
Version 2.1

© 1995 – 2000 Center for Software Engineering, USC

COCOMO II

Model Definition Manual

Version 2.1 i

© 1995 – 2000 Center for Software Engineering, USC

Table of Contents

Acknowledgements ... ii

Copyright Notice ..iii

Warranty...iii

1. Introduction ... 1
1.1 Overview.. 1
1.2 Nominal-Schedule Estimation Equations .. 1

2. Sizing... 3
2.1 Counting Source Lines of Code (SLOC)... 3
2.2 Counting Unadjusted Function Points (UFP) .. 4
2.3 Relating UFPs to SLOC... 6
2.4 Aggregating New, Adapted, and Reused Code ... 7
2.5 Requirements Evolution and Volatility (REVL) ... 12
2.6 Automatically Translated Code ... 13
2.7 Sizing Software Maintenance .. 13

3. Effort Estimation ... 15
3.1 Scale Factors .. 16
3.2 Effort Multipliers ... 25
3.3 Multiple Module Effort Estimation ... 39

4. Schedule Estimation.. 41

5. Software Maintenance... 42

6. COCOMO II: Assumptions and phase/activity distributions.. 44
6.1 Introduction.. 44
6.2 Waterfall and MBASE/RUP Phase Definitions .. 45
6.3 Phase Distribution of Effort and Schedule .. 49
6.4 Waterfall and MBASE/RUP Activity Definitions... 53
6.5 Distribution of Effort Across Activities .. 61
6.6 Definitions and Assumptions... 66

7. Model Calibration to the Local Environment ... 68

8. Summary ... 71
8.1 Models ... 71
8.2 Rating Scales ... 73
8.3 COCOMO II Version Parameter Values ... 75
8.4 Source Code Counting Rules... 77

Acronyms and Abbreviations.. 81

References ... 85

Version 2.1 ii

© 1995 – 2000 Center for Software Engineering, USC

Acknowledgements

The COCOMO II model is part of a suite of Constructive Cost Models. This suite is an
effort to update and extend the well-known COCOMO (Constructive Cost Model) software cost
estimation model originally published in Software Engineering Economics by Barry Boehm in
1981. The suite of models focuses on issues such as non-sequential and rapid-development
process models; reuse driven approaches involving commercial-off-the-shelf (COTS) packages,
reengineering, applications composition, and software process maturity effects and process-
driven quality estimation. Research on the COCOMO suite of models is being led by the
Director of the Center of Software Engineering at USC, Barry Boehm and other researchers
(listed in alphabetic order):

Chris Abts Ellis Horowitz

A. Winsor Brown Ray Madachy

Sunita Chulani Don Reifer

Brad Clark Bert Steece

This work is being supported financially and technically by the COCOMO II Program
Affiliates: Aerospace, Air Force Cost Analysis Agency, Allied Signal, DARPA, DISA, Draper
Lab, EDS, E-Systems, FAA, Fidelity, GDE Systems, Hughes, IDA, IBM, JPL, Litton, Lockheed
Martin, Loral, Lucent, MCC, MDAC, Microsoft, Motorola, Northrop Grumman, ONR, Rational,
Raytheon, Rockwell, SAIC, SEI, SPC, Sun, TASC, Teledyne, TI, TRW, USAF Rome Lab, US
Army Research Labs, US Army TACOM, Telcordia, and Xerox.

The successive versions of the tool based on the COCOMO II model have been
developed as part of a Graduate Level Course Project by several student development teams lead
by Ellis Horowitz. The latest version, USC COCOMO II.2000, was developed by the following
graduate student:

Jongmoon Baik

Version 2.1 iii

© 1995 – 2000 Center for Software Engineering, USC

Copyright Notice

This document is copyrighted, and all rights are reserved by the Center for Software Engineering
at the University of Southern California (USC). Permission to make digital or hard copies of
part of all of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice
and full citation of the first page. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on Internet servers, or to redistribute to lists requires prior specific permission
and/or fee.

Copyright © 1995 – 2000 Center for Software Engineering, USC

All rights reserved.

Warranty

This manual is provided “as is” without warranty of any kind, either express or implied,
including, but not limited to the implied warranties of merchantability and fitness for a particular
purpose. Moreover, the Center for Software Engineering, USC, reserves the right to revise this
manual and to make changes periodically without obligation to notify any person or organization
of such revision or changes.

Version 2.1 1

© 1995 – 2000 Center for Software Engineering, USC

1. Introduction

1.1 Overview

This manual presents two models, the Post-Architecture and Early Design models. These
two models are used in the development of Application Generator, System Integration, or
Infrastructure developments [Boehm et al. 2000]. The Post-Architecture is a detailed model that
is used once the project is ready to develop and sustain a fielded system. The system should
have a life-cycle architecture package, which provides detailed information on cost driver inputs,
and enables more accurate cost estimates. The Early Design model is a high-level model that is
used to explore of architectural alternatives or incremental development strategies. This level of
detail is consistent with the general level of information available and the general level of
estimation accuracy needed.

The Post-Architecture and Early Design models use the same approach for product sizing
(including reuse) and for scale factors. These will be presented first. Then, the Post-Architecture
model will be explained followed by the Early Design model.

1.2 Nominal-Schedule Estimation Equations

Both the Post-Architecture and Early Design models use the same functional form to
estimate the amount of effort and calendar time it will take to develop a software project. These
nominal-schedule (NS) formulas exclude the cost driver for Required Development Schedule,
SCED. The full formula is given in Section 3. The amount of effort in person-months, PMNS, is
estimated by the formula:

∑

∏

=

=

×+=

××=

5

1j
j

n

1i
i

E
NS

SF0.01BE where

EMSizeAPM

 Eq. 1

The amount of calendar time, TDEVNS, it will take to develop the product is estimated by
the formula:

()

B)(E0.2D

SF01.00.2DF where

PMCTDEV
5

1j
j

F
NSNS

−×+=

××+=

×=

∑
=

 Eq. 2

The value of n, the number of effort multipliers, EMi, is 16 for the Post-Architecture
model effort multipliers, EMi, and 6 for the Early Design model. SFj stands for the exponential
scale factors. The values of A, B, EM1, …, EM16, SF1, …, and SF5 for the COCOMO II.2000
Post-Architecture model are obtained by calibration to the actual parameters and effort values for
the 161 projects currently in the COCOMO II database. The values of C and D for the

Version 2.1 2

© 1995 – 2000 Center for Software Engineering, USC

COCOMO II.2000 schedule equation are obtained by calibration to the actual schedule values
for the 161 project currently in the COCOMO II database.

The values of A, B, C, D, SF1, …, and SF5 for the Early Design model are the same as
those for the Post-Architecture model. The values of EM1, …, and EM6 for the Early Design
model are obtained by combining the values of their 16 Post-Architecture counterparts; the
specific combinations are given in Section 3.2.2.

The subscript NS applied to PM and TDEV indicates that these are the nominal-schedule
estimates of effort and calendar time. The effects of schedule compression or stretch-out are
covered by an additional cost driver, Required Development Schedule. They are also included in
the COCOMO II.2000 calibration to the 161 projects. Its specific effects are given in Section 4.

The specific milestones used as the end points in measuring development effort and
calendar time are defined in Section 6, as are the other definitions and assumptions involved in
defining development effort and calendar time. Size is expressed as thousands of source lines of
code (SLOC) or as unadjusted function points (UFP), as discussed in Section 2. Development
labor cost is obtained by multiplying effort in PM by the average labor cost per PM. The values
of A, B, C, and D in the COCOMO II.2000 calibration are:

A = 2.94 B = 0.91
C = 3.67 D = 0.28

Details of the calibration are presented in Section 7, which also provides formulas for
calibrating either A and C or A, B, C, and D to one’s own database of projects. It is
recommended that at least A and C be calibrated to the local development environment to
increase the model’s accuracy.

As an example, let's estimate how much effort and calendar time it would take to develop
an average 100 KSLOC sized project. For an average project, the effort multipliers are all equal
to 1.0. E will be set to 1.15 reflecting an average, large project. The estimated effort is PMNS =
2.94(100)1.15 = 586.61.

Continuing the example, the duration is estimated as TDEVNS = 3.67(586.6)(0.28+0.2×(1.15-

0.91)) = 3.67(586.6)0.328 = 29.7 months. The average number of staff required for the nominal-
schedule development is PMNS / TDEVNS = 586.6 / 29.7 = 19.75 or about 20 people. In this
example, an average 100 KSLOC software project will take about 30 months to complete with an
average of 20 people.

Version 2.1 3

© 1995 – 2000 Center for Software Engineering, USC

2. Sizing

A good size estimate is very important for a good model estimation. However,
determining size can be challenging. Projects are generally composed of new code, code reused
from other sources--with or without modifications--and automatically translated code.
COCOMO II only uses size data that influences effort which is new code and code that is copied
and modified.

For new and reused code, a method is used to make them equivalent so they can be rolled
up into an aggregate size estimate. The baseline size in COCOMO II is a count of new lines of
code. The count for code that is copied and then modified has to be adjusted to create a count
that is equivalent to new lines of code. The adjustment takes into account the amount of design,
code and testing that was changed. It also considers the understandability of the code and the
programmer familiarity with the code.

For automatically translated code, a separate translation productivity rate is used to
determine effort from the amount of code to be translated.

The following sections discuss sizing new code and reused code.

2.1 Counting Source Lines of Code (SLOC)

There are several sources for estimating new lines of code. The best source is historical
data. For instance, there may be data that will convert Function Points, components, or anything
available early in the project to estimate lines of code. Lacking historical data, expert opinion
can be used to derive estimates of likely, lowest-likely, and highest-likely size.

Code size is expressed in thousands of source lines of code (KSLOC). A source line of
code is generally meant to exclude non-delivered support software such as test drivers.
However, if these are developed with the same care as delivered software, with their own
reviews, test plans, documentation, etc., then they should be counted [Boehm 1981, pp. 58-59].
The goal is to measure the amount of intellectual work put into program development.

Defining a line of code is difficult because of conceptual differences involved in
accounting for executable statements and data declarations in different languages. Difficulties
arise when trying to define consistent measures across different programming languages. In
COCOMO II, the logical source statement has been chosen as the standard line of code. The
Software Engineering Institute (SEI) definition checklist for a logical source statement is used in
defining the line of code measure. The SEI has developed this checklist as part of a system of
definition checklists, report forms and supplemental forms to support measurement definitions
[Park 1992; Goethert et al. 1992].

A SLOC definition checklist is used to support the development of the COCOMO II
model. The full checklist is provided at the end of this manual, Table 64. Each checkmark in the
“Includes” column identifies a particular statement type or attribute included in the definition,
and vice versa for the excludes. Other sections in the definition clarify statement attributes for
usage, delivery, functionality, replications and development status.

Version 2.1 4

© 1995 – 2000 Center for Software Engineering, USC

Some changes were made to the line-of-code definition that departs from the default
definition provided in [Park 1992]. These changes eliminate categories of software, which are
generally small sources of project effort. For example, not included in the definition are
commercial-off-the-shelf software (COTS), government-furnished software (GFS), other
products, language support libraries and operating systems, or other commercial libraries. Code
generated with source code generators is handled by counting separate operator directives as
lines of source code. It is admittedly difficult to count "directives" in a highly visual
programming system. As this approach becomes better understood, we hope to provide more
specific counting rules. For general source code sizing approaches, such as PERT sizing, expert
consensus, analogy, top-down, and bottom-up, see Section 21.4 and Chapter 22 of [Boehm
1981].

2.2 Counting Unadjusted Function Points (UFP)

The function point cost estimation approach is based on the amount of functionality in a
software project and a set of individual project factors [Behrens 1983; Kunkler 1985; IFPUG
1994]. Function points are useful estimators since they are based on information that is available
early in the project life-cycle. A brief summary of function points and their calculation in
support of COCOMO II follows.

Function points measure a software project by quantifying the information processing
functionality associated with major external data or control input, output, or file types. Five user
function types should be identified as defined in Table 1.

Table 1. User Function Types

Function Point Description

External Input (EI) Count each unique user data or user control input type that enters the
external boundary of the software system being measured.

External Output
(EO)

Count each unique user data or control output type that leaves the external
boundary of the software system being measured.

Internal Logical File
(ILF)

Count each major logical group of user data or control information in the
software system as a logical internal file type. Include each logical file
(e.g., each logical group of data) that is generated, used, or maintained by
the software system.

External Interface
Files (EIF)

Files passed or shared between software systems should be counted as
external interface file types within each system.

External Inquiry
(EQ)

Count each unique input-output combination, where input causes and
generates an immediate output, as an external inquiry type.

Each instance of these function types is then classified by complexity level. The
complexity levels determine a set of weights, which are applied to their corresponding function
counts to determine the Unadjusted Function Points quantity. This is the Function Point sizing
metric used by COCOMO II. The usual Function Point procedure, which is not followed by
COCOMO II, involves assessing the degree of influence (DI) of fourteen application
characteristics on the software project determined according to a rating scale of 0.0 to 0.05 for
each characteristic. The 14 ratings are added together and then added to a base level of 0.65 to
produce a general characteristic adjustment factor that ranges from 0.65 to 1.35.

Each of these fourteen characteristics, such as distributed functions, performance, and
reusability, thus have a maximum of 5% contribution to estimated effort. Having, for example, a

Version 2.1 5

© 1995 – 2000 Center for Software Engineering, USC

5% limit on the effect of reuse is inconsistent with COCOMO experience; thus COCOMO II
uses Unadjusted Function Points for sizing, and applies its reuse factors, cost drivers, and scale
factors to this sizing quantity to account for the effects of reuse, distribution, etc. on project
effort.

