On Tools for Coverability

Michael Blondin, Christoph Haase, Grégoire Sutre

Part I: QCover

Michael Blondin

Joint work with Alain Finkel, Christoph Haase and Serge Haddad

Verifying safety with Petri nets

Process 1 Process 2

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

Process 1 Process 2

critical section

critical section

Lamport mutual exclusion "1-bit algorithm"

1/10

Verifying safety with Petri nets

while True: while True:
X =True & Vy=True
whiley: pass if x then:
critical section y = False
x = False while x: pass
goto W

critical section
y = False

1/10

Verifying safety with Petri nets

while True: ® while True:
X =True e & y=True
whiley: pass [®) if x then:
critical section e y = False
x = False 0 while x: pass

goto W
critical section
y = False

1/10

Verifying safety with Petri nets

while True: ® ® while True:

X =True O e & Vy=True

while y: pass O @) if x then:

critical section 0) @ y = False

x = False O @) while x: pass
o goto W
(@) # critical section
@) y = False

1/10

Verifying safety with Petri nets

goto W

critical section

while True: ® ® while True:
X=True O [0) O & Vy=True
whiley: pass ®) ® ®) if®then:
critical section O e y = False
X = False O O while[d: pass
O
O
O

y = False

1/10

Verifying safety with Petri nets

goto W

critical section

while True: ® ® while True:

X = True O e O & [=True

while[§f: pass ®) ® ®) if x then:

critical section O [9) e y = False

x = False O ® O while x: pass
O
O
O

y = False

1/10

Verifying safety with Petri nets

while True: while True:
X =True & Vy=True
while y: pass if x then:
critical section y = False

x = False while x: pass

goto W

critical section
y = False

1/10

Verifying safety with Petri nets

critical section

critical section

1/10

Verifying safety with Petri nets

Processes at both each ‘ >1

critical sections

1/10

Verifying safety with Petri nets

Processes at both each ‘ >1
critical sections Q >0

Verifying safety with Petri nets

each ‘ > 1

1/10

Coverability problem

Problem

Input: Petri net V, initial marking mg, target marking m

Question: Is some m’ > m reachable from mq in A/?

2/10

Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking

 Backward: find predecessors of markings covering target
« EXPSPACE-complete

2/10

Coverability problem

How to solve it?

 Backward: find predecessors of markings covering target
« EXPSPACE-complete

2/10

Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking

« EXPSPACE-complete

2/10

Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking
 Backward: find predecessors of markings covering target

2/10

Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking

- \Backward] find predecessors of markings covering target
« EXPSPACE-complete

2/10

Backward algorithm

3/10

Backward algorithm

3/10

£
=
5=
1Sy
o
=0
©
o
LS
©
=
=
(5
]
-]

O

3/10

Backward algorithm

3/10

Backward algorithm

3/10

Backward algorithm

3/10

Backward algorithm

3/10

Backward algorithm

3/10

Backward algorithm

P iR

C ennot cover
+ar-ée+ markin 9

3/10

Backward algorithm

P iR

00>

3/10

Backward algorithm

We only care about some initial marking...

3/10

Backward algorithm

P iR

We only care about some initial marking...
Speedup by pruning basis!

3/10

(Discrete) Petri nets

4/10

(Discrete) Petri nets

4/10

(Discrete) Petri nets

4/10

(Discrete) Petri nets

4/10

Petri nets
Continvous

4/10

Continvous

4/10

Petri nets

Continvous

4/10

Continvous

4/10

Petri nets

Continvous

4/10

Continvous

4/10

Petri nets

Continvous

4/10

Continuity to over-approximate coverability

m is coverable from mq

|

m is Q-coverable from my

5/10

Continuity to over-approximate coverability

m is coverable from mq

|

m is Q-coverable from my

LN

5/10

Continuity to over-approximate coverability

mis coverable from mq

mis Q-coverable from mq

5/10

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

m is Q-coverable from my iff... Fraca & Haddad '13

6/10

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat

6/10

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat

* m' =mg + (Post — Pre) - v

6/10

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat
« m =mgy + (Post — Pre) - v

+ some execution from my fires exactly {t € T: v; > 0}

6/10

Coverability in continuous Petri nets

b m = (0,2
. (]
m is Q-coverable from my iff... Fraca & Haddad '13
there exist m’ > m and such that

* m' =mg + (Post — Pre) - v
« some execution from mq fires exactly

- some execution to m’ fires exactly

6/10

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m' > m and vg,v, € Q> such that

