats et prob de base (sections 6.1 à 6.5)
1.2.4, 2.1, 2.3, Apprendix C
Semaine 1
30 août
0- Presentation [pdf] [pdf]
1- Concepts fondamentaux [pdf] [pdf]

Présentation 0 (2:19)
Présentation 1 (20:27)
Concepts fondamentaux 0 (11:12)
Concepts fondamentaux 1 (18:33)
Concepts fondamentaux 2 (9:52)
Concepts fondamentaux 3 (8:19)
Concepts fondamentaux 4 (8:07)
1.0, 1.1, 1.3
Semaine 2
6 septembre
2- Formulation probabiliste [pdf] [pdf] [ipython notebook]

Formulations probabilistes 0 (19:57)
Formulations probabilistes 1 (23:49)
Formulations probabilistes 2 (20:16)
Formulations probabilistes 3 (11:38)
1.2, 1.2.1, 1.2.2, 1.2.4, 1.2.5, 1.6, 1.6.1
Semaine 3
13 septembre
3- Régression linéaire [pdf] [pdf]

Régression linéaire 0 (10:29)
Régression linéaire 1 (16:04)
Régression linéaire 2 (11:04)
Régression linéaire 3 (7:11)
Régression linéaire 4 (5:03)
Régression linéaire 5 (5:32)
3.1, 3.1.1, 3.1.4, 3.1.5, 3.2
Semaine 4
20 septembre
4- Classification linéaire [pdf] [pdf] [ipython notebook]
Classification linéaire 0 (7:03)
Classification linéaire 1 (7:40)
Classification linéaire 2 (12:05)
Classification linéaire 3 (13:05)
Classification linéaire 4 (37:17)
4.1, 4.1.2, 4.1.3, 4.1.4, 4.2, 4.3,
Semaine 5
27 septembre
4- Classification linéaire [pdf] [pdf] [ipython notebook]

Classification linéaire 5 (39:01)
Classification linéaire 6 (6:01)
Classification linéaire 7 (12:01)
NOTE: le tp2 comporte une question en lien avec la notion de "Lagrangien". Bien que nous verrons cette notion en classe, vous pouvez visionner ces deux vidéos qui introduisent très bien cette notion et donnent quelques exemples d'application:
Lagrangien 1(9:56)
Lagrangien 2(31:55)
4.1, 4.1.2, 4.1.3, 4.1.4, 4.2, 4.3,
Semaine 6
4 octobre
5- Méthodes à noyau [pdf] [pdf]

Méthodes à noyau 0 (28:53)
Méthodes à noyau 1 (9:49)
Méthodes à noyau 2 (10:11)
6.1, 6.2
Semaine 7
11 octobre
6- Machines à vecteurs de support [pdf] [pdf]

Machines à vecteurs de support 0 (20:02)
Machines à vecteurs de support 1 (15:31)
Machines à vecteurs de support 2 (11:32)
7.0, 7.1, 7.1.1, 7.1.2
Semaine 8
18 octobre
Examen périodique
Semaine 9
25 octobre
Semaine de lecture
Semaine 10
1er novembre
7- Réseaux de neurones multi-couches [pdf] [pdf]

Réseaux de neurones multicouches 0 (8:02)
Réseaux de neurones multicouches 1 (17:08)
Réseaux de neurones multicouches 2 (12:40)
Réseaux de neurones multicouches 3 (3:35)
Réseaux de neurones multicouches 4 (13:46)
Réseaux de neurones multicouches 5 (11:50)
5.1, 5.2, 5.2.1, 5.2.4, 5.3, 5.3.1, 5.3.2, 5.5
Semaine 11
8 novembre
7- Réseaux de neurones multi-couches [pdf] [pdf]

Réseaux de neurones multicouches 6 (44:03)
Réseaux de neurones multicouches 7 (12:53)
Réseaux de neurones multicouches 8 (28:47)

5.1, 5.2, 5.2.1, 5.2.4, 5.3, 5.3.1, 5.3.2, 5.5
Semaine 12
15 novembre
8- Combinaison de modèles [pdf] [pdf] [ipython notebook]

Combinaison de modèles 0 (13:08)
Combinaison de modèles 1 (21:50)
Combinaison de modèles 2 (11:47)
Combinaison de modèles 3 (2:30)
Combinaison de modèles 4 (21:12)

14.0, 14.2, 14.3, 14.3.1
Semaine 13
22 novembre
9- Théorie de la décision [pdf] [pdf]

Théorie de la décision 0 (25:49)
Théorie de la décision 1 (16:29)
1.5.5, 3.2
Semaine 14
29 novembre
10- Mélange de gaussiennes [pdf] [pdf]

Mélange de gaussiennes 0 (11:04)
Mélange de gaussiennes 1 (8:27)
Mélange de gaussiennes 2 (12:25)
Mélange de gaussiennes 3 (14:19)

9.2,9.4
Semaine 15
6 décembre
10- Mélange de gaussiennes [pdf] [pdf]

Mélange de gaussiennes 4 (11:13)
Mélange de gaussiennes 5 (13:53)
Mélange de gaussiennes 6 (14:13)

9.2,9.4


Travaux Pratiques

Veuillez utiliser turninweb pour soumettre vos travaux. Tout retard ou erreur de remise entraînera une pénalité de 10% par jour.
Veuillez également utiliser la plateforme de développement "gitlab" de l'Université. Pour ce faire, connectez-vous à depot.dinf.usherbrooke.ca . Si vous ne pouvez créer de projet, envoyer un courriel à l'administrateur système Daniel-Junior Dubé afin qu'il vous crée un dépôt personnel.

NOTE IMPORTANTE 1 : En plus de votre code, veuillez soumettre un fichier "gitlab.txt" dans lequel vous donnez le lien vers votre dépôt gitlab.
NOTE IMPORTANTE 2 : veuillez bien utiliser git car une mauvaise utilisation pourra entraîner une perte de points aux TP3 et TP4 ainsi que pour le projet (ift712).

Setup Aide à la mise sur pied d'un environnement virtuel python sous Linux requirements.txt
bashrc.txt

Tp1 Description (remise : 24 septembre) code
Tp2 Description (remise : 15 octobre) code
Tp3 Description (remise : 12 novembre) code
Tp4 Description (remise : 10 décembre) code
Le softmax et son gradient : kit de survie!
Projet-ift712 (remise : 10 décembre)


Examens (exemples)(NOTE : le final est récapitulatif)

Intra1 intra1.pdf
Intra2 intra2.pdf
Final final.pdf
Sommaire
Session
Automne 2021

Professeur
Pierre-Marc Jodoin

Correcteur
Antoine Théberge

Périodes de cours
Jeudi de 13h30 à 15h30
Vendredi 11h30 à 12h30

Local
Jeudi : D3-2035
Vendredi : D3-2040 (lab D4-1017 - D4-1023)

Période de disponibilités
Les jeudis et vendredis de 9h30 à 17h30

Horaire et plan de cours
(plan ift603-712)

Created by Pierre-Marc Jodoin