The COCOMO II procedure for determining Unadjusted Function Points follows the
definitions in [IFPUG 1994]. This four step procedure, which follows, is used in both the Early
Design and the Post-Architecture models.

1. Determine function counts by type. The unadjusted function counts should be counted by a
lead technical person based on information in the software requirements and design
documents. The number of each of the five user function types should be counted (Internal
Logical File (ILF), External Interface File (EIF), External Input (EI), External Output (EO),
and External Inquiry (EQ)). See [IFPUG 1994] for more detailed interpretations of the
counting rules for those quantities.

2. Determine complexity levels. Classify each function count into Low, Average and High
complexity levels depending on the number of data element types contained and the number
of file types referenced. Use the scheme in Table 2.

Table 2. FP Counting Weights

For Internal Logical Files and External Interface Files

 Data Elements

Record Elements 1 - 19 20 - 50 51+

1 Low Low Avg.
2 - 5 Low Avg. High
6+ Avg. High High

For External Output and External Inquiry

 Data Elements

File Types 1 - 5 6 - 19 20+

0 or 1 Low Low Avg.
2 - 3 Low Avg. High
4+ Avg. High High

For External Input

 Data Elements

File Types 1 - 4 5 - 15 16+

0 or 1 Low Low Avg.
2 - 3 Low Avg. High
3+ Avg. High High

3. Apply complexity weights. Weight the number of function types at each complexity level
using the following scheme (the weights reflect the relative effort required to implement the
function):

Version 2.1 6

© 1995 – 2000 Center for Software Engineering, USC

Table 3. UFP Complexity Weights

 Complexity-Weight
Function Type Low Average High

Internal Logical Files 7 10 15
External Interfaces Files 5 7 10
External Inputs 3 4 6
External Outputs 4 5 7
External Inquiries 3 4 6

4. Compute Unadjusted Function Points. Add all the weighted functions counts to get one
number, the Unadjusted Function Points.

2.3 Relating UFPs to SLOC

Next, convert the Unadjusted Function Points (UFP) to Lines of Code. The unadjusted
function points have to be converted to source lines of code in the implementation language
(Ada, C, C++, Pascal, etc.). COCOMO II does this for both the Early Design and Post-
Architecture models by using backfiring tables to convert Unadjusted Function Points into
equivalent SLOC. The current conversion ratios shown in Table 4 are from [Jones 1996].
Updates to these conversion ratios as well as additional ratios can be found at
http://www.spr.com/library/0Langtbl.htm.

Table 4. UFP to SLOC Conversion Ratios

Language
Default

SLOC / UFP

Language
Default

SLOC / UFP

Access 38 Jovial 107
Ada 83 71 Lisp 64
Ada 95 49 Machine Code 640
AI Shell 49 Modula 2 80
APL 32 Pascal 91
Assembly - Basic 320 PERL 27
Assembly - Macro 213 PowerBuilder 16
Basic - ANSI 64 Prolog 64
Basic - Compiled 91 Query – Default 13
Basic - Visual 32 Report Generator 80
C 128 Second Generation Language 107
C++ 55 Simulation – Default 46
Cobol (ANSI 85) 91 Spreadsheet 6
Database – Default 40 Third Generation Language 80
Fifth Generation Language 4 Unix Shell Scripts 107
First Generation Language 320 USR_1 1
Forth 64 USR_2 1
Fortran 77 107 USR_3 1
Fortran 95 71 USR_4 1
Fourth Generation Language 20 USR_5 1
High Level Language 64 Visual Basic 5.0 29
HTML 3.0 15 Visual C++ 34
Java 53

Version 2.1 7

© 1995 – 2000 Center for Software Engineering, USC

USR_1 through USR_5 are five extra slots provided by USC COCOMO II.2000 to
accommodate user-specified additional implementation languages. These ratios are easy to
determine with historical data or with a recently completed project. It would be prudent to
determine your own ratios for your local environment.

2.4 Aggregating New, Adapted, and Reused Code

A product’s size discussed thus far has been for new development. Code that is taken
from another source and used in the product under development also contributes to the product's
effective size. Preexisting code that is treated as a black-box and plugged into the product is
called reused code. Preexisting code that is treated as a white-box and is modified for use with
the product is called adapted code. The effective size of reused and adapted code is adjusted to
be its equivalent in new code. The adjusted code is called equivalent source lines of code
(ESLOC). The adjustment is based on the additional effort it takes to modify the code for
inclusion in the product. The sizing model treats reuse with function points and source lines of
code the same in either the Early Design model or the Post-Architecture model.

2.4.1 Nonlinear Reuse Effects

Analysis in [Selby 1988] of reuse costs across nearly three thousand reused modules in
the NASA Software Engineering Laboratory indicates that the reuse cost function, relating the
amount of modification of the reused code to the resulting cost to reuse, is nonlinear in two
significant ways (see Figure 1). The effort required to reuse code does not start at zero. There is
generally a cost of about 5% for assessing, selecting, and assimilating the reusable component.

Figure 1 shows the results of the NASA analysis as blocks of relative cost. A dotted line
is superimposed on the blocks of relative cost to show increasing cost as more of the reused code
is modified. (The solid lines are labeled AAM for Adaptation Adjustment Modifier. AAM is
explained in Equation 4.) It can be seen that small modifications in the reused product generate
disproportionately large costs. This is primarily because of two factors: the cost of
understanding the software to be modified, and the relative cost of checking module interfaces.

Version 2.1 8

© 1995 – 2000 Center for Software Engineering, USC

Figure 1. Non-Linear Reuse Effects

[Parikh-Zvegintzov 1983] contains data indicating that 47% of the effort in software
maintenance involves understanding the software to be modified. Thus, as soon as one goes
from unmodified (black-box) reuse to modified-software (white-box) reuse, one encounters this
software understanding penalty. Also, [Gerlich-Denskat 1994] shows that, if one modifies k out
of m software modules, the number of module interface checks required, N, is expressed in
Equation 3.

 ()

 −×+×=

2

1k
kk-mkN Eq. 3

Figure 2 shows this relation between the number of modules modified k and the resulting
number, N, of module interface checks required for an example of m = 10 modules. In this
example, modifying 20% (2 of 10) of the modules required revalidation of 38% (17 of 45) of the
interfaces.

The shape of this curve is similar for other values of m. It indicates that there are
nonlinear effects involved in the module interface checking which occurs during the design,
code, integration, and test of modified software.

100

1.0

1.5

0.0
50

0.5

Relative Modification of Size (AAF)

R
el

at
iv

e
C

os
t

[Selby 1988]

0.045

AAM Worst Case:

 AA = 8
 SU = 50
 UNFM = 1

 AAF = varies

AAM Best Case:

 AA = 0
 SU = 10
 UNFM = 0

 AAF = varies

Selby data
summary

0.0

AAM

Version 2.1 9

© 1995 – 2000 Center for Software Engineering, USC

Figure 2. Number of Module Interface Checks, N, vs. Modules Modified, k

The size of both the software understanding penalty and the module interface-checking
penalty can be reduced by good software structuring. Modular, hierarchical structuring can
reduce the number of interfaces which need checking [Gerlich-Denskat 1994], and software that
is well-structured, explained, and related to its mission will be easier to understand. COCOMO
II reflects this in its allocation of estimated effort for modifying reusable software.

2.4.2 A Reuse Model

The COCOMO II treatment of software reuse uses a nonlinear estimation model,
Equation 4. This involves estimating the amount of software to be adapted and three degree-of-
modification factors: the percentage of design modified (DM), the percentage of code modified
(CM), and the percentage of integration effort required for integrating the adapted or reused
software (IM). These three factors use the same linear model as used in COCOMO 81, but
COCOMO II adds some nonlinear increments to the relation of Adapted KSLOC of Equivalent
KSLOC to reflect the non-linear tendencies of the model. These are explained next.

() () ()IM0.3CM0.3DM0.4AAF

50AAFfor ,
100

UNFM)](SUAAF[AA

50AAFfor ,
100

UNFM))]SU0.02(AAF(1[AA

AAM where

AAM
100

AT
1KSLOC Adapted KSLOC Equivalent

×+×+×=

>×++

≤××++

=

×

 −×=

 Eq. 4

The Software Understanding increment (SU) is obtained from Table 5. SU is expressed
quantitatively as a percentage. If the software is rated very high on structure, applications
clarity, and self-descriptiveness, the software understanding and interface-checking penalty is

For m = 10

0

10

20

30

40

50

0 2 4 6 8 10

k

N

Version 2.1 10

© 1995 – 2000 Center for Software Engineering, USC

10%. If the software is rated very low on these factors, the penalty is 50%. SU is determined by
taking the subjective average of the three categories.

Table 5. Rating Scale for Software Understanding Increment SU

 Very Low Low Nominal High Very High

Structure

Very low
cohesion, high
coupling,
spaghetti code.

Moderately low
cohesion, high
coupling.

Reasonably
well-structured;
some weak
areas.

High cohesion,
low coupling.

Strong
modularity,
information
hiding in data /
control
structures.

Application

Clarity

No match
between
program and
application
world-views.

Some
correlation
between
program and
application.

Moderate
correlation
between
program and
application.

Good
correlation
between
program and
application.

Clear match
between
program and
application
world-views.

Self-
Descriptive-

ness

Obscure code;
documentation
missing,
obscure or
obsolete.

Some code
commentary
and headers;
some useful
documentation.

Moderate level
of code
commentary,
headers,
documentation.

Good code
commentary
and headers;
useful
documentation;
some weak
areas.

Self-descriptive
code;
documentation
up-to-date,
well-organized,
with design
rationale.

SU
Increment to

ESLOC

50

40

30

20

10

The other nonlinear reuse increment deals with the degree of Assessment and
Assimilation (AA) needed to determine whether a reused software module is appropriate to the
application, and to integrate its description into the overall product description. Table 6 provides
the rating scale and values for the assessment and assimilation increment. AA is a percentage.

Table 6. Rating Scale for Assessment and Assimilation Increment (AA)

AA Increment Level of AA Effort

0 None
2 Basic module search and documentation
4 Some module Test and Evaluation (T&E), documentation
6 Considerable module T&E, documentation
8 Extensive module T&E, documentation

The amount of effort required to modify existing software is a function not only of the
amount of modification (AAF) and understandability of the existing software (SU), but also of
the programmer’s relative unfamiliarity with the software (UNFM). The UNFM factor is applied
multiplicatively to the software understanding effort increment. If the programmer works with
the software every day, the 0.0 multiplier for UNFM will add no software understanding
increment. If the programmer has never seen the software before, the 1.0 multiplier will add the
full software understanding effort increment. The rating of UNFM is shown in Table 7.

Version 2.1 11

© 1995 – 2000 Center for Software Engineering, USC

Table 7. Rating Scale for Programmer Unfamiliarity (UNFM)

UNFM Increment Level of Unfamiliarity

0.0 Completely familiar
0.2 Mostly familiar
0.4 Somewhat familiar
0.6 Considerably familiar
0.8 Mostly unfamiliar
1.0 Completely unfamiliar

Equation 4 is used to determine an equivalent number of new source lines of code. The
calculation of equivalent SLOC is based on the product size being adapted and a modifier that
accounts for the effort involved in fitting adapted code into an existing product, called
Adaptation Adjustment Modifier (AAM). The term (1 – AT/100) is for automatically translated
code and is discussed in Section 2.2.6.

AAM uses the factors discussed above, Software Understanding (SU), Programmer
Unfamiliarity (UNFM), and Assessment and Assimilation (AA) with a factor called the
Adaptation Adjustment Factor (AAF). AAF contains the quantities DM, CM, and IM where:
• DM (Percent Design Modified) is the percentage of the adapted software’s design which is

modified in order to adapt it to the new objectives and environment. (This is necessarily a
subjective quantity.)

• CM (Percent Code Modified) is the percentage of the adapted software’s code which is
modified in order to adapt it to the new objectives and environment.

• IM (Percent of Integration Required for Adapted Software) is the percentage of effort
required to integrate the adapted software into an overall product and to test the resulting
product as compared to the normal amount of integration and test effort for software of
comparable size.

If there is no DM or CM (the component is being used unmodified) then there is no need
for SU. If the code is being modified then SU applies.

The range of AAM is shown in Figure 1. Under the worst case, it can take twice the
effort to modify a reused module than it takes to develop it as new (the value of AAM can
exceed 100). The best case follows a one for one correspondence between adapting an existing
product and developing it from scratch.

2.4.3 Guidelines for Quantifying Adapted Software

This section provides guidelines to estimate adapted software factors for different
categories of code using COCOMO II. The New category refers to software developed from
scratch. Adapted code is preexisting code that has some changes to it, while reused code has no
changes to the preexisting source (i.e. used as-is). COTS is off-the-shelf software that is
generally treated the same as reused code when there are no changes to it. One difference is that
there may be some new glue code associated with it that also needs to be counted (this may
happen with reused software, but here the option of modifying the source code may make
adapting the software more attractive).

Version 2.1 12

© 1995 – 2000 Center for Software Engineering, USC

Since there is no source code modified in reused and COTS, DM=0, CM=0, and SU and
UNFM don’t apply. AA and IM can have non-zero values in this case. Reuse doesn’t mean free
integration and test. However in the reuse approach, with well-architected product-lines, the
integration and test is minimal.

