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Coverability problem

Problem

Input: Petri net V, initial marking mg, target marking m

Question: Is some m’ > m reachable from mq in A/?

2/10



Coverability problem
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2/10



Coverability problem

How to solve it?

 Backward: find predecessors of markings covering target
« EXPSPACE-complete

2/10



Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking

« EXPSPACE-complete

2/10



Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking
 Backward: find predecessors of markings covering target

2/10



Coverability problem

How to solve it?

+ Forward: build reachability tree from initial marking

- \Backward] find predecessors of markings covering target
« EXPSPACE-complete

2/10



Backward algorithm

3/10



Backward algorithm

3/10



£
=
5=
1Sy
o
=0
©
o
LS
©
=
=
(5
]
-]

O

3/10



Backward algorithm

3/10



Backward algorithm

3/10



Backward algorithm

3/10



Backward algorithm

3/10



Backward algorithm

3/10



Backward algorithm

P iR

C ennot cover
+ar-ée+ markin 9

3/10



Backward algorithm

P iR

00>

3/10



Backward algorithm

We only care about some initial marking...
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Backward algorithm

P iR

We only care about some initial marking...
Speedup by pruning basis!
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Continuity to over-approximate coverability
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An implementation: QCover

P lethOﬂ . SMT solver Z3 (Microsoft Research)

https://github.com/blondimi/qcover

Tested on...
* 176 Petri nets (avg. 1054 places, 8458 transitions)
- C/Erlang programs with threads
+ Mutual exclusion protocols, communication protocols, etc.
+ Message analysis of a medical and a bug tracking system
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An implementation: QCover

Instances proven safe Instances proven safe or unsafe
| |
100 b 140 :
I 95
- | 120
- 100
60 80
40 - 60
20 3 40
[ I I I I [ | | | |
1 4 16 64 256 2000 1 4 16 64 256 2000
running time in seconds running time in seconds
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An implementation: QCover

Markings pruning efficiency across all iterations

400
200
0 0
0 20 40 60 80 100 0 20 40 60 80 100
% pruned markings inv. cumulative % pruned markings
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Possible extensions

« Combine our approach with a forward algorithm to better
handle unsafe instances

- Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)
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Part ll;: ICover

Gregoire Sutre

Joint work with Thomas Geffroy and Jérome Leroux



Verifying Systems with Petri Nets

C code
;
Petri Net COVERABLE?
Erlang code -
Coverability

[~ ]



Verifying Systems with Petri Nets

C code
N
Petri Net COVERABLE?
Erlang code - /
Coverability
Question \

[~ ]



Verifying Systems with Petri Nets

C code
N
Petri Net COVERABLE?
Erlang code - /
Coverability
Question \

[~ ]



Coverability in Petri nets

init = m > target?

Decidability - Complexity
@ Decidable (Karp and Miller - 1969)
o EXPSPACE-complete (Lipton - 1976, Rackoff - 1978)




Coverability in Petri nets

init = m > target?

Tools

Mist (Ganty, Geeraerts, Raskin, Van Begin, ...)
@ interval sharing trees
@ backward search + place invariants
@ abstraction refinement

BFC (Kaiser, Kroening, Wahl)
Target set widening + forward Karp-Miller
Petrinizer (Esparza, Ledesma-Garza, Majumdar, Meyer, Niksic)
SMT, state equation + traps
QCover (Blondin, Finkel, Haase, Haddad)

SMT, continuous reachability + backward search
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ICover: Generalisation of QCover with Invariants

Assumption:

@ /is an invariant (/ contains all

reachable markings) /
© [ is a downward closed set
Up := T(target N 1)
Ui := Up UT(pre(Up) N 1)
U, . = U U T(pre(Ul) N /)
Uky1 = Uk U T(pre(Uk) N /) Uni1 = U,

Always terminates
(Dickson's lemma)



Backward Algorithm with Invariant-Based Pruning

if target € I then

‘ B + {target};
else

‘ return False;
end
while Minit ¢ TB do
N < min(pre(1B)) \ 1B
P+~ NNI
if P =0 then

