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Coverability problem

Problem
Input: Petri net N , initial marking m0, target marking m

Question: Is some m′ ≥ m reachable from m0 in N ?

How to solve it?

• Forward: build reachability tree from initial marking
• Backward: find predecessors of markings covering target
• EXPSPACE-complete

.
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Backward algorithm
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Backward algorithm
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Basis size may become doubly exponential
(Bozzelli & Ganty '11)
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Continuity to over-approximate coverability

m is coverable from m0

..

⇒

m is Q-coverable from m0

..

⇒
..

̸⇒
m0 and m satisfy conditions of
Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic '14

..

EXPSPACE

.

PTIME

.

NP / EXPTIME

.

Safety
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Continuity to over-approximate coverability
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Coverability in continuous Petri nets

Fix some continuous Petri net (P, T,Pre,Post)

m is Q-coverable fromm0 iff... Fraca & Haddad '13

there exist m′ ≥ m and v ∈ QT
≥0 such that

• m′ = m0 + (Post− Pre) · v

• some execution from m0 fires exactly {t ∈ T : vt > 0}

3

• some execution to m′ fires exactly {t ∈ T : vt > 0}

7

..

Straightforward

.

More subtle

.

Even better approximation

..

Polynomial time!
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Coverability in continuous Petri nets
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Backward coverability modulo Q-coverability

if target marking m is not Q-coverable:
return False

X = {target marking m}

while (initial marking m0 not covered by X):
B = markings obtained from X one step backward
B = B \ {b ∈ B : ¬φ(b)}
if B = ∅: return False
φ(x) = φ(x) ∧

∧
pruned b x ̸≥ b

X = X ∪ B

return True

..

Polynomial time

.

Q-coverability pruning

.

(better than poly. time)

.

SMT solver guidance
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An implementation: QCover

+ SMT solver Z3 (Microsoft Research)

https://github.com/blondimi/qcover

Tested on...

• 176 Petri nets (avg. 1054 places, 8458 transitions)

• C/Erlang programs with threads

• Mutual exclusion protocols, communication protocols, etc.

• Message analysis of a medical and a bug tracking system

..

Largest nets proved safe:

.

21143 places
7150 trans.

42 secs.

.

6690 places

11934 trans.

21 secs.

.

754 places
27370 trans.

3 secs.
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Possible extensions

• Combine our approach with a forward algorithm to better
handle unsafe instances

• Use more efficient data structures, e.g. sharing trees
(Delzanno, Raskin & Van Begin '04)

• Support Petri nets extensions
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Part II: ICover
Grégoire Sutre

Joint work with Thomas Geffroy and Jérôme Leroux
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Verifying Systems with Petri Nets

C code
Property

Erlang code

Property

...

...

Satabs

Soter

...

Petri Net
+

Coverability
Question

ICover

QCover

BFC

...

COVERABLE?
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Coverability in Petri nets

init ∗−→ m ≥ target?

Decidability - Complexity
Decidable (Karp and Miller - 1969)
ExpSpace-complete (Lipton - 1976, Rackoff - 1978)
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Coverability in Petri nets

init ∗−→ m ≥ target?

Tools
Mist (Ganty, Geeraerts, Raskin, Van Begin, . . . )

interval sharing trees
backward search + place invariants
abstraction refinement

BFC (Kaiser, Kroening, Wahl)
Target set widening + forward Karp-Miller

Petrinizer (Esparza, Ledesma-Garza, Majumdar, Meyer, Niksic)
SMT, state equation + traps

QCover (Blondin, Finkel, Haase, Haddad)
SMT, continuous reachability + backward search

3 / 14



ICover : Generalisation of QCover with Invariants

Assumption:
1 I is an invariant (I contains all

reachable markings)
2 I is a downward closed set

U0 := ↑(target ∩ I)

U0 := ∅ : Safe !
U1 := U0 ∪ ↑(pre(U0) ∩ I)
U2 := U1 ∪ ↑(pre(U1) ∩ I)
. . .
Uk+1 := Uk ∪ ↑(pre(Uk) ∩ I)

Always terminates
(Dickson’s lemma)

init target

I

U1U2

...