For adapted software, CM > 0, DM is usually > 0, and all other reuse factors normally
have non-zero values. IM is expected to be at least moderate for adapted software, but can be
higher than 100% for adaptation into more complex applications. Table 8 shows the valid ranges
of reuse factors with additional notes for the different categories.

Table 8. Adapted Software Parameter Constraints and Guidelines

Reuse Parameters
Code Category DM CM IM AA SU UNFM

New
all original
software

 not
applicable

Adapted
changes to
preexisting
software

0% - 100%
normally >

0%

0+% - 100%
usually > DM
and must be

> 0%

0% - 100+%
IM usually
moderate

and can be >
100%

0% – 8%

0% - 50%

0 - 1

Reused
unchanged
existing software

0%

0%

0% - 100%
rarely 0%,

but could be
very small

0% – 8%

not applicable

COTS
off-the-shelf
software (often
requires new glue
code as a
wrapper around
the COTS)

0%

0%

0% - 100%

0% – 8%

not applicable

2.5 Requirements Evolution and Volatility (REVL)

COCOMO II uses a factor called REVL, to adjust the effective size of the product caused
by requirements evolution and volatility caused by such factors as mission or user interface
evolution, technology upgrades, or COTS volatility. It is the percentage of code discarded due to
requirements evolution. For example, a project which delivers 100,000 instructions but discards
the equivalent of an additional 20,000 instructions has an REVL value of 20. This would be
used to adjust the project’s effective size to 120,000 instructions for a COCOMO II estimation.

The use of REVL for computing size in given in Equation 5.

software. delivered theof equivalent-reuse theis Size where

Size
100

REVL
1Size

D

D×

 +=

 Eq. 5

Version 2.1 13

© 1995 – 2000 Center for Software Engineering, USC

2.6 Automatically Translated Code

The COCOMO II reuse model needs additional refinement to estimate the costs of
software reengineering and conversion. The major difference in reengineering and conversion is
the efficiency of automated tools for software restructuring. These can lead to very high values
for the percentage of code modified (CM in the COCOMO II reuse model), but with very little
corresponding effort. For example, in the NIST reengineering case study [Ruhl-Gunn 1991],
80% of the code (13,131 COBOL source statements) was re-engineered by automatic translation,
and the actual reengineering effort, 35 Person-Months, was more than a factor of 4 lower than
the COCOMO estimate of 152 person months.

The COCOMO II reengineering and conversion estimation approach involves estimating
an additional factor, AT, the percentage of the code that is re-engineered by automatic
translation. Based on an analysis of the project data above, the default productivity value for
automated translation is 2400 source statements per person month. This value could vary with
different technologies and is designated in the COCOMO II model as another factor called
ATPROD. In the NIST case study ATPROD = 2400. Equation 6 shows how automated
translation affects the estimated effort, PMAuto.

()

ATPROD
100

ATSLOC Adapted
PMAuto

×
= Eq. 6

The NIST case study also provides useful guidance on estimating the AT factor, which is
a strong function of the difference between the boundary conditions (e.g., use of COTS
packages, change from batch to interactive operation) of the old code and the re-engineered code.
The NIST data on percentage of automated translation (from an original batch processing
application without COTS utilities) are given in Table 9 [Ruhl-Gunn 1991].

Table 9. Variation in Percentage of Automated Re-engineering

Re-engineering Target AT (% automated translation)

Batch processing 96%
Batch with SORT 90%
Batch with DBMS 88%

Batch, SORT, DBMS 82%
Interactive 50%

Automated translation is considered to be a separate activity from development. Thus, its
Adapted SLOC are not included as Size in Equivalent KSLOC, and its PMAUTO are not included
in PMNS in estimating the project’s schedule. If the automatically translated Adapted SLOC
count is included as Size in the Equivalent KSLOC, it must be backed out to prevent double
counting. This is done by adding the term (1 – AT/100) to the equation for Equivalent KSLOC,
Equation 2.4.

2.7 Sizing Software Maintenance

COCOMO II differs from COCOMO 81 in applying the COCOMO II scale factors to the
size of the modified code rather than applying the COCOMO 81 modes to the size of the product
being modified. Applying the scale factors to a 10 million SLOC product produced overlarge

Version 2.1 14

© 1995 – 2000 Center for Software Engineering, USC

estimates as most of the product was not being touched by the changes. COCOMO II accounts
for the effects of the product being modified via its software understanding and unfamiliarity
factors discussed for reuse in Section 2.4.2.

The scope of “software maintenance” follows the COCOMO 81 guidelines in [Boehm
1981; pp.534-536]. It includes adding new capabilities and fixing or adapting existing
capabilities. It excludes major product rebuilds changing over 50% of the existing software, and
development of sizable (over 20% changed) interfacing systems requiring little rework of the
existing system.

The maintenance size is normally obtained via Equation 7, when the base code size is
known and the percentage of change to the base code is known.

 [] MAFMCFSize) Code (Base(Size)M ××= Eq. 7

The Maintenance Adjustment Factor (MAF) is discussed below. But first, the percentage
of change to the base code is called the Maintenance Change Factor (MCF). The MCF is similar
to the Annual Change Traffic in COCOMO 81, except that maintenance periods other than a year
can be used. Conceptually the MCF represents the ratio in Equation 8:

Size Code Base

Modified Size Added Size
MCF

+= Eq. 8

A simpler version can be used when the fraction of code added or modified to the
existing base code during the maintenance period is known. Deleted code is not counted.

 MAFModified) Size Added (Size(Size)M ×+= Eq. 9

The size can refer to thousands of source lines of code (KSLOC), Function Points, or
Application Points. When using Function Points or Application Points, it is better to estimate
MCF in terms of the fraction of the overall application being changed, rather than the fraction of
inputs, outputs, screens, reports, etc. touched by the changes. Our experience indicates that
counting the items touched can lead to significant over estimates, as relatively small changes can
touch a relatively large number of items. In some very large COBOL programs, we found ratios
of 2 to 3 FP-touched/SLOC-changed as compared to 91 FP/SLOC for development.

The Maintenance Adjustment Factor (MAF), Equation 10, is used to adjust the effective
maintenance size to account for software understanding and unfamiliarity effects, as with reuse.
COCOMO II uses the Software Understanding (SU) and Programmer Unfamiliarity (UNFM)
factors from its reuse model (discussed in Section 2.4.2) to model the effects of well or poorly
structured/understandable software on maintenance effort.

 ×+= UNFM
100

SU
1MAF Eq. 10

The use of (Size)M in determining maintenance effort, Equation 9, is discussed in Section
5.

Version 2.1 15

© 1995 – 2000 Center for Software Engineering, USC

3. Effort Estimation

In COCOMO II effort is expressed as Person-Months (PM). A person month is the
amount of time one person spends working on the software development project for one month.
COCOMO II treats the number of person-hours per person-month, PH/PM, as an adjustable
factor with a nominal value of 152 hours per Person-Month. This number excludes time
typically devoted to holidays, vacations, and weekend time off. The number of person-months is
different from the time it will take the project to complete; this is called the development
schedule or Time to Develop, TDEV. For example, a project may be estimated to require 50 PM
of effort but have a schedule of 11 months. If you use a different value of PH/PM–say, 160
instead of 152–COCOMO II adjusts the PM estimate accordingly (in this case, reducing by
about 5%). This reduced PM will result in a smaller estimate of development schedule.

The COCOMO II effort estimation model was introduced in Equation 1, and is
summarized in Equation 11. This model form is used for both the Early Design and Post-
Architecture cost models to estimate effort between the end points of LCO and IOC for the
MBASE/RUP and SRR and SAR for the Waterfall lifecycle models (see Section 6.2). The
inputs are the Size of software development, a constant, A, an exponent, E, and a number of
values called effort multipliers (EM). The number of effort multipliers depends on the model.

II.2000) COCOMO(for 2.94A where

EMSizeAPM
n

1i
i

E

=

××= ∏
= Eq. 11

The exponent E is explained in detail in Section 3.1. The effort multipliers are explained
in Section 3.2. The constant, A, approximates a productivity constant in PM/KSLOC for the
case where E = 1.0. Productivity changes as E increases because of the non-linear effects on
Size. The constant A is initially set when the model is calibrated to the project database
reflecting a global productivity average. The COCOMO model should be calibrated to local data
which then reflects the local productivity and improves the model's accuracy. Section 7
discusses how to calibrate the model to the local environment.

The Size is KSLOC. This is derived from estimating the size of software modules that
will constitute the application program. It can also be estimated from unadjusted function points
(UFP), converted to SLOC, then divided by one thousand. Procedures for counting SLOC or
UFP were explained in Section 2, including adjustments for reuse, requirements evolution, and
automatically translated code.

Cost drivers are used to capture characteristics of the software development that affect
the effort to complete the project. A cost driver is a model factor that "drives" the cost (in this
case Person-Months) estimated by the model. All COCOMO II cost drivers have qualitative
rating levels that express the impact of the driver on development effort. These ratings can range
from Extra Low to Extra High. Each rating level of every multiplicative cost driver has a value,
called an effort multiplier (EM), associated with it. This scheme translates a cost driver's
qualitative rating into a quantitative one for use in the model. The EM value assigned to a
multiplicative cost driver's nominal rating is 1.00. If a multiplicative cost driver's rating level

Version 2.1 16

© 1995 – 2000 Center for Software Engineering, USC

causes more software development effort, then its corresponding EM is above 1.0. Conversely,
if the rating level reduces the effort then the corresponding EM is less than 1.0.

The rating of cost drivers is based on a strong rationale that they would independently
explain a significant source of project effort or productivity variation. The difference between
the Early Design and Post-Architecture models are the number of multiplicative cost drivers and
the areas of influence they explain. There are seven multiplicative cost drivers for the Early
Design model and seventeen multiplicative cost drivers for the Post-Architecture model. Each
set is explained with its model later in the manual.

It turns out that the most significant input to the COCOMO II model is Size. Size is
treated as a special cost driver in that it has an exponential factor, E. This exponent is an
aggregation of five scale factors. These are discussed next.

What is not apparent in the model definition form given in Equation 11 is that there are
some model drivers that apply only to the project as a whole. The scale factors in the exponent,
E, are only used at the project level. Additionally, one of the multiplicative cost drivers that is in
the product of effort multipliers, Required Development Schedule (SCED) is only used at the
project level. The other multiplicative cost drivers, which are all represented in the product of
effort multipliers, and size apply to individual project components. The model can be used to
estimate effort for a project that has only one component or multiple components. For multi-
component projects the project-level cost drivers apply to all components, see Section 3.3.

3.1 Scale Factors

The exponent E in Equation 11 is an aggregation of five scale factors (SF) that account
for the relative economies or diseconomies of scale encountered for software projects of different
sizes [Banker et al. 1994]. If E < 1.0, the project exhibits economies of scale. If the product’s
size is doubled, the project effort is less than doubled. The project’s productivity increases as the
product size is increased. Some project economies of scale can be achieved via project-specific
tools (e.g., simulations, testbeds), but in general these are difficult to achieve. For small projects,
fixed start-up costs such as tool tailoring and setup of standards and administrative reports are
often a source of economies of scale.

If E = 1.0, the economies and diseconomies of scale are in balance. This linear model is
often used for cost estimation of small projects.

If E > 1.0, the project exhibits diseconomies of scale. This is generally because of two
main factors: growth of interpersonal communications overhead and growth of large-system
integration overhead. Larger projects will have more personnel, and thus more interpersonal
communications paths consuming overhead. Integrating a small product as part of a larger
product requires not only the effort to develop the small product, but also the additional overhead
effort to design, maintain, integrate, and test its interfaces with the remainder of the product. See
[Banker et al. 1994] for a further discussion of software economies and diseconomies of scale.

Version 2.1 17

© 1995 – 2000 Center for Software Engineering, USC

Figure 3. Diseconomies of Scale Effect on Effort

Equation 12 defines the exponent, E, used in Equation 11. Table 10 provides the rating
levels for the COCOMO II scale factors. The selection of scale factors is based on the rationale
that they are a significant source of exponential variation on a project’s effort or productivity
variation. Each scale factors has a range of rating levels, from Very Low to Extra High. Each
rating level has a weight. The specific value of the weight is called a scale factor (SF). The
project's scale factors, the selected scale factors ratings, are summed and used to determine a
scale exponent, E, via Equation 12. The B term in the equation is a constant that can be
calibrated [Boehm et al. 2000].