+ some execution from my fires exactly {t € {a, b} : v; > 0}

- some execution to m’ fires exactly {t € {a,b} : v; > 0}

6/10

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<vy,+vg<2
2 < Vp
+ some execution from my fires exactly {t € {a, b} : v; > 0}

- some execution to m’ fires exactly {t € {a,b} : v; > 0}

6/10

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v
+ some execution from my fires exactly {t € {a, b} : v; > 0}

- some execution to m’ fires exactly {t € {a,b} : v; > 0}

6/10

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v
« some execution from mq fires exactly

- some execution to m’ fires exactly

6/10

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v
« some execution from mq fires exactly

- some execution to m’ fires exactly

6/10

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v

« some execution to m’ fires exactly {b}

6/10

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v
+ some execution from my fires exactly {b} v

« some execution to m’ fires exactly {b}

6/10

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v

+ some execution from my fires exactly {b} v

6/10

Coverability in continuous Petri nets
@ mo = (2,0)
©)

T b m = (0,
(]
m is Q-coverable from my iff... Fraca & Haddad '13

there exist m' > m and vg,v, € Q> such that

0<v,+vg<2
2§Vb

== Vg=0,v, =2, mM=m v

+ some execution from my fires exactly {b} v

6/10

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

OsWHVa<2 _ v —o vy=2,m=m

2 < Vp
+ some execution from my fires exactly {b} v
« some execution to m’ fires exactly {b} X

6/10

Coverability in continuous Petri nets

- (]

m is Q-coverable from my iff... Fraca & Haddad '13
there exist m' > m and vg,v, € Q> such that

OsWHVa<2 _ v —o vy=2,m=m

2 < Vp
+ some execution from my fires exactly {b} v
« some execution to m’ fires exactly {b} X

6/10

Coverability in continuous Petri nets

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat
* m' =mg + (Post — Pre) - v
+ some execution from my fires exactly {t € T: v; > 0}
+ some execution to m’ fires exactly {te T:v; > 0}

6/10

Coverability in continuous Petri nets

Logical characterization TACAS'16

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat
* m =mgy + (Post — Pre) - v
+ some execution from my fires exactly {t € T: v; > 0}
+ some execution to m’ fires exactly {te T:v; > 0}

6/10

Coverability in continuous Petri nets

Logical characterization TACAS'16
Q-coverability can be encoded in a linear size formula of

existential FO(IN, +,<)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat
* m =mgy + (Post — Pre) - v
+ some execution from my fires exactly {t € T: v; > 0}
+ some execution to m’ fires exactly {te T:v; > 0}

6/10

Coverability in continuous Petri nets

Logical characterization TACAS'16
Q-coverability can be encoded in a linear size formula of

existential FO(Q>o,+, <)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat

+ some execution from my fires exactly {t € T: v; > 0}

+ some execution to m’ fires exactly {te T:v; > 0}

6/10

Coverability in continuous Petri nets

Logical characterization TACAS'16
Q-coverability can be encoded in a linear size formula of

existential FO(Q>o,+, <)

m is Q-coverable from my iff... Fraca & Haddad '13

there exist m>m and veQL, suchthat

* m =mgy + (Post — Pre) - v

6/10

Encoding the firing set conditions

7/10

Encoding the firing set conditions

Testing whether some transitions can be fired
from initial marking

7/10

Encoding the firing set conditions

Testing whether some transitions can be fired
from initial marking

7/10

Encoding the firing set conditions

7/10

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

7/10

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05) -

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05) -

Encoding the firing set conditions

2ol

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05) -

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05) -

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05) -

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05) -

Encoding the firing set conditions

1 2 3
w)I w
1

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05) -

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05) -

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

(Verma, Seidl & Schwentick '05) -

Encoding the firing set conditions
b
/O<I
a
C
O
L
d

Simulate a "breadth-first" transitions firing

by numbering places/transitions
(Verma, Seidl & Schwentick '05)

7/10

Encoding the firing set conditions

7/10

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False

8/10

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False
X = {target marking m}
while (initial marking my not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—ypb)}
if B=0: return False
©(X) = o(X) A Apruneap X 2 b
X=XUB

return True

8/10

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:

return False

while (initial marking my not covered by X):
B = markings obtained from X one step backward

B=B\{beB:—yb)}
if B=@: return False

p(X) = p(x) A /\pruned p XZb
X=XUB

return True

8/10

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False
X = {target marking m}

while
B = markings obtained from X one step backward

B=B\{beB:—yb)}
if B=@: return False

p(X) = p(x) A /\pruned p XZb
X=XUB

return True

8/10

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:

return False
X = {target marking m}

while (initial marking my not covered by X):