Un+1 = Un
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Backward Algorithm with Invariant-Based Pruning

if target ∈ I then
B ← {target};

else
return False;

end
while minit 6∈ ↑B do

N ← min(pre(↑B)) \ ↑B
P ← N ∩ I
if P = ∅ then

return False;
end
B ← min(B ∪ P);

end
return True;

I is an invariant
I is a downward closed
set
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Invariant: Sign Analysis
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pq

= 0

≥ 0

can’t be fired

fireable
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t4 ps

2

t1

t2

t6

t7

Invariant: pq = 0 ∧ pr = 0 ∧ ps = 0

6 / 14



Invariant: Sign Analysis

t1

t2

t6

t7

t5

pq = 0

≥ 0

can’t be fired

fireable

pr

t3

t4 ps

2

t1

t2

t6

t7

Invariant: pq = 0 ∧ pr = 0 ∧ ps = 0

6 / 14



Invariant: Sign Analysis

t1

t2

t6

t7

t5

pq = 0

≥ 0

can’t be fired

fireable

pr

t3

t4 ps

2
t1

t2

t6

t7

Invariant: pq = 0 ∧ pr = 0 ∧ ps = 0

6 / 14



Invariant: Sign Analysis

t1

t2

t6

t7

t5

pq = 0

≥ 0

can’t be fired

fireable

pr

t3

t4 ps

2
t1

t2

t6

t7

Invariant: pq = 0 ∧ pr = 0 ∧ ps = 0

6 / 14



Invariant: Sign Analysis

t1

t2

t6

t7

t5

pq = 0

≥ 0

can’t be fired

fireable

pr

t3

t4 ps

2
t1

t2

t6

t7

Invariant: pq = 0 ∧ pr = 0 ∧ ps = 0

6 / 14



Invariant: State Inequation

p1

t1
p2

t2

t3

p3
2

2


x1, x2, x3 ≥ 0

m(p1) ≤ 1− x1
m(p2) ≤ x1 − x2 + 2x3

m(p3) ≤ 2x2 − x3

p1
t1−→ t2−→ t3−→ . . .

t2−→ t3−→ r

≥ m

∆(t1) = p2 − p1
∆(t2) = 2p3 − p2
∆(t3) = 2p2 − p3

xi : number of occurrences of ti
r = init + x1∆(t1) + x2∆(t2) + x3∆(t3)

Invariant
I := {m | ∃x , init +

∑
t∈T x(t)∆(t) ≥ m}
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Experimentations

New Tool: ICover
Based on QCover written in Python (~900 lines of codes)
Both use the SMT-Solver z3 (Bjorner et al. - 2007)
ICover available as a patch of QCover (~400 lines of codes)
dept-info.labri.u-bordeaux.fr/~tgeffroy/icover

Results
Benchmarks (176 instances) used by QCover and others
QCover solved 106 / 115 safe instances (2000 seconds per instance)
QCover solved 37 / 61 unsafe instances (idem)
ICover solved as much safe instances and one more unsafe
It works ! 10 000 seconds (QCover) to 5 000 seconds (ICover)

8 / 14
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Experimentations: Sign Analysis As A Pre-processing
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Results of Pre-processing
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% of places left
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Experimental results: Pruning with State Inequation vs �
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State Inequation More Precise with Pre-Processing

p1
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Can’t cover p1 + p2 + p3 from p1

State inequation: p1 ≤ 1 not precise enough
State inequation: p1 + p2 + p3 ≤ 1 precise enough
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State Inequation vs 99K

p1

1

1-ε

t1
p2

t2
2

ε2ε4ε>1

p1 + p2 not coverable from p1
with 99K

p1 + p2 satisfy the state
inequation: p1 ≤ 1

Theorem (Recalde, Teruel and Silva - 1999)
In a pre-processed Petri net, m satisfies the state inequation iff there exists
m′ ≥ m and a sequence m0,m1, ... such that init ∗ � mk for every k and
such that m0,m1, ... converges toward m′.
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Conclusion

New
Backward coverability algorithm with invariant-based pruning
Pre-processing is a cheap way to accelerate verification
In practice, in a pre-processed Petri net, state inequation is almost as
good as 99K coverability

Future work
Find other cheap pre-processings and invariants
Apply to other classes of well-structured transition systems
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Part III: Best practices
Christoph Haase
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General remarks

Tools...

• increase visibility outside your peer group

• help understanding what is relevant to
other people

• generate feedback for theoretical work

• can convince reviewers

• attract students

1/7



Before you start

• Choice of language
• interpreted vs. compiled
• statically vs. dynamically typed

• Bindings for SMT solver

• Performance of memory operations
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Software engineering aspects

• Object oriented programming

• Unit tests

• Documentation

• Use profilers to find bottlenecks
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Benchmarks

• One of the most important aspects

• Use other people's benchmarks

• Contact authors if necessary

• Pitfalls:
• Parsing can entail large costs
• Avoid unfair treatment of competitors
• Choose evaluation metrics wisely
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Availability

• Obtain institutional clearance ∈ Fω

• Choose license: BSD preferred by industry

• Use public code repositories, e.g. GitHub
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Future

• Identify relevant Petri net subclasses and
extensions, e.g.
• business processes
• process mining
• population protocols
• thread transition systems

• Submit to and integrate into existing
software competitions
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Final words

The SMT solver is always faster than you!

7/7



Thank you! Diolch!
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