II.2000) COCOMO(for 0.91B where

SF0.01BE
5

1j
j

=

×+= ∑
= Eq. 12

For example, scale factors in COCOMO II with an Extra High rating are each assigned a
scale factor weight of (0). Thus, a 100 KSLOC project with Extra High ratings for all scale
factors will have ΣSFj = 0, E = 0.91, and a relative effort of 2.94(100)0.91 = 194 PM. For the
COCOMO II.2000 calibration of scale factors in Table 10, a project with Very Low ratings for
all scale factors will have ΣSFj=31.6, E = 1.226, and a relative effort of 2.94(100)1.226 = 832 PM.
This represents a large variation, but the increase involved in a one-unit rating level change in
one of the scale factors is only about 6%. For very large (1,000 KSLOC) products, the effect of
the scale factors is much larger, as seen in Figure 3.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 500 1000

KSLOC

P
er

so
n

M
on

th
s

B=1.226

B=1.00

B=0.91

Version 2.1 18

© 1995 – 2000 Center for Software Engineering, USC

Table 10. Scale Factor Values, SFj, for COCOMO II Models

Scale
Factors

Very Low

Low

Nominal

High

Very High

Extra High

PREC

thoroughly
unpreceden
ted

largely
unpreceden
ted

somewhat
unpreceden
ted

generally
familiar

largely
familiar

thoroughly
familiar

SFj:
6.20 4.96 3.72 2.48 1.24 0.00

FLEX
rigorous occasional

relaxation
some

relaxation
general

conformity
some

conformity
general
goals

SFj:
5.07 4.05 3.04 2.03 1.01 0.00

RESL
little (20%) some (40%) often (60%) generally

(75%)
mostly
(90%)

full (100%)

SFj:
7.07 5.65 4.24 2.83 1.41 0.00

TEAM

very difficult
interactions

some
difficult

interactions

basically
cooperative
interactions

largely
cooperative

highly
cooperative

seamless
interactions

SFj:
5.48 4.38 3.29 2.19 1.10 0.00

 The estimated Equivalent Process Maturity Level (EPML) or

PMAT
SW-CMM
Level 1
Lower

SW-CMM
Level 1
Upper

SW-CMM
Level 2

SW-CMM
Level 3

SW-CMM
Level 4

SW-CMM
Level 5

SFj: 7.80 6.24 4.68 3.12 1.56 0.00

The two scale factors, Precedentedness and Flexibility largely capture the differences
between the Organic, Semidetached, and Embedded modes of the original COCOMO model
[Boehm 1981]. Table 11 and Table 12 reorganize [Boehm 1981; Table 6.3] to map its project
features onto the Precedentedness and Development Flexibility scales. These tables can be used
as a more in depth explanation for the PREC and FLEX rating scales given in Table 10.

3.1.1 Precedentedness (PREC)

If a product is similar to several previously developed projects, then the precedentedness
is high.

Table 11. Precedentedness Rating Levels

Feature Very Low Nominal / High Extra High

Organizational understanding of product
objectives

General Considerable Thorough

Experience in working with related software
systems

Moderate Considerable Extensive

Concurrent development of associated new
hardware and operational procedures

Extensive Moderate Some

Version 2.1 19

© 1995 – 2000 Center for Software Engineering, USC

Table 11. Precedentedness Rating Levels

Feature Very Low Nominal / High Extra High

Need for innovative data processing
architectures, algorithms

Considerable Some Minimal

3.1.2 Development Flexibility (FLEX)

Table 12. Development Flexibility Rating Levels

Feature Very Low Nominal / High Extra High

Need for software conformance with pre-
established requirements

Full Considerable Basic

Need for software conformance with external
interface specifications

Full Considerable Basic

Combination of inflexibilities above with
premium on early completion

High Medium Low

The PREC and FLEX scale factors are largely intrinsic to a project and uncontrollable.
The next three scale factors identify management controllables by which projects can reduce
diseconomies of scale by reducing sources of project turbulence, entropy, and rework.

3.1.3 Architecture / Risk Resolution (RESL)

This factor combines two of the scale factors in Ada COCOMO, “Design Thoroughness
by Product Design Review (PDR)” and “Risk Elimination by PDR” [Boehm-Royce 1989;
Figures 4 and 5]. Table 13 consolidates the Ada COCOMO ratings to form a more
comprehensive definition for the COCOMO II RESL rating levels. It also relates the rating level
to the MBASE/RUP Life Cycle Architecture (LCA) milestone as well as to the waterfall PDR
milestone. The RESL rating is the subjective weighted average of the listed characteristics.

Table 13. RESL Rating Levels

Characteristic Very
Low

Low

Nominal

High

Very
High

Extra
High

Risk Management Plan
identifies all critical risk items,
establishes milestones for
resolving them by PDR or
LCA.

None Little Some Generally Mostly Fully

Schedule, budget, and
internal milestones through
PDR or LCA compatible with
Risk Management Plan.

None Little Some Generally Mostly Fully

Percent of development
schedule devoted to
establishing architecture,
given general product
objectives.

5 10 17 25 33 40

Version 2.1 20

© 1995 – 2000 Center for Software Engineering, USC

Table 13. RESL Rating Levels

Characteristic Very
Low

Low

Nominal

High

Very
High

Extra
High

Percent of required top
software architects available
to project.

20 40 60 80 100 120

Tool support available for
resolving risk items,
developing and verifying
architectural specs.

None Little Some Good Strong Full

Level of uncertainty in key
architecture drivers: mission,
user interface, COTS,
hardware, technology,
performance.

Extreme Significant Consider-
able

Some Little Very Little

Number and criticality of risk
items.

> 10
Critical

5-10
Critical

2-4
Critical

1 Critical > 5Non-
Critical

< 5 Non-
Critical

3.1.4 Team Cohesion (TEAM)

The Team Cohesion scale factor accounts for the sources of project turbulence and
entropy because of difficulties in synchronizing the project’s stakeholders: users, customers,
developers, maintainers, interfacers, others. These difficulties may arise from differences in
stakeholder objectives and cultures; difficulties in reconciling objectives; and stakeholders' lack
of experience and familiarity in operating as a team. Table 14 provides a detailed definition for
the overall TEAM rating levels. The final rating is the subjective weighted average of the listed
characteristics.

Table 14. TEAM Rating Components

Characteristic

Very
Low

Low

Nominal

High

Very
High

Extra
High

Consistency of stakeholder
objectives and cultures

Little Some Basic Consider-
able

Strong Full

Ability, willingness of
stakeholders to
accommodate other
stakeholders’ objectives

Little Some Basic Consider-
able

Strong Full

Experience of stakeholders in
operating as a team

None Little Little Basic Consider-
able

Extensive

Stakeholder teambuilding to
achieve shared vision and
commitments

None Little Little Basic Consider-
able

Extensive

3.1.5 Process Maturity (PMAT)

Overall Maturity Levels

Version 2.1 21

© 1995 – 2000 Center for Software Engineering, USC

The procedure for determining PMAT is organized around the Software Engineering
Institute’s Capability Maturity Model (CMM). The time period for rating Process Maturity is the
time the project starts. There are two ways of rating Process Maturity. The first captures the
result of an organized evaluation based on the CMM, and is explained in Table 15.

Table 15. PMAT Ratings for Estimated Process Maturity Level (EPML)

PMAT Rating Maturity Level EPML

Very Low CMM Level 1 (lower half) 0
Low CMM Level 1 (upper half) 1

Nominal CMM Level 2 2
High CMM Level 3 3

Very High CMM Level 4 4
Extra High CMM Level 5 5

Key Process Area Questionnaire

The second is organized around the 18 Key Process Areas (KPAs) in the SEI Capability
Maturity Model [Paulk et al. 1995]. The procedure for determining PMAT is to decide the
percentage of compliance for each of the KPAs. If the project has undergone a recent CMM
Assessment, then the percentage compliance for the overall KPA (based on KPA Key Practice
compliance assessment data) is used. If an assessment has not been done, then the levels of
compliance to the KPA’s goals are used (with the Likert scale in Table 16) to set the level of
compliance. The goal-based level of compliance is determined by a judgment-based averaging
across the goals for each Key Process Area. See [Paulk et al. 1995] for more information on the
KPA definitions, goals and activities.

Table 16. KPA Rating Levels

Key Process Areas (KPA)

 A

lm
o

st
 A

lw
ay

s1

F
re

q
u

en
tl

y2

A
b

o
u

t
H

al
f3

O
cc

as
io

n
al

ly
4

R
ar

el
y

if
 E

ve
r5

D
o

es
 N

o
t

A
p

p
ly

6

D
o

n
’t

 K
n

o
w

7
Requirements Management
• System requirements allocated to software are controlled to

establish a baseline for software engineering and management use.
• Software plans, products, and activities are kept consistent with the

system requirements allocated to software.

•

•

•

•

•

•

•

Software Project Planning
• Software estimates are documented for use in planning and tracking

the software project.
• Software project activities and commitments are planned and

documented.
• Affected groups and individuals agree to their commitments related

to the software project.

•

•

•

•

•

•

•

Version 2.1 22

© 1995 – 2000 Center for Software Engineering, USC

Table 16. KPA Rating Levels

Key Process Areas (KPA)

 A

lm
o

st
 A

lw
ay

s1

F
re

q
u

en
tl

y2

A
b

o
u

t
H

al
f3

O
cc

as
io

n
al

ly
4

R
ar

el
y

if
 E

ve
r5

D
o

es
 N

o
t

A
p

p
ly

6

D
o

n
’t

 K
n

o
w

7

Software Project Tracking and Oversight
• Actual results and performances are tracked against the software

plans
• Corrective actions are taken and managed to closure when actual

results and performance deviate significantly from the software
plans.

• Changes to software commitments are agreed to by the affected
groups and individuals.

•

•

•

•

•

•

•

Software Subcontract Management
• The prime contractor selects qualified software subcontractors.
• The prime contractor and the subcontractor agree to their

commitments to each other.
• The prime contractor and the subcontractor maintain ongoing

communications.
• The prime contractor tracks the subcontractor’s actual results and

performance against its commitments.

•

•

•

•

•

•

•

Software Quality Assurance (SQA)
• SQA activities are planned.
• Adherence of software products and activities to the applicable

standards, procedures, and requirements is verified objectively.
• Affected groups and individuals are informed of software quality

assurance activities and results.
• Noncompliance issues that cannot be resolved within the software

project are addressed by senior management.

•

•

•

•

•

•

•

Software Configuration Management (SCM)
• SCM activites are planned.
• Selected workproducts are identified, controlled, and available.
• Changes to identified work products are controlled.
• Affected groups and individuals are informed of the status and

content of software baselines.

•

•

•

•

•

•

•

Organization Process Focus
• Software process development and improvement activities are

coordinated across the organization.
• The strengths and weaknesses of the software processes used are

identified relative to a process standard.
• Organization-level process development and improvement activities

are planned.

•

•

•

•

•

•

•

Organization Process Definition
• A standard software process for the organiation is developed and

maintained.
• Information related to the use of the organization’s standard

software process by the software projects is collected, reviewed, and
made available.

•

•

•

•

•

•

•

Version 2.1 23

© 1995 – 2000 Center for Software Engineering, USC

Table 16. KPA Rating Levels

Key Process Areas (KPA)

 A

lm
o

st
 A

lw
ay

s1

F
re

q
u

en
tl

y2

A
b

o
u

t
H

al
f3

O
cc

as
io

n
al

ly
4

R
ar

el
y

if
 E

ve
r5

D
o

es
 N

o
t

A
p

p
ly

6

D
o

n
’t

 K
n

o
w

7

Training Program
• Training activities are planned.
• Training for developing the skills and knowledge needed to perform

software management and technical roles is provided.
• Individuals in the software engineering group and software-related

groups receive the training necessary to perform their roles.

•

•

•

•

•

•

•

Integrated Software Management
• The project’s defined software process is a tailored version of the

organization’s standard software process.
• The project is planned and managed according to the project’s

defined software process.

•

•

•

•

•

•

•

Software Product Engineering
• The software engineering tasks are defined, integrated, and

consistently performed to produce the software
• Software work products are kept consistent with each other.

•

•

•

•

•

•

•

Intergroup Coordination
• The customer’s requirements are agreed to by all affected groups.
• The commitments between the engineering groups are agreed to by

the affected groups.
• The engineering groups identify, track, and resolve intergroup

issues.

•

•

•

•

•

•

•

Peer Reviews
• Peer review activities are planned.
• Defects in the software work products are identified and removed.

•

•

•

•

•

•

•

Quantitative Process Management
• The quantitative process management activities are planned.
• The process performance of the project’s defined software process

is controlled quantitatively.
• The process capability of the organization’s standard software

process is known in quantitative terms.

•

•

•

•

•

•

•

Software Quality Management
• The project’s software quality management activities are planned.
• Measurable goals of software product quality and their priorities are

defined.
• Actual progress toward achieving the quality goals for the software

products is quantified and managed.

•

•

•

•

•

•

•

Defect Prevention
• Defect prevention activities are planned.
• Common causes of defects are sought out and identified.
• Common causes of defects are priortized and systematically

eliminated.

•

•

•

•

•

•

•

Version 2.1 24

© 1995 – 2000 Center for Software Engineering, USC

Table 16. KPA Rating Levels

Key Process Areas (KPA)

 A

lm
o

st
 A

lw
ay

s1

F
re

q
u

en
tl

y2

A
b

o
u

t
H

al
f3

O
cc

as
io

n
al

ly
4

R
ar

el
y

if
 E

ve
r5

D
o

es
 N

o
t

A
p

p
ly

6

D
o

n
’t

 K
n

o
w

7

Technology Change Management
• Incorporation of technology changes are planned.
• New technologies are evaluated to determine their effect on quality

and productivity.
• Appropriate new technologies are transferred into normal practice

across the organization.

•

•

•

•

•

•

•

Process Change Management
• Continuous process improvement is planned.
• Participation in the organization’s software process improvement

activities is organization wide.
• The organization’s standard software process and the project’s

defined software processes are improved continuously.

•

•

•

•

•

•

•

1. Check Almost Always when the goals are consistently achieved and are well established in standard operating
procedures (over 90% of the time).

2. Check Frequently when the goals are achieved relatively often, but sometimes are omitted under difficult
circumstances (about 60 to 90% of the time).

3. Check About Half when the goals are achieved about half of the time (about 40 to 60% of the time).
4. Check Occasionally when the goals are sometimes achieved, but less often (about 10 to 40% of the time).
5. Check Rarely If Ever when the goals are rarely if ever achieved (less than 10% of the time).
6. Check Does Not Apply when you have the required knowledge about your project or organization and the KPA,

but you feel the KPA does not apply to your circumstances.
7. Check Don’t Know when you are uncertain about how to respond for the KPA.