‘ return False;
end

B < min(BU P);

end
return True;

@ [ is an invariant

@ [/ is a downward closed
set

/14
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Experimentations

New Tool: ICover

@ Based on QCover written in Python (~900 lines of codes)
@ Both use the SMT-Solver z3 (Bjorner et al. - 2007)
@ [Cover available as a patch of QCover (~400 lines of codes)

@ dept-info.labri.u-bordeaux.fr/~tgeffroy/icover

@ Benchmarks (176 instances) used by QCover and others

@ QCover solved 106 / 115 safe instances (2000 seconds per instance)
@ QCover solved 37 / 61 unsafe instances (idem)

@ [Cover solved as much safe instances and one more unsafe

@ It works ! 10 000 seconds (QCover) to 5 000 seconds (/Cover)



dept-info.labri.u-bordeaux.fr/~tgeffroy/icover
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Experimentations: Sign Analysis As A Pre-processing

(o)—

8o

Ol



Results of Pre-processing

% of places left % of transitions left
100 WL%WH% = 100 s
%&% 13 ¢
¢ 08 0% 06y @
850 © 3
50 o o : 50 o .
08% ¢
wg%}oo?o‘)
® 4,0 o 8
0f ! ! L 0L ! L
100 102 10* 100 102 10%
places in the original Petri net transitions in the original Petri net
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Experimental results: Pruning with State Inequation vs

time for /Cover (s)

Time
L 11| S e A 11| N R R R AL A
= () -
10° | E
L o
0% | E
F o & 1
w0t E ° i
L9 :
Lo 20 i
100 E ¥ 0 -
=TT YT R NN B A Wi W=

10° 10t 102 108

time for Pre + QCover (s)

Efficiency

[ay

o

o
T

o
(e)
T
\

20| N

<
| | |

100 102 10*
# markings pruned in QCover

% also pruned in /Cover
(@)}
o
T
|
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State Inequation More Precise with Pre-Processing

t ts |2
p1 p2 P3
O 9 o

e Can't cover p; + p2 + p3 from p;

@ State inequation: p; < 1 not precise enough
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State Inequation vs --»
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State Inequation vs --»

@ p1 + p2 not coverable from p;

p1 P2
C .t ; with --»
@ p1 + pp satisfy the state
inequation: p; <1

Theorem (Recalde, Teruel and Silva - 1999)

In a pre-processed Petri net, m satisfies the state inequation iff there exists
*

m’ > m and a sequence mg, my, ... such that init ---— my for every k and

such that mg, my, ... converges toward m'.
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Conclusion

Backward coverability algorithm with invariant-based pruning

Pre-processing is a cheap way to accelerate verification

In practice, in a pre-processed Petri net, state inequation is almost as
good as --» coverability

Find other cheap pre-processings and invariants

Apply to other classes of well-structured transition systems
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Part Ill: Best practices

Christoph Haase



General remarks

Tools...
- increase visibility outside your peer group

- help understanding what is relevant to
other people

- generate feedback for theoretical work
- Can convince reviewers

- attract students
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Before you start

- Choice of language

- interpreted vs. compiled
- statically vs. dynamically typed

- Bindings for SMT solver

- Performance of memory operations
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Software engineering aspects

- Object oriented programming
- Unit tests
- Documentation

- Use profilers to find bottlenecks
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- One of the most important aspects
 Use other people's benchmarks
- Contact authors if necessary

- Pitfalls:

- Parsing can entail large costs
- Avoid unfair treatment of competitors
- Choose evaluation metrics wisely
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Availability

- Obtain institutional clearance € F,
 Choose license: BSD preferred by industry

- Use public code repositories, e.g. GitHub
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- Identify relevant Petri net subclasses and
extensions, e.g.

- business processes

* process mining

- population protocols

- thread transition systems

- Submit to and integrate into existing
software competitions

6/7



The SMT solver is always faster than you!
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Thank you! Diolch!