B=B\{beB:—yb)}
if B=@: return False

p(X) = p(x) A /\pruned p XZb
X=XUB

return True

8/10

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False

X = {target marking m}
while (initial marking my not covered by X):
B = markings obtained from X one step backward

if B=@: return False

p(X) = p(x) A /\pruned p XZb
X=XUB

return True

8/10

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False
X = {target marking m}
while (initial marking my not covered by X):
B = markings obtained from X one step backward

B=B\{beB:-yb)}

if return
p(X) = p(x) A /\pruned p XZb
X=XUB

return True

8/10

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking my not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—ypb)}

if B=@: return False

X=XUB

return True

8/10

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False
X = {target marking m}
while (initial marking my not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—ypb)}
if B=0: return False

p(X) = p(x) A /\pruned b X2Db

return True

8/10

Backward coverability modulo Q-coverability

1f target marking m is not Q-coverable:
return False
X = {target marking m}
while (initial marking my not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—ypb)}
if B=0: return False
©(X) = o(X) A Apruneap X 2 b
X=XUB

return

8/10

An implementation: QCover

P lethOﬂ . SMT solver Z3 (Microsoft Research)

https://github.com/blondimi/qcover

Tested on...
* 176 Petri nets (avg. 1054 places, 8458 transitions)
- C/Erlang programs with threads
+ Mutual exclusion protocols, communication protocols, etc.
+ Message analysis of a medical and a bug tracking system

9/10

An implementation: QCover

Instances proven safe

100 >
I 95

80 B

60 y 63

40 r

200F *

[I I I I
1 4 16 64 256 2000

running time in seconds

QCOVER A\ PETRINIZER ‘BFC MIST

9/10

An implementation: QCover

Instances proven safe

100 >
I 95

80 B

60 y 63

40 r

200F *

[I I I I
1 4 16 64 256 2000

running time in seconds

QCOVER A\ PETRINIZER ‘BFC MIST

9/10

An implementation: QCover

Instances proven safe Instances proven safe or unsafe
| |
100 b 140 :
I 95
- | 120
- 100
60 80
40 - 60
20 3 40
[I I I I [| | | |
1 4 16 64 256 2000 1 4 16 64 256 2000
running time in seconds running time in seconds

QCOVER A\ PETRINIZER ‘BFC MIST

9/10

An implementation: QCover

Markings pruning efficiency across all iterations

400
200
0 0
0 20 40 60 80 100 0 20 40 60 80 100
% pruned markings inv. cumulative % pruned markings

9/10

Possible extensions

10/10

Possible extensions

« Combine our approach with a forward algorithm to better
handle

$59/61 BFC

o ‘ ‘ ‘ 0 PETRINIZER (NOT SUPPORTED)

|
1 4 16 64 256 2000
running time in seconds

10/10

Possible extensions

« Combine our approach with a forward algorithm to better
handle unsafe instances

10/10

Possible extensions

« Combine our approach with a forward algorithm to better
handle unsafe instances

- Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

10/10

Part ll;: ICover

Gregoire Sutre

Joint work with Thomas Geffroy and Jérome Leroux

Verifying Systems with Petri Nets

C code
;
Petri Net COVERABLE?
Erlang code -
Coverability

[~]

Verifying Systems with Petri Nets

C code
N
Petri Net COVERABLE?
Erlang code - /
Coverability
Question \

[~]

Verifying Systems with Petri Nets

C code
N
Petri Net COVERABLE?
Erlang code - /
Coverability
Question \

[~]

Coverability in Petri nets

init = m > target?

Decidability - Complexity
@ Decidable (Karp and Miller - 1969)
o EXPSPACE-complete (Lipton - 1976, Rackoff - 1978)

Coverability in Petri nets

init = m > target?

Tools

Mist (Ganty, Geeraerts, Raskin, Van Begin, ...)
@ interval sharing trees
@ backward search + place invariants
@ abstraction refinement

BFC (Kaiser, Kroening, Wahl)
Target set widening + forward Karp-Miller
Petrinizer (Esparza, Ledesma-Garza, Majumdar, Meyer, Niksic)
SMT, state equation + traps
QCover (Blondin, Finkel, Haase, Haddad)

SMT, continuous reachability + backward search

ICover: Generalisation of QCover with Invariants

Assumption:

@ /is an invariant (/ contains all
reachable markings)

@ / is a downward closed set

Up := T(target N 1) arget

ICover: Generalisation of QCover with Invariants

Assumption:

@ /is an invariant (/ contains all
reachable markings)

@ / is a downward closed set

Up = () - Safe ! target

ICover: Generalisation of QCover with Invariants

Assumption:

@ /is an invariant (/ contains all
reachable markings)

@ / is a downward closed set

Up := T(target N 1) >
1| target
Ui := Up UT(pre(Up) N 1)

ICover: Generalisation of QCover with Invariants

Assumption:

@ /is an invariant (/ contains all
reachable markings)

@ / is a downward closed set

Up := T(target N 1)
1| target
Ui := Up UT(pre(Up) N 1) ‘
U, . = U U T(pre(Ul) N /)

ICover: Generalisation of QCover with Invariants

Assumption:

@ /is an invariant (/ contains all

reachable markings) /
© [is a downward closed set
Up := T(target N 1)
Ui := Up UT(pre(Up) N 1)
U, . = U U T(pre(Ul) N /)
Uky1 = Uk U T(pre(Uk) N /) Uni1 = U,

Always terminates
(Dickson's lemma)

Backward Algorithm with Invariant-Based Pruning

if target € I then

‘ B + {target};
else

‘ return False;
end
while Minit ¢ TB do
N < min(pre(1B)) \ 1B
P+~ NNI
if P =0 then

‘ return False;
end

B < min(BU P);

end
return True;

@ [is an invariant

@ [/ is a downward closed
set

/14

Invariant: Sign Analysis

Pq

Invariant: Sign Analysis

Pq =0 can't be fired

? S
>0 fireable
@]

Invariant: Sign Analysis

Pq =0 can't be fired
O O O

>0 fireable
B o O

Invariant: Sign Analysis

Pq =0 can't be fired
O O O

>0 fireable
B o O

O &

Invariant: Sign Analysis

Pq =0 can't be fired
O O O

>0 fireable
B o O

Invariant: pg =0Ap, =0Aps =0

Invariant: State Inequation

to
2 = (p(N
(:>—>t1 ﬁ

Invariant: State Inequation

(pZ%FC{ b, b,
] /@
. A(t1)) =p2— p1

A(t2) =2p3 — p2
A(t3) =2p2 — p3
X;: number of occurrences of t;
r = init + XlA(tl) + X2A(t2) + X3A(t3)

Invariant: State Inequation

pp LB, BBy
A(t)) =p2—p1

A(t2) =2p3 — p2
A(t3) =2p2 — p3
X;: number of occurrences of t;

m<r= init+x1A(t1) +X2A(t2) +X3A(t3)

Invariant: State Inequation

O/ MENT O
©—m- /@
. (1)) =p2—p1
tz) =2p3—p2

A(t3) =2p2 — p3
X;: number of occurrences of t;
m < r = init+ XlA(tl) +X2A(t2) + X3A(t3)

I:'={m | 3x,init + 3,7 x(t)A(t) > m}

Invariant: State Inequation

2 = O/ NN N
ﬁ (tr) = p2 — p1
tz) =2p3 — p2
A(ts) =2p2 — p3
Xx1,X2,x3 >0 Xx;: number of occurrences of t;
m(pl) <1l-—x m<r= init+x1A(t1) +X2A(t2) +X3A(t3)

m(pg) <x31—xo+ 2X3
m(p3) < 2xo — x3

I:'={m | 3x,init + 3,7 x(t)A(t) > m}

Invariant: State Inequation

Alt))=p—p
A(t2) = 2p3 — p2
A(t3) =2p2 — p3
X;: number of occurrences of t;
p1 <1 m < r = init + XlA(tl) + X2A(t2) + X3A(t3)

I:'={m | 3x,init + 3 ,c 7 x(t)A(t) > m}

Experimentations

New Tool: ICover

@ Based on QCover written in Python (~900 lines of codes)
@ Both use the SMT-Solver z3 (Bjorner et al. - 2007)
@ [Cover available as a patch of QCover (~400 lines of codes)

@ dept-info.labri.u-bordeaux.fr/~tgeffroy/icover

@ Benchmarks (176 instances) used by QCover and others

@ QCover solved 106 / 115 safe instances (2000 seconds per instance)
@ QCover solved 37 / 61 unsafe instances (idem)