An equivalent process maturity level (EPML) is computed as five times the average
compliance level of all n rated KPAs for a single project (Does Not Apply and Don’t Know are
not counted which sometimes makes n less than 18). After each KPA is rated, the rating level is
weighted (100% for Almost Always, 75% for Frequently, 50% for About Half, 25% for
Occasionally, 1% for Rarely if Ever). The EPML is calculated as in Equation 2-13.

n

1

100

KPA%
5EPML

n

1i

i ×

×= ∑

=

 Eq. 13

An EPML of 0 corresponds with a PMAT rating level of Very Low in the rating scales of
Table 10 and Table 15.

The COCOMO II project is tracking the progress of the recent CMM Integration (CMM-
I) activity to determine likely future revisions in the definition of PMAT.

Version 2.1 25

© 1995 – 2000 Center for Software Engineering, USC

3.2 Effort Multipliers

3.2.1 Post-Architecture Cost Drivers

This model is the most detailed. It is intended to be used when a software life-cycle
architecture has been developed. This model is used in the development and maintenance of
software products in the Application Generators, System Integration, or Infrastructure sectors
[Boehm et al. 2000].

The seventeen Post-Architecture effort multipliers (EM) are used in the COCOMO II
model to adjust the nominal effort, Person-Months, to reflect the software product under
development, see Equation 11. Each multiplicative cost driver is defined below by a set of rating
levels and a corresponding set of effort multipliers. The Nominal level always has an effort
multiplier of 1.00, which does not change the estimated effort. Off-nominal ratings generally do
change the estimated effort. For example, a high rating of Required Software Reliability
(RELY) will add 10% to the estimated effort, as determined by the COCOMO II.2000 data
calibration. A Very High RELY rating will add 26%. It is possible to assign intermediate rating
levels and corresponding effort multipliers for your project. For example, the USC COCOMO II
software tool supports rating cost drivers between the rating levels in quarter increments, e.g.
Low+0.25, Nominal+0.50, High+0.75, etc. Whenever an assessment of a cost driver is halfway
between quarter increments always round to the Nominal rating, e.g. if a cost driver rating falls
halfway between Low+0.5 and Low+0.75, then select Low+0.75; or if a rating falls halfway
between High+0.25 and High+0.5, then select High+0.25. Normally, linear interpolation is used
to determine intermediate multiplier values, but nonlinear interpolation is more accurate for the
high end of the TIME and STOR cost drivers and the low end of SCED.

The COCOMO II model can be used to estimate effort and schedule for the whole project
or for a project that consists of multiple modules. The size and cost driver ratings can be
different for each module, with the exception of the Required Development Schedule (SCED)
cost driver and the scale factors. The unique handling of SCED is discussed in Section 3.2.1.4
and in 4.

3.2.1.1 Product Factors

Product factors account for variation in the effort required to develop software caused by
characteristics of the product under development. A product that is complex, has high reliability
requirements, or works with a large testing database will require more effort to complete. There
are five product factors, and complexity has the strongest influence on estimated effort.

Required Software Reliability (RELY)

This is the measure of the extent to which the software must perform its intended
function over a period of time. If the effect of a software failure is only slight inconvenience
then RELY is very low. If a failure would risk human life then RELY is very high. Table 17
provides the COCOMOII.2000 rating scheme for RELY.

Version 2.1 26

© 1995 – 2000 Center for Software Engineering, USC

Table 17. RELY Cost Driver
RELY
Descriptors:

slight
inconven-
ience

low, easily
recoverable
losses

moderate,
easily
recoverable
losses

high
financial
loss

risk to
human life

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 0.82 0.92 1.00 1.10 1.26 n/a

This cost driver can be influenced by the requirement to develop software for reusability,
see the description for RUSE.

Data Base Size (DATA)

This cost driver attempts to capture the effect large test data requirements have on
product development. The rating is determined by calculating D/P, the ratio of bytes in the
testing database to SLOC in the program. The reason the size of the database is important to
consider is because of the effort required to generate the test data that will be used to exercise the
program. In other words, DATA is capturing the effort needed to assemble and maintain the data
required to complete test of the program through IOC, see Table 18.

Table 18. DATA Cost Driver
DATA*
Descriptors

 Testing DB
bytes/Pgm
SLOC < 10

10 ≤ D/P <
100

100 ≤ D/P <
1000

D/P ≥ 1000

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers n/a 0.90 1.00 1.14 1.28 n/a
* DATA is rated as Low if D/P is less than 10 and it is very high if it is greater than 1000. P is measured in

equivalent source lines of code (SLOC), which may involve function point or reuse conversions.

Product Complexity (CPLX)

Complexity is divided into five areas: control operations, computational operations,
device-dependent operations, data management operations, and user interface management
operations. Using Table 19, select the area or combination of areas that characterize the product
or the component of the product you are rating. The complexity rating is the subjective weighted
average of the selected area ratings. Table 20 provides the COCOMO II.2000 effort multipliers
for CPLX.

Version 2.1 27

© 1995 – 2000 Center for Software Engineering, USC

Table 19. Component Complexity Ratings Levels

Control
Operations

Computational
Operations

Device-
dependent
Operations

Data
Management
Operations

User Interface
Management
Operations

Very
Low

Straight-line
code with a few
non-nested
structured
programming
operators: DOs,
CASEs, IF-
THEN-ELSEs.
Simple module
composition via
procedure calls
or simple
scripts.

Evaluation of
simple
expressions:
e.g., A=B+C*(D-
E)

Simple read,
write statements
with simple
formats.

Simple arrays in
main memory.
Simple COTS-
DB queries,
updates.

Simple input
forms, report
generators.

Low

Straightforward
nesting of
structured
programming
operators.
Mostly simple
predicates

Evaluation of
moderate-level
expressions:
e.g.,
D=SQRT(B**2-
4.*A*C)

No cognizance
needed of
particular
processor or I/O
device
characteristics.
I/O done at
GET/PUT level.

Single file
subsetting with
no data
structure
changes, no
edits, no
intermediate
files.
Moderately
complex COTS-
DB queries,
updates.

Use of simple
graphic user
interface (GUI)
builders.

Nominal

Mostly simple
nesting. Some
intermodule
control.
Decision tables.
Simple callbacks
or message
passing,
including
middleware-
supported
distributed
processing

Use of standard
math and
statistical
routines. Basic
matrix/vector
operations.

I/O processing
includes device
selection, status
checking and
error
processing.

Multi-file input
and single file
output. Simple
structural
changes, simple
edits. Complex
COTS-DB
queries,
updates.

Simple use of
widget set.

Version 2.1 28

© 1995 – 2000 Center for Software Engineering, USC

Table 19. Component Complexity Ratings Levels

Control
Operations

Computational
Operations

Device-
dependent
Operations

Data
Management
Operations

User Interface
Management
Operations

High

Highly nested
structured
programming
operators with
many compound
predicates.
Queue and
stack control.
Homogeneous,
distributed
processing.
Single processor
soft real-time
control.

Basic numerical
analysis:
multivariate
interpolation,
ordinary
differential
equations.
Basic truncation,
round-off
concerns.

Operations at
physical I/O
level (physical
storage address
translations;
seeks, reads,
etc.). Optimized
I/O overlap.

Simple triggers
activated by
data stream
contents.
Complex data
restructuring.

Widget set
development
and extension.
Simple voice
I/O, multimedia.

Very
High

Reentrant and
recursive
coding. Fixed-
priority interrupt
handling. Task
synchronization,
complex
callbacks,
heterogeneous
distributed
processing.
Single-
processor hard
real-time control.

Difficult but
structured
numerical
analysis: near-
singular matrix
equations,
partial
differential
equations.
Simple
parallelization.

Routines for
interrupt
diagnosis,
servicing,
masking.
Communication
line handling.
Performance-
intensive
embedded
systems.

Distributed
database
coordination.
Complex
triggers. Search
optimization.

Moderately
complex 2D/3D,
dynamic
graphics,
multimedia.

Extra
High

Multiple
resource
scheduling with
dynamically
changing
priorities.
Microcode-level
control.
Distributed hard
real-time control.

Difficult and
unstructured
numerical
analysis: highly
accurate
analysis of
noisy, stochastic
data. Complex
parallelization.

Device timing-
dependent
coding, micro-
programmed
operations.
Performance-
critical
embedded
systems.

Highly coupled,
dynamic
relational and
object
structures.
Natural
language data
management.

Complex
multimedia,
virtual reality,
natural language
interface.

Table 20. CPLX Cost Driver
Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 0.73 0.87 1.00 1.17 1.34 1.74

Version 2.1 29

© 1995 – 2000 Center for Software Engineering, USC

Developed for Reusability (RUSE)

This cost driver accounts for the additional effort needed to construct components
intended for reuse on current or future projects. This effort is consumed with creating more
generic design of software, more elaborate documentation, and more extensive testing to ensure
components are ready for use in other applications. “Across project” could apply to reuse across
the modules in a single financial applications project. “Across program” could apply to reuse
across multiple financial applications projects for a single organization. “Across product line”
could apply if the reuse is extended across multiple organizations. “Across multiple product
lines” could apply to reuse across financial, sales, and marketing product lines, see Table 21.

Development for reusability imposes constraints on the project's RELY and DOCU
ratings. The RELY rating should be at most one level below the RUSE rating. The DOCU
rating should be at least Nominal for Nominal and High RUSE ratings, and at least High for
Very High and Extra High RUSE ratings.

Table 21. RUSE Cost Driver
RUSE
Descriptors:

 none across
project

across
program

across
product line

across
multiple
product

lines
Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers n/a 0.95 1.00 1.07 1.15 1.24

Documentation Match to Life-Cycle Needs (DOCU)

Several software cost models have a cost driver for the level of required documentation.
In COCOMO II, the rating scale for the DOCU cost driver is evaluated in terms of the suitability
of the project’s documentation to its life-cycle needs. The rating scale goes from Very Low
(many life-cycle needs uncovered) to Very High (very excessive for life-cycle needs), see Table
22.

Attempting to save costs via Very Low or Low documentation levels will generally incur
extra costs during the maintenance portion of the life-cycle. Poor or missing documentation will
increase the Software Understanding (SU) increment discussed in Section 2.4.2.

Table 22. DOCU Cost Driver
DOCU
Descriptors:

Many life-
cycle needs
uncovered

Some life-
cycle needs
uncovered.

Right-sized
to life-cycle
needs

Excessive
for life-cycle
needs

Very
excessive
for life-cycle
needs

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 0.81 0.91 1.00 1.11 1.23 n/a

This cost driver can be influenced by the developed for reusability cost factor, see the
description for RUSE.

Version 2.1 30

© 1995 – 2000 Center for Software Engineering, USC

3.2.1.2 Platform Factors

The platform refers to the target-machine complex of hardware and infrastructure
software (previously called the virtual machine). The factors have been revised to reflect this as
described in this section. Some additional platform factors were considered, such as distribution,
parallelism, embeddedness, and real-time operations. These considerations have been
accommodated by the expansion of the Component Complexity rating levels in Table 19.

Execution Time Constraint (TIME)

This is a measure of the execution time constraint imposed upon a software system. The
rating is expressed in terms of the percentage of available execution time expected to be used by
the system or subsystem consuming the execution time resource. The rating ranges from
nominal, less than 50% of the execution time resource used, to extra high, 95% of the execution
time resource is consumed, see Table 23.

Table 23. TIME Cost Driver
TIME
Descriptors:

 ≤ 50% use
of available
execution
time

70% use of
available
execution
time

85% use of
available
execution
time

95% use of
available
execution
time

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers n/a n/a 1.00 1.11 1.29 1.63

Main Storage Constraint (STOR)

This rating represents the degree of main storage constraint imposed on a software
system or subsystem. Given the remarkable increase in available processor execution time and
main storage, one can question whether these constraint variables are still relevant. However,
many applications continue to expand to consume whatever resources are available---particularly
with large and growing COTS products---making these cost drivers still relevant. The rating
ranges from nominal (less than 50%), to extra high (95%) see Table 24.

Table 24. STOR Cost Driver
STOR
Descriptors:

 ≤ 50% use
of available
storage

70% use of
available
storage

85% use of
available
storage

95% use of
available
storage

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers n/a n/a 1.00 1.05 1.17 1.46

Platform Volatility (PVOL)

“Platform” is used here to mean the complex of hardware and software (OS, DBMS, etc.)
the software product calls on to perform its tasks. If the software to be developed is an operating
system then the platform is the computer hardware. If a database management system is to be
developed then the platform is the hardware and the operating system. If a network text browser
is to be developed then the platform is the network, computer hardware, the operating system,

Version 2.1 31

© 1995 – 2000 Center for Software Engineering, USC

and the distributed information repositories. The platform includes any compilers or assemblers
supporting the development of the software system. This rating ranges from low, where there is
a major change every 12 months, to very high, where there is a major change every two weeks,
see Table 25.

Table 25. PVOL Cost Driver
PVOL
Descriptors:

 Major
change
every 12
mo.; Minor
change
every 1 mo.

Major: 6
mo.; Minor:
2 wk.

Major: 2
mo.;Minor:
1 wk.

Major: 2
wk.;Minor: 2
days

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers n/a 0.87 1.00 1.15 1.30 n/a

3.2.1.3 Personnel Factors

After product size, people factors have the strongest influence in determining the amount
of effort required to develop a software product. The Personnel Factors are for rating the
development team’s capability and experience – not the individual. These ratings are most likely
to change during the course of a project reflecting the gaining of experience or the rotation of
people onto and off the project.

