There are three basic constructs in set theory:

Cartesian product	$S \times T$
Power set	$\mathbb{P}(S)$
Comprehension 2	$\{x \mid P\}$

where S and T are sets, x is a variable and P is a predicate.

Jean-Reymond Abrial (ETH-zurich)

	${ }_{\text {Baxic Constructs }}^{\substack{\text { Extenions }}}$
Set Comprehension	

These axioms are defined by equivalences.

Left Part	Right Part
$E \mapsto F \in S \times T$	$E \in S \wedge F \in T$
$S \in \mathbb{P}(T)$	$\forall x \cdot(x \in S \Rightarrow x \in T)$ $(\mathrm{x}$ is not free in S and T$)$
$E \in\{x \mid P\}$	$[x:=E] P$ $(\mathrm{x}$ is not free in E$)$

Left Part	Right Part
$S \subseteq T$	$S \in \mathbb{P}(T)$
$S=T$	$S \subseteq T \wedge T \subseteq S$

The first rule is just a syntactic extension
The second rule is the Extensionality Axiom

Elementary Set Operator Memberships

| $E \in S \cup T$ | $E \in S \vee E \in T$ |
| :--- | :--- | :--- |
| $E \in S \cap T$ | $E \in S \wedge E \in T$ |
| $E \in S \backslash T$ | $E \in S \wedge E \notin T$ |
| $E \in\{a, \ldots, b\}$ | $E=a \vee \ldots \vee E=b$ |
| $E \in \varnothing$ | \perp |
| Seander | |

Generalized Union	union (S)
Union Quantifier	$\cup x \cdot(P \mid T)$
Generalized Intersection	$\operatorname{inter}(S)$
Intersection Quantifier	$\cap x \cdot(P \mid T)$

Basic Const
Extensions
Generalized Intersection

$E \in \operatorname{union}(S)$	$\exists s \cdot s \in S \wedge E \in s$ $(\mathrm{~s}$ is not free in S and E$)$
$E \in(\bigcup x \cdot P \mid T)$	$\exists x \cdot P \wedge E \in T$ $(\mathrm{x}$ is not free in E$)$
$E \in \operatorname{inter}(S)$	$\forall s \cdot s \in S \Rightarrow E \in s$ $(\mathrm{~s}$ is not free in S and E$)$
$E \in(\bigcap x \cdot P \mid T)$	$\forall x \cdot P \Rightarrow E \in T$ $(\mathrm{x}$ is not free in E$)$

union (S)
$\bigcup x \cdot P \mid T$
$\operatorname{inter}(S)$
$\cap x \cdot P \mid T$

Binary relations	$S \leftrightarrow T$
Domain	$\operatorname{dom}(r)$
Range	$\operatorname{ran}(r)$
Converse	r^{-1}

$r \in A \leftrightarrow B$

$\operatorname{ran}(r)=\{b 1, b 2, b 4, b 6\}$

Domain restriction	$S \triangleleft r$
Range restriction	$r \triangleright T$
Domain subtraction	$S \notin r$
Range subtraction	$r \triangleright T$

Summary of the Mathematical Notation

The Range Restriction Operator

$F \triangleright\{b 2, b 4\}$

$\{a 3, a 7\} \notin F$

$F \triangleright\{b 2, b 4\}$

Image	$r[w]$
Composition	$p ; q$
Overriding	$p \not q q$
Identity	$i d(S)$

$$
\begin{aligned}
& r^{-1-1}=r \\
& \operatorname{dom}\left(r^{-1}\right)=\operatorname{ran}(r) \\
& (S \triangleleft r)^{-1}=r^{-1} \triangleright S \\
& (p ; q)^{-1}=q^{-1} ; p^{-1} \\
& (p ; q) ; r=q ;(p ; r) \\
& (p ; q)[w]=q[p[w]] \\
& p ;(q \cup r)=(p ; q) \cup(p ; r) \\
& r[a \cup b]=r[a] \cup r[b]
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Given a relation } r \text { such that } r \in S \leftrightarrow S \\
& \\
r=r^{-1} & \forall x, y \cdot x \in S \wedge y \in S \Rightarrow(x \mapsto y \in r \Leftrightarrow y \mapsto x \in r) \\
r \cap r^{-1}=\varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow y \mapsto x \notin r \\
r \cap r^{-1} \subseteq \operatorname{id}(S) & \forall x, y \cdot x \mapsto y \in r \wedge y \mapsto x \in r \Rightarrow x=y \\
\operatorname{id}(S) \subseteq r & \forall x \cdot x \in S \Rightarrow x \mapsto x \in r \\
r \cap \operatorname{id}(S)=\varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow x \neq y \\
r ; r \subseteq r & \forall x, y, z \cdot x \mapsto y \in r \wedge y \mapsto z \in r \Rightarrow x \mapsto z \in r
\end{array}
$$

Set-theoretic statements are far more readable than predicate calculus statements

More classical Results

Given a relation r such that $r \in S \leftrightarrow S$

$r=r^{-1}$	r is symmetric
$r \cap r^{-1}=\varnothing$	r is asymmetric
$r \cap r^{-1} \subseteq \operatorname{id}(S)$	r is antisymmetric
$\operatorname{id}(S) \subseteq r$	r is reflexive
$r \cap \operatorname{id}(S)=\varnothing$	r is irreflexive
$r ; r \subseteq r$	r is transitive

Jean-Raymond Abrial (ETH-Zürich) Summary of the Mathematical Notation Bucharest, 14-16/07/10 98/120

	(extensions $\begin{gathered}\text { Basic Constructs } \\ \text { Exter }\end{gathered}$
Function Operators (1)	

Partial functions	$S \rightarrow T$
Total functions	$S \rightarrow T$
Partial injections	$S \leftrightarrow T$
Total injections	$S \mapsto T$

A Partial Function F from a Set A to a Set B

$F \in A \rightarrow B$

$F \in A \rightarrow B$

Jean-Raymond Abrial (ETH-Zürich) Summary of the Mathematical Notation Bucharest, 14-16/07/10 102/120

$F \in A \longmapsto B$

$F \in A \Longrightarrow B$

Partial surjections	$S \rightarrow T$
Total surjections	$S \rightarrow T$
Bijections	$S \mapsto T$

$F \in A \rightarrow B$

Left Part	Right Part
$f \in S \rightarrow T$	$f \in S \rightarrow T \wedge T=\operatorname{ran}(f)$
$f \in S \rightarrow T$	$f \in S \rightarrow T \wedge T=\operatorname{ran}(f)$
$f \in S \rightarrow T$	$f \in S \rightarrow T \wedge f \in S \rightarrow T$

$S \rightarrow T$	$S \rightarrow T$
$S \rightarrow T$	$S \rightarrow T$
$S \multimap T$	$S \leftrightarrow T$
$S \multimap T$	