@ [Cover solved as much safe instances and one more unsafe

@ It works ! 10 000 seconds (QCover) to 5 000 seconds (/Cover)

dept-info.labri.u-bordeaux.fr/~tgeffroy/icover

Experimentations: Sign Analysis As A Pre-processing

Experimentations: Sign Analysis As A Pre-processing

=0

®:0

can't be fired

[l

fireable

Experimentations: Sign Analysis As A Pre-processing

=0

®:0

can't be fired

[l

fireable

/14

Experimentations: Sign Analysis As A Pre-processing

=0 can't be fired
O O

=0 fireable
o O

Experimentations: Sign Analysis As A Pre-processing

(o)—

8o

Ol

Results of Pre-processing

% of places left % of transitions left
100 WL%WH% = 100 s
%&% 13 ¢
¢ 08 0% 06y @
850 © 3
50 o o : 50 o .
08% ¢
wg%}oo?o‘)
® 4,0 o 8
0f ! ! L 0L ! L
100 102 10* 100 102 10%
places in the original Petri net transitions in the original Petri net

10/14

Experimental results: Pruning with State Inequation vs

time for /Cover (s)

Time
L 11| S e A 11| N R R R AL A
= () -
10° | E
L o
0% | E
F o & 1
w0t E ° i
L9 :
Lo 20 i
100 E ¥ 0 -
=TT YT R NN B A Wi W=

10° 10t 102 108

time for Pre + QCover (s)

Efficiency

[ay

o

o
T

o
(e)
T
\

20| N

<
| | |

100 102 10*
markings pruned in QCover

% also pruned in /Cover
(@)}
o
T
|

11 /14

State Inequation More Precise with Pre-Processing

t ts |2
p1 p2 P3
O 9 o

e Can't cover p; + p2 + p3 from p;

@ State inequation: p; < 1 not precise enough

12/14

State Inequation More Precise with Pre-Processing

P1
©——]

e Can't cover p; + p2 + p3 from p;

@ State inequation: p; + p> + p3 < 1 precise enough

12/14

State Inequation vs --»

@ p1 + p2 not coverable from p;

p1 p2 :
O——0O_T= e
2

@ p1 + pp satisfy the state
inequation: p; <1

13 /14

State Inequation vs --»

@ p1 + p2 not coverable from p;

p1 p2 :
—[al—Cr_T=] e
2

@ p1 + pp satisfy the state
inequation: p; <1

13 /14

State Inequation vs --»

@ p1 + p2 not coverable from p;

p1 p2 :
C—[al—@y_T=] e
2

@ p1 + pp satisfy the state
inequation: p; <1

13 /14

State Inequation vs --»

@ p1 + p2 not coverable from p;

@_} with --»

@ p1 + pp satisfy the state
inequation: p; <1

13 /14

State Inequation vs --»

@ p1 + p2 not coverable from p;

p1 p2 :
Co—[al—6i_Te] e
2

@ p1 + pp satisfy the state
inequation: p; <1

13 /14

State Inequation vs --»

@ p1 + p2 not coverable from p;

p1 P2
C .t ; with --»
@ p1 + pp satisfy the state
inequation: p; <1

Theorem (Recalde, Teruel and Silva - 1999)

In a pre-processed Petri net, m satisfies the state inequation iff there exists
*

m’ > m and a sequence mg, my, ... such that init ---— my for every k and

such that mg, my, ... converges toward m'.

13 /14

Conclusion

Backward coverability algorithm with invariant-based pruning

Pre-processing is a cheap way to accelerate verification

In practice, in a pre-processed Petri net, state inequation is almost as
good as --» coverability

Find other cheap pre-processings and invariants

Apply to other classes of well-structured transition systems

14 /14

Part Ill: Best practices

Christoph Haase

General remarks

Tools...
- increase visibility outside your peer group

- help understanding what is relevant to
other people

- generate feedback for theoretical work
- Can convince reviewers

- attract students

1/7

Before you start

- Choice of language

- interpreted vs. compiled
- statically vs. dynamically typed

- Bindings for SMT solver

- Performance of memory operations

2/7

Software engineering aspects

- Object oriented programming
- Unit tests
- Documentation

- Use profilers to find bottlenecks

3/7

- One of the most important aspects
 Use other people's benchmarks
- Contact authors if necessary

- Pitfalls:

- Parsing can entail large costs
- Avoid unfair treatment of competitors
- Choose evaluation metrics wisely

4[7

Availability

- Obtain institutional clearance € F,
 Choose license: BSD preferred by industry

- Use public code repositories, e.g. GitHub

5/7

- Identify relevant Petri net subclasses and
extensions, e.g.

- business processes

* process mining

- population protocols

- thread transition systems

- Submit to and integrate into existing
software competitions

6/7

The SMT solver is always faster than you!

717

Thank you! Diolch!