Analyst Capability (ACAP)

Analysts are personnel who work on requirements, high-level design and detailed design.
The major attributes that should be considered in this rating are analysis and design ability,
efficiency and thoroughness, and the ability to communicate and cooperate. The rating should
not consider the level of experience of the analyst; that is rated with APEX, LTEX, and PLEX.
Analyst teams that fall in the fifteenth percentile are rated very low and those that fall in the
ninetieth percentile are rated as very high, see Table 26.

Table 26. ACAP Cost Driver
ACAP
Descriptors:

15th
percentile

35th
percentile

55th
percentile

75th
percentile

90th
percentile

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 1.42 1.19 1.00 0.85 0.71 n/a

Programmer Capability (PCAP)

Current trends continue to emphasize the importance of highly capable analysts.
However the increasing role of complex COTS packages, and the significant productivity
leverage associated with programmers’ ability to deal with these COTS packages, indicates a
trend toward higher importance of programmer capability as well.

Evaluation should be based on the capability of the programmers as a team rather than as
individuals. Major factors which should be considered in the rating are ability, efficiency and
thoroughness, and the ability to communicate and cooperate. The experience of the programmer

Version 2.1 32

© 1995 – 2000 Center for Software Engineering, USC

should not be considered here; it is rated with APEX, LTEX, and PLEX. A very low rated
programmer team is in the fifteenth percentile and a very high rated programmer team is in the
ninetieth percentile, see Table 27.

Table 27. PCAP Cost Driver
PCAP
Descriptors

15th
percentile

35th
percentile

55th
percentile

75th
percentile

90th
percentile

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 1.34 1.15 1.00 0.88 0.76 n/a

Personnel Continuity (PCON)

The rating scale for PCON is in terms of the project’s annual personnel turnover: from
3%, very high continuity, to 48%, very low continuity, see Table 28.

Table 28. PCON Cost Driver
PCON Descriptors: 48% / year 24% / year 12% / year 6% / year 3% / year
Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 1.29 1.12 1.00 0.90 0.81

Applications Experience (APEX)

The rating for this cost driver (formerly labeled AEXP) is dependent on the level of
applications experience of the project team developing the software system or subsystem. The
ratings are defined in terms of the project team’s equivalent level of experience with this type of
application. A very low rating is for application experience of less than 2 months. A very high
rating is for experience of 6 years or more, see Table 29.

Table 29. APEX Cost Driver
APEX Descriptors: ≤ 2 months 6 months 1 year 3 years 6 years
Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 1.22 1.10 1.00 0.88 0.81 n/a

Platform Experience (PLEX)

The Post-Architecture model broadens the productivity influence of platform experience,
PLEX (formerly labeled PEXP), by recognizing the importance of understanding the use of more
powerful platforms, including more graphic user interface, database, networking, and distributed
middleware capabilities, see Table 30.

Version 2.1 33

© 1995 – 2000 Center for Software Engineering, USC

Table 30. PLEX Cost Driver
PLEX Descriptors: ≤ 2 months 6 months 1 year 3 years 6 year
Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 1.19 1.09 1.00 0.91 0.85 n/a

Language and Tool Experience (LTEX)

This is a measure of the level of programming language and software tool experience of
the project team developing the software system or subsystem. Software development includes
the use of tools that perform requirements and design representation and analysis, configuration
management, document extraction, library management, program style and formatting,
consistency checking, planning and control, etc. In addition to experience in the project’s
programming language, experience on the project’s supporting tool set also affects development
effort. A low rating is given for experience of less than 2 months. A very high rating is given
for experience of 6 or more years, see Table 31.

Table 31. LTEX Cost Driver
LTEX Descriptors: ≤ 2 months 6 months 1 year 3 years 6 year
Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 1.20 1.09 1.00 0.91 0.84

3.2.1.4 Project Factors

Project factors account for influences on the estimated effort such as use of modern
software tools, location of the development team, and compression of the project schedule.

Use of Software Tools (TOOL)

Software tools have improved significantly since the 1970s’ projects used to calibrate the
1981 version of COCOMO. The tool rating ranges from simple edit and code, very low, to
integrated life-cycle management tools, very high. A Nominal TOOL rating in COCOMO 81 is
equivalent to a Very Low TOOL rating in COCOMO II. An emerging extension of COCOMO II
is in the process of elaborating the TOOL rating scale and breaking out the effects of TOOL
capability, maturity, and integration, see Table 32.

Version 2.1 34

© 1995 – 2000 Center for Software Engineering, USC

Table 32. TOOL Cost Driver
TOOL
Descriptors

edit, code,
debug

simple,
frontend,
backend
CASE, little
integration

basic life-
cycle tools,
moderately
integrated

strong,
mature life-
cycle tools,
moderately
integrated

strong,
mature,
proactive
life-cycle
tools, well
integrated
with
processes,
methods,
reuse

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 1.17 1.09 1.00 0.90 0.78 n/a

Multisite Development (SITE)

Given the increasing frequency of multisite developments, and indications that multisite
development effects are significant, the SITE cost driver has been added in COCOMO II.
Determining its cost driver rating involves the assessment and judgement-based averaging of two
factors: site collocation (from fully collocated to international distribution) and communication
support (from surface mail and some phone access to full interactive multimedia).

For example, if a team is fully collocated, it doesn’t need interactive multimedia to
achieve an Extra High rating. Narrowband e-mail would usually be sufficient, see Table 33.

Table 33. SITE Cost Driver
SITE:
Collocation
Descriptors:

Inter-
national

Multi-city
and Multi-
company

Multi-city or
Multi-
company

Same city
or metro.
area

Same
building or
complex

Fully
collocated

SITE:
Communications
Descriptors:

Some
phone, mail

Individual
phone, FAX

Narrow
band email

Wideband
electronic
communicat
ion.

Wideband
elect.
comm.,
occasional
video conf.

Interactive
multimedia

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 1.22 1.09 1.00 0.93 0.86 0.80

Required Development Schedule (SCED)

This rating measures the schedule constraint imposed on the project team developing the
software. The ratings are defined in terms of the percentage of schedule stretch-out or
acceleration with respect to a nominal schedule for a project requiring a given amount of effort.
Accelerated schedules tend to produce more effort in the earlier phases to eliminate risks and
refine the architecture, more effort in the later phases to accomplish more testing and
documentation in parallel. In Table 34, schedule compression of 75% is rated very low. A
schedule stretch-out of 160% is rated very high. Stretch-outs do not add or decrease effort.
Their savings because of smaller team size are generally balanced by the need to carry project
administrative functions over a longer period of time. The nature of this balance is undergoing

Version 2.1 35

© 1995 – 2000 Center for Software Engineering, USC

further research in concert with our emerging CORADMO extension to address rapid application
development (goto http://sunset.usc.edu/COCOMOII/suite.html for more information).

SCED is the only cost driver that is used to describe the effect of schedule compression /
expansion for the whole project. The scale factors are also used to describe the whole project.
All of the other cost drivers are used to describe each module in a multiple module project.
Using the COCOMO II Post-Architecture model for multiple module estimation is explained in
Section 3.3.

Table 34. SCED Cost Driver
SCED
Descriptors

75%
of nominal

85%
of nominal

100%
of nominal

130%
of nominal

160%
of nominal

Rating Level Very Low Low Nominal High Very High Extra High
Effort Multiplier 1.43 1.14 1.00 1.00 1.00 n/a

SCED is also handled differently in the COCOMO II estimation of time to develop,
TDEV. This special use of SCED is explained in Section 4.

3.2.2 Early Design Model Drivers

This model is used in the early stages of a software project when very little may be
known about the size of the product to be developed, the nature of the target platform, the nature
of the personnel to be involved in the project, or the detailed specifics of the process to be used.
This model could be employed in either Application Generator, System Integration, or
Infrastructure development sectors. For discussion of these marketplace sectors see [Boehm et
al. 2000].

The Early Design model uses KSLOC or unadjusted function points (UFP) for size.
UFPs are converted to the equivalent SLOC and then to KSLOC as discussed in Section 2.3.
The application of exponential scale factors is the same for Early Design and the Post-
Architecture models and was described in Section 3.1. In the Early Design model a reduced set
of multiplicative cost drivers is used as shown in Table 35. The Early Design cost drivers are
obtained by combining the Post-Architecture model cost drivers. Whenever an assessment of a
cost driver is halfway between the rating levels always round to the Nominal rating, e.g. if a cost
driver rating is halfway between Very Low and Low, then select Low. The effort equation is the
same as given in Equation 11 except that the number of effort multipliers is reduced to 7 (n = 7).

Version 2.1 36

© 1995 – 2000 Center for Software Engineering, USC

Table 35. Early Design and Post-Architecture Effort Multipliers

Early Design Cost Driver Counterpart Combined Post-Architecture Cost Drivers

PERS ACAP, PCAP, PCON
RCPX RELY, DATA, CPLX, DOCU
RUSE RUSE
PDIF TIME, STOR, PVOL
PREX APEX, PLEX, LTEX
FCIL TOOL, SITE

SCED SCED

Overall Approach

The following approach is used for mapping the full set of Post-Architecture cost drivers
and rating scales onto their Early Design model counterparts. It involves the use and
combination of numerical equivalents of the rating levels. Specifically, a Very Low Post-
Architecture cost driver rating corresponds to a numerical rating of 1, Low is 2, Nominal is 3,
High is 4, Very High is 5, and Extra High is 6. For the combined Early Design cost drivers, the
numerical values of the contributing Post-Architecture cost drivers are summed, and the resulting
totals are allocated to an expanded Early Design model rating scale going from Extra Low to
Extra High. The Early Design model rating scales always have a Nominal total equal to the sum
of the Nominal ratings of its contributing Post-Architecture elements. An example is given
below for the PERS cost driver.

Personnel Capability (PERS) and Mapping Example

An example will illustrate this approach. The Early Design PERS cost driver combines
the Post-Architecture cost drivers Analyst capability (ACAP), Programmer capability (PCAP),
and Personnel continuity (PCON), see Table 36. Each of these has a rating scale from Very Low
(=1) to Very High (=5). Adding up their numerical ratings produces values ranging from 3 to 15.
These are laid out on a scale, and the Early Design PERS rating levels assigned to them, as
shown below. The associated effort multipliers are derived from the ACAP, PCAP, and PCON
effort multipliers by averaging the products of each combination of effort multipliers associated
with the given Early Design rating level.

The effort multipliers for PERS, like the other Early Design model cost drivers, are
derived from those of the Post-Architecture model by averaging the products of the constituent
Post-Architecture multipliers (in this case ACAP, PCAP, PCON) for each combination of cost
driver ratings corresponding with the Early Design rating level. For PERS = Extra High, this
would involve four combinations: ACAP, PCAP, and PCON all Very High, or only one High
and the other two Very High.

Table 36. PERS Cost Driver
PERS Descriptors:
• Sum of ACAP, PCAP,

PCON Ratings
3, 4 5, 6 7, 8 9 10,

11
12, 13 14, 15

• Combined ACAP and
PCAP Percentile

20% 35% 45% 55% 65% 75% 85%

Version 2.1 37

© 1995 – 2000 Center for Software Engineering, USC

Table 36. PERS Cost Driver
PERS Descriptors:
• Annual Personnel Turnover 45% 30% 20% 12% 9% 6% 4%
Rating Levels Extra

Low
Very
Low

Low

Nominal

High

Very
High

Extra
High

Effort Multipliers 2.12 1.62 1.26 1.00 0.83 0.63 0.50

The Nominal PERS rating of 9 corresponds to the sum (3 + 3 + 3) of the Nominal ratings
for ACAP, PCAP, and PCON, and its corresponding effort multiplier is 1.0. Note, however that
the Nominal PERS rating of 9 can result from a number of other combinations, e.g. 1 + 3 + 5 = 9
for ACAP = Very Low, PCAP = Nominal, and PCON = Very High.

The rating scales and effort multipliers for PCAP and the other Early Design cost drivers
maintain consistent relationships with their Post-Architecture counterparts. For example, the
PERS Extra Low rating levels (20% combined ACAP and PCAP percentile; 45% personnel
turnover) represent averages of the ACAP, PCAP, and PCON rating levels adding up to 3 or 4.

Maintaining these consistency relationships between the Early Design and Post-
Architecture rating levels ensures consistency of Early Design and Post-Architecture cost
estimates. It also enables the rating scales for the individual Post-Architecture cost drivers,
Table 35, to be used as detailed backups for the top-level Early Design rating scales given above.

Product Reliability and Complexity (RCPX)

This Early Design cost driver combines the four Post-Architecture cost drivers Required
software reliability (RELY), Database size (DATA), Product complexity (CPLX), and
Documentation match to life-cycle needs (DOCU). Unlike the PERS components, the RCPX
components have rating scales with differing width. RELY and DOCU range from Very Low to
Very High; DATA ranges from Low to Very High, and CPLX ranges from Very Low to Extra
High. The numerical sum of their ratings thus ranges from 5 (VL, L, VL, VL) to 21 (VH, VH,
EH, VH).

Table 36 assigns RCPX ratings across this range, and associates appropriate rating scales
to each of the RCPX ratings from Extra Low to Extra High. As with PERS, the Post-
Architecture RELY, DATA CPLX, and DOCU rating scales discussed in Section 3.2.1.1 provide
detailed backup for interpreting the Early Design RCPX rating levels.

Table 37. RCPX Cost Driver
RCPX Descriptors:
• Sum of RELY, DATA,

CPLX, DOCU Ratings
5, 6 7, 8 9 - 11 12 13 - 15 16 - 18 19 - 21

• Emphasis on reliability,
documentation

Very
Little

Little Some Basic Strong Very
Strong

Extreme

• Product complexity Very
simple

Simple Some Moderate Complex Very
complex

Extremely
complex

• Database size Small Small Small Moderate Large Very
Large

Very
Large

Version 2.1 38

© 1995 – 2000 Center for Software Engineering, USC

Table 37. RCPX Cost Driver
RCPX Descriptors:
Rating Levels Extra

Low
Very
Low

Low

Nominal

High

Very
High

Extra
High

Effort Multipliers 0.49 0.60 0.83 1.00 1.33 1.91 2.72

Developed for Reusability (RUSE)

This Early Design model cost driver is the same as its Post-Architecture counterpart,
which is covered in Section 3.2.1

Platform Difficulty (PDIF)

This Early Design cost driver combines the three Post-Architecture cost drivers
Execution time constraint (TIME), Main storage constraint (STOR), and Platform volatility
(PVOL). TIME and STOR range from Nominal to Extra High; PVOL ranges from Low to Very
High. The numerical sum of their ratings thus ranges from 8 (N, N, L) to 17 (EH, EH, VH).

Table 38 assigns PDIF ratings across this range, and associates the appropriate rating
scales to each of the PDIF rating levels. The Post-Architecture rating scales in Tables 23, 24, 25
provide additional backup definition for the PDIF ratings levels.

Table 38. PDIF Cost Driver
PDIF Descriptors:
• Sum of TIME, STOR, and

PVOL ratings
8 9 10 - 12 13 - 15 16, 17

• Time and storage constraint ≤ 50% ≤ 50% 65% 80% 90%
• Platform volatility Very stable Stable Somewhat

volatile
Volatile Highly

volatile
Rating Levels Low Nominal High Very High Extra High
Effort Multipliers 0.87 1.00 1.29 1.81 2.61

Personnel Experience (PREX)

This Early Design cost driver combines the three Post-Architecture cost drivers
Application experience (APEX), Language and tool experience (LTEX), and Platform
experience (PLEX). Each of these range from Very Low to Very High; as with PERS, the
numerical sum of their ratings ranges from 3 to 15.

Table 39 assigns PREX ratings across this range, and associates appropriate effort
multipliers and rating scales to each of the rating levels.

Table 39. PREX Cost Driver
PREX Descriptors:
• Sum of APEX, PLEX, and

LTEX ratings
3, 4 5, 6 7, 8 9 10, 11 12, 13 14, 15

• Applications, Platform,
Language and Tool
Experience

≤ 3 mo. 5
months

9
months

1 year 2
years

4 years 6 years

Version 2.1 39

© 1995 – 2000 Center for Software Engineering, USC

Table 39. PREX Cost Driver
PREX Descriptors:
Rating Levels Extra

Low
Very
Low

Low

Nominal

High

Very
High

Extra
High

Effort Multipliers 1.59 1.33 1.22 1.00 0.87 0.74 0.62

Facilities (FCIL)

This Early Design cost driver combines two Post-Architecture cost drivers: Use of
software tools (TOOL) and Multisite development (SITE). TOOL ranges from Very Low to
Very High; SITE ranges from Very Low to Extra High. Thus, the numerical sum of their ratings
ranges from 2 (VL, VL) to 11 (VH, EH).

Table 40 assigns FCIL ratings across this range, and associates appropriate rating scales
to each of the FCIL rating levels. The individual Post-Architecture TOOL and SITE rating
scales in Section 3.2.1 again provide additional backup definition for the FCIL rating levels.

Table 40. FCIL Cost Driver
FCIL
Descriptors:

• Sum of
TOOL and
SITE
ratings

2

3

4, 5

6

7, 8

9, 10

11

• TOOL
support

Minimal Some Simple
CASE tool
collection

Basic life-
cycle tools

Good;
moderately
integrated

Strong;
moderately
integrated

Strong;
well
integrated

• Multisite
conditions

Weak
support of
complex
multisite
developme
nt

Some
support of
complex
M/S devel.

Some
support of
moderately
complex
M/S devel.

Basic
support of
moderately
complex
M/S devel.

Strong
support of
moderately
complex
M/S devel.

Strong
support of
simple M/S
devel.

Very
strong
support of
collocated
or simple
M/S devel.

Rating
Levels

Extra
Low

Very
Low

Low

Nominal

High

Very
High

Extra
High

Effort
Multipliers

1.43 1.30 1.10 1.0 0.87 0.73 0.62

Required Development Schedule (SCED)

This Early Design model cost driver is the same as its Post-Architecture counterpart,
which is covered in Section 3.2.1.

3.3 Multiple Module Effort Estimation

Usually software systems are comprised of multiple subsystems or components. It is
possible to use COCOMO II to estimate effort and schedule for multiple components. The
technique described here is for one level of sub-components. For multiple levels of sub-
components see [Boehm 1981].

Version 2.1 40

© 1995 – 2000 Center for Software Engineering, USC

The COCOMO II method for doing this does not use the sum of the estimates for each
component as this would ignore effort due to integration of the components. The COCOMO II
multiple module method for n number of modules has the following steps:

1. Sum the sizes for all of the components, Sizei, to yield an aggregate size.

∑
=

=
n

1i
iAggregate SizeSize

2. Apply the project-level drivers, the scale factors and the SCED Cost Driver, to the
aggregated size to derive the overall basic effort for the total project, PMBasic. The scale
factors are discussed in Section 2.3.1 and SCED is discussed in Section 2.3.2.1.

SCED)(SizeAPM E
AggregateBasic ××=

3. Determine each component’s basic effort, PMBasic(i), by apportioning the overall basic effort
to each component based on its contribution to the aggregate size.

×=

Aggregate

i
BasicBasic(i) Size

Size
PMPM

4. Apply the component-level Cost Drivers (excluding SCED) to each component’s basic
effort.

∑
=

×=
16

1j
jBasic(i)i EMPMPM

5. Sum each component’s effort to derive the aggregate effort, PMAggregate, for the total
project.

∑
=

=
n

1i
iAggregate PMPM

6. The schedule is estimated by repeating steps 2 through 5 without the SCED Cost Driver
used in step 2. Using this modified aggregate effort, PM'Aggregate, the schedule is derive
using Equation 14 in Section 4.

Version 2.1 41

© 1995 – 2000 Center for Software Engineering, USC

4. Schedule Estimation

The initial version of COCOMO II provides a simple schedule estimation capability
similar to those in COCOMO 81 and Ada COCOMO. The initial baseline schedule equation for
the COCOMO II Early Design and Post-Architecture stages is:

0.91B 0.28,D 3.67,C where

100

SCED%
])(PM[CTDEV B))(E0.2(D

NS

===

××= −×+

 Eq. 14

In Equation 14, C is a TDEV coefficient that can be calibrated, PMNS is the estimated PM
excluding the SCED effort multiplier as defined in Equation 1, D is a TDEV scaling base-
exponent that can also be calibrated. E is the effort scaling exponent derived as the sum of
project scale factors and B as the calibrated scale factor base-exponent (discussed in Sections
3.1). SCED% is the compression / expansion percentage in the SCED effort multiplier rating
scale discussed in Section 3.2.1.

Time to Develop, TDEV, is the calendar time in months between the estimation end
points of LCO and IOC for MBASE/RUP or SRR and SAR for Waterfall lifecycle models (see
Section 6.2). For the waterfall model, this goes from the determination of a product’s
requirements baseline to the completion of an acceptance activity certifying that the product
satisfies its requirements. For the MBASE/RUP model discussed in Section 6, it covers the time
span between LCO and IOC milestones.

As COCOMO II evolves, it will have a more extensive schedule estimation model,
reflecting the different classes of process models a project can use. The effects of reusable and
COTS software; the effects of applications composition capabilities; and the effects of alternative
strategies such as Rapid Application Development are discussed in [Boehm et al. 2000; also at
http://sunset.usc.edu/COOCMOII/suite.html].

Version 2.1 42

© 1995 – 2000 Center for Software Engineering, USC

5. Software Maintenance

Software maintenance is defined as the process of modifying existing software while not
changing its primary functions [Boehm 1981]. The assumption made by the COCOMO II model
is that software maintenance cost generally has the same cost driver attributes as software
development costs. Maintenance includes redesign and recoding of small portions of the original
product, redesign and development of interfaces, and minor modification of the product
structure. Maintenance can be classified as either updates or repairs. Product repairs can be
further segregated into corrective (failures in processing, performance, or implementation),
adaptive (changes in the processing or data environment), or perfective maintenance (enhancing
performance or maintainability). Maintenance sizing is covered in Section 2.7.

There are special considerations for using COCOMO II in software maintenance. Some
of these are adapted from [Boehm 1981].
• The SCED cost driver (Required Development Schedule) is not used in the estimation of

effort for maintenance. This is because the maintenance cycle is usually of a fixed duration.
• The RUSE cost driver (Required Reusablity) is not used in the estimation of effort for

maintenance. This is because the extra effort required to maintain a component’s reusability
is roughly balanced by the reduced maintenance effort due to the component’s careful design,
documentation, and testing.

• The RELY cost driver (Required Software Reliabilty) has a different set of effort multipliers
for maintenance. For maintenance the RELY cost driver depends on the required reliability
under which the product was developed. If the product was developed with low reliability it
will require more effort to fix latent faults. If the product was developed with very high
reliability, the effort required to maintain that level of reliability will be above nominal.
Table 41 below shows the effort multipliers for RELY.

Table 41. RELY Maintenance Cost Driver
RELY
Descriptors:

slight
inconvenien
ce

low, easily
recoverable
losses

moderate,
easily
recoverable
losses

high
financial
loss

risk to
human life

Rating Levels Very Low Low Nominal High Very High Extra High
Effort Multipliers 1.23 1.10 1.00 0.99 1.07 n/a
• The scaling exponent, E, is applied to the number of changed KSLOC (added and modified,

not deleted) rather than the total legacy system KSLOC. As discussed in Section 2.7, the
effective maintenance size (Size)m is adjusted by a Maintenance Adjustment Factor (MAF) to
account for legacy system effects.

The maintenance effort estimation formula is the same as the COCOMO II Post-
Architecture development model (with the exclusion of SCED and RUSE):

 ∏
=

××=
15

1i
i

E
MM EM)(SizeAPM Eq. 15

Version 2.1 43

© 1995 – 2000 Center for Software Engineering, USC

The COCOMO II approach differs from the COCOMO 81 maintenance effort estimation
by letting you use any desired maintenance activity duration, TM. The average maintenance
staffing level, FSPM, can then be obtained via the relationship:

 FSPM = PMM / TM Eq. 16

Version 2.1 44

© 1995 – 2000 Center for Software Engineering, USC

6. COCOMO II: Assumptions and phase/activity distributions

6.1 Introduction

Section defines the particular COCOMO II assumptions about what life-cycle phases and
labor categories are covered by its effort and schedule estimates. These and other definitions
given in Section 6 were used in collecting all the data to which COCOMO II has been calibrated.
If you use other definitions and assumptions, you need to either adjust the COCOMO II
estimates or recalibrate its coefficients.

COCOMO II has been developed to be usable by projects employing either waterfall or
spiral processes. For these to be reasonably compatible, the waterfall implementation needs to
be strongly risk-driven, in order to avoid incurring large amounts of rework not included in
spiral-model-based estimates. Fortunately, this was the case for the normative waterfall
implementation provided in Chapter 4 of [Boehm 1981] as the underlying process model for
COCOMO 81.

The implementation of the spiral model used by COCOMO II also needs an added
feature: a set of well-defined common milestones which can serve as the end points between
which COCOMO II estimates and actuals are assessed. In 1995, we devoted parts of two
COCOMO II Affiliates’ workshops to determining such milestones. The result was the set of
Anchor Point milestones: Life Cycle Objectives (LCO), Life Cycle Architecture (LCA), and
Initial Operational Capability (IOC) [Boehm 1996]. Those milestones were a good fit to key life-
cycle project commitment points being used within both our commercial and government
contractor Affiliate communities. The LCO and LCA milestones involve concurrent rather than
sequential development and elaboration of a system’s operational concept, requirements,
architecture, prototypes, life-cycle plan, and feasibility rationale. The milestones correspond well
with real-life commitment milestones: LCO is roughly equivalent to getting engaged to your
system definition; LCA to getting married; and IOC to having your first child.

These anchor points and the stakeholder win-win extension of the spiral model became
the key milestones in our Model-Based (System) Architecting and Software Engineering
(MBASE) life-cycle process model [Boehm-Port 1999; Boehm et al. 1999]. We have also
collaborated with one of our Affiliates, Rational, Inc., to ensure the compatibility of MBASE and
the Rational Unified Process (RUP). Thus, we have adopted Rational’s approach to the four
main spiral-oriented phases: Inception, Elaboration, Construction, and Transition. Rational has
adopted our definitions of the LCO, LCA, and IOC anchor point milestones defining the entry
and exit criteria between the phases [Royce 1998; Kruchten 1999; Jacobson et al. 1999].

Section 6.2 proceeds to define the content of the milestones used as end points for the
waterfall and MBASE/RUP spiral models to which COCOMO II project estimates are related.
Section 6.3 compares the phase distributions of effort and schedule used by COCOMO II for the
waterfall and initial MBASE/RUP spiral process models. Section 6.4 defines the activity
categories for the Waterfall and MBASE/RUP spiral models, and their content. Section 6.5
presents the corresponding effort distributions by activity for each Waterfall and MBASE/RUP
phase. Section 6.6 covers other COCOMO II assumptions, such as the labor categories
considered as "project effort," and the number of person-hours in a person-month.

Version 2.1 45

© 1995 – 2000 Center for Software Engineering, USC

6.2 Waterfall and MBASE/RUP Phase Definitions

6.2.1 Waterfall Model Phases and Milestones

Table 42 defines the milestones used as end points for COCOMO II Waterfall phase
effort and schedule estimates. The milestone definitions are the same as those in [Boehm 1981;
Table 4-1].

A basic risk-orientation is provided with the inclusion of “Identification and resolution of
all high-risk development issues” as a Product Design milestone element. However, the other
early milestones should have a more risk-driven interpretation. For example, having
“…specifications validated for…feasibility” by the end of the Plans and Requirements phase of a
user-interactive system development would imply doing an appropriate amount of user-interface
prototyping.

Table 42. COCOMO II Waterfall Milestones
1. Begin Plans and Requirements Phase. (Completion of Life Cycle Concept Review - LCR)
��Approved, validated system architecture, including basic hardware-software allocations.
��Approved, validated concept of operation, including basic human-machine allocations.
��Top-level life-cycle plan, including milestones, resources, responsibilities, schedules, and major

activities.
2. End Plans and Requirements Phase. Begin Product Design Phase. (Completion of Software

Requirements Review - SRR)
��Detailed development plan – detailed development milestone criteria, resource budgets,

organization, responsibilities, schedules, activities, techniques, and products.
��Detailed usage plan – counterparts of the development plan items for training, conversion,

installation, operations, and support.
��Detailed product control plan – configuration management plan, quality assurance plan, overall

V&V plan (excluding detailed test plans).
��Approved, validated software requirements specifications – functional, performance, and interface

specifications validated for completeness, consistency, testability, and feasibility.
��Approved (formal or informal) development contract – based on the above items.

3. End Product Design Phase. Begin Detailed Design Phase. (Completion of Product Design Review
- PDR)
��Verified software product design specification.
��Program component hierarchy, control and data interfaces through unit level*.
��Physical and logical data structure through field level.
��Data processing resource budgets (timing, storage, accuracy).
��Verified for completeness, consistency, feasibility, and traceability to requirements.
��Identification and resolution of all high-risk development issues.
��Preliminary integration and test plan, acceptance test plan, and user’s manual.

4. End Detailed Design Phase. Begin Code and Unit Test Phase. (Completion of design walkthrough
or Critical Design Review for unit - CDR)
��Verified detailed design specification for each unit.
��For each routine (< 100 source instructions) within the unit, specifies name, purpose,

assumptions, sizing, calling sequence, error exits, inputs, outputs, algorithms, and processing
flow.
��Data base description through parameter/character/bit level.
��Verified for completeness, consistency, and traceability to requirements and system design

specifications and budgets.
��Approved acceptance test plan.
��Complete draft of integration and test plan and user’s manual.

Version 2.1 46

© 1995 – 2000 Center for Software Engineering, USC

Table 42. COCOMO II Waterfall Milestones
5. End Code and Unit Test Phase. Begin Integration and Test Phase. (Satisfaction of Unit Test

criteria for unit - UTC)
��Verification of all unit computations, using not only nominal values but also singular and extreme

values.
��Verification of all unit input and output options, including error messages.
��Exercise of all executable statements and all branch options.
��Verification of programming standards compliance.
��Completion of unit-level, as-built documentation.

6. End Integration and Test Phase. Begin Implementation Phase. (Completion of Software
Acceptance Review - SAR)
��Satisfaction of software acceptance test.
��Verification of satisfaction of software requirements.
��Demonstration of acceptable off-nominal performance as specified.
��Acceptance of all deliverable software products: reports, manuals, as-built specifications, data

bases.
7. End Implementation Phase. Begin Operations and Maintenance Phase. (Completion of System

Acceptance Review)
��Satisfaction of system acceptance test.
��Verification of satisfaction of system requirements.
��Verification of operational readiness of software, hardware, facilities, and personnel.
��Acceptance of all deliverable system products: hardware, software, documentation, training, and

facilities.
��Completion of all specified conversion and installation activities.

8. End Operations and Maintenance Phase (via Phaseout).
��Completion of all items in phaseout plan: conversion, documentation, archiving, transition to new

system(s).
* A software unit performs a single well-defined function, can be developed by one person, and is

typically 100 to 300 source instructions in size.

6.2.2 MBASE and Rational Unified Process (RUP) Phases and Milestones

Table 43 defines the milestones used as end points for COCOMO II MBASE/RUP phase
effort and schedule estimates (the content of the Life Cycle Objectives (LCO) and Life Cycle
Architecture (LCA) milestones are elaborated in Table 44). The definitions of the Inception
Readiness Review (IRR) and Product Release Review (PRR) have been added in Table 43. They
ensure that the Inception and Transition phases have milestones at each end between which to
measure effort and schedule. The PRR is defined consistently with its Rational counterpart in
[Royce 1998; Kruchten 1999]. The IRR was previously undefined; its content focuses on the
preconditions for a successful Inception phase.

Table 43. MBASE and Rational Unified Software Development Process Milestones
1. Inception Readiness Review (IRR)
��Candidate system objectives, scope, boundary
��Key stakeholders identified
��Committed to support Inception phase
��Resources committed to achieve successful LCO package

Version 2.1 47

© 1995 – 2000 Center for Software Engineering, USC

Table 43. MBASE and Rational Unified Software Development Process Milestones
2. Life Cycle Objectives Review (LCO)
��Life Cycle Objectives (LCO) Package (see Table 44)
��Key elements of Operational Concept, Prototype, Requirements, Architecture, Life Cycle Plan,

Feasibility Rationale
��Feasibility assured for at least one architecture, using the criteria:
��Acceptable business case
��A system developed from the architecture would support the operational concept, be compatible

with the prototype, satisfy the requirements, and be buildable within the budgets and schedules
in the life-cycle plan.

��Feasibility validated by an Architecture Review Board (ARB)
��ARB includes project-leader peers, architects, specialty experts, key stakeholders [Marenzano

1995].
��Key stakeholders concur on essentials, commit to support Elaboration phase
��Resources committed to achieve successful LCA package

3. Life Cycle Architecture Review (LCA)
��Life Cycle Architecture (LCA) Package (see Table 44)
��Feasibility assured for selected architecture, using the LCO feasibility criteria
��Feasibility validated by ARB
��Stakeholders concur on their success-critical items, commit to support Construction, Transition,

and Maintenance phases.
��All major risks resolved or covered by risk management plan
��Resources committed to achieve Initial Operational Capability (IOC), life-cycle support

4. Initial Operational Capability (IOC)
��Software preparation, including both operational and support software with appropriate

commentary and documentation; initial data preparation or conversion; the necessary licenses
and rights for COTS and reused software, and appropriate operational readiness testing.
��Site preparation, including initial facilities, equipment, supplies, and COTS vendor support

arrangements.
��Initial user, operator and maintainer preparation, including selection, teambuilding, training and

other qualification for familiarization usage, operations, or maintenance.
��Successful Transition Readiness Review
��Plans, preparations for full conversion, installation, training, and operational cutover
��Stakeholders confirm commitment to support Transition and Maintenance phases

5. Product Release Review (PRR)
��Assurance of successful cutover from previous system for key operational sites
��Personnel fully qualified to operate and maintain new system
��Stakeholder concurrence that the deployed system operates consistently with negotiated and

evolving stakeholder agreements
��Stakeholders confirm commitment to support Maintenance phase

Version 2.1 48

© 1995 – 2000 Center for Software Engineering, USC

Table 44. Detailed LCO and LCA Milestone Content

Milestone
Element

Life Cycle Objectives (LCO)

Life Cycle Architecture (LCA)

Definition of
Operational
Concept

Top-level system objectives and scope
System boundary
Environment parameters and

assumptions
Current system shortfalls
Operational concept: key nominal

scenarios, stakeholder roles and
responsibilities

Elaboration of system objectives and
scope by increment

Elaboration of operational concept by
increment

Nominal and key off-nominal scenarios

System
Prototype(s)

Exercise key usage scenarios
Resolve critical risks

Exercise range of usage scenarios
Resolve major outstanding risks

Definition of
System and
Software
Requirements

Top-level capabilities, interfaces, quality
attribute levels, including:

Evolution requirements
Priorities
Stakeholders’ concurrence on essentials

Elaboration of functions, interfaces,
quality attributes by increment
Identification of TBDs (to-be-determined
items), evolution requirements
Stakeholders’ concurrence on their
priority concerns

Definition of
System and
Software
Architecture

Top-level definition of at least one
feasible architecture

Physical and logical elements and
relationships

Choices of COTS and reusable software
elements

Identification of infeasible architecture
options

Choice of architecture and elaboration by
increment

Physical and logical components,
connectors, configurations, constraints

COTS, reuse choices
Domain-architecture and architectural

style choices
Architecture evolution parameters

Definition of Life
cycle Plan

Identification of life-cycle stakeholders
Users, customers, developers,

maintainers, interfacers, general
public, others

Identification of life-cycle process model
Top-level stages, increments
Top-level WWWWWHH* by stage

Elaboration of WWWWWHH for Initial
Operational Capability (IOC)

Partial elaboration, identification of key
TBDs for later increments

Feasibility
Rationale

Assurance of consistency among
elements above via analysis,
measurement, prototyping, simulation,
etc.

Business case analysis for requirements,
feasible architectures

Assurance of consistency among
elements above

Rationale for major options rejected
All major risks resolved or covered by

risk management plan within the life-
cycle plan

* WWWWWHH: Why, What, When, Who, Where, How, How Much

Figure 4 shows the relationship of the Waterfall and MBASE/RUP phases and the most
likely COCOMO II model to be used in estimating effort and schedule. The milestones have
some variation due to the differences in distribution of effort and schedule between the two
models.

Version 2.1 49

© 1995 – 2000 Center for Software Engineering, USC

Figure 4. Life Cycle Phases

6.3 Phase Distribution of Effort and Schedule

Provisional phase distributions of effort and schedule are provided below for both the
Waterfall and MBASE/RUP process models. These are provisional since not enough calibration
data has been collected on phase distributions to date.

The Waterfall phase distribution percentages in Table 45 are numbers from COCOMO 81
used in USC COCOMO II.2000. The percentages vary as product size varies from 2 KSLOC to
512 KSLOC (see the E = 1.12 line in Figures 5 and 6). The values are taken from the COCOMO
81 Semidetached (average) mode provided in Table 6-8 of [Boehm 1981], except for the
Transition phase. This phase was undefined in COCOMO 81 and is set equal to MBASE values
in Table 46. The percentages from PRR to SWAR add up to 100%. The percentages for Plans
and Requirements and Transition are in addition to the 100% of the effort and schedule
quantities estimated by COCOMO II.

Table 45. Waterfall Phase Distribution Percentages

Phase (end points) Effort% Schedule%

Plans and Requirements (LCCR-PRR)

7 (2-15)

16-24 (2-30)

Product Design (PRR-PDR)

Programming (PDR-UTC)
 Detailed Design (PDR-CDR)
 Code and Unit Test (CDR-UTC)

Integration and Test (UTC-SWAR)

17

64-52
 27-23
 37-29

19-31

24-28

56-40

20-32

Inception Elaboration Construction Transition

Preliminary
(Product) Design

Detailed
Design

Code and
Unit Test

Integration
and Test

Post-Architecture Model

Plans and
Requirements

MBASE/RUP

Waterfall

Most likely
model to use: Early Design Model

I
R
R

L
C
O

L
C
A

P
R
R

I
O
C

L
C
R

S
R
R

P
D
R

C
D
R

U
T
C

S
A
R

COCOMO II Estimation Endpoints

Version 2.1 50

© 1995 – 2000 Center for Software Engineering, USC

Table 45. Waterfall Phase Distribution Percentages

Phase (end points) Effort% Schedule%

Transition (SWAR-SAR)

12 (0-20)

12.5 (0-20)

The MBASE phase distribution percentages in Table 46 are chosen to be consistent with
those provided for the Rational RUP in [Royce 1998] and [Kruchten 1999]. They are rescaled to
match the COCOMO II definition that 100% of the development effort is done in the Elaboration
and Construction phases (between the LCO and IOC milestones, for which most calibration data
is available). The corresponding figures for the RUP development cycle are also provided in
Table 46.

Table 46. MBASE and RUP Phase Distribution Percentages

 MBASE RUP

Phase (end points) Effort% Schedule% Effort% Schedule%

Inception (IRR to LCO) 6 (2-15) 12.5 (2-30) 5 10
Elaboration (LCO to
LCA)

24 (20-28) 37.5 (33-42) 20 30

Construction (LCA to
IOC)

76 (72-80) 62.5 (58-67) 65 50

Transition (IOC to PRR) 12 (0-20) 12.5 (0-20) 10 10
Totals: 118 125 100 100

6.3.1 Variations in Effort and Schedule Distributions

The effort and schedule distributions in the Waterfall model vary somewhat by size,
primarily reflecting the amount of integration and test required. But the major variations in both
the Waterfall model and MBASE/RUP phase effort and schedule quantities come in the phases
outside the core development phases (Plans & Requirements and Transition for Waterfall;
Inception and Transition for MBASE/RUP).

These large variations are the main reason that the main COCOMO II development
estimates do not cover these outer phases (the other strong reason is that calibration data is
scanty for the outer phases).

At this time, there is no convenient algorithm for determining whether your Inception
phase effort will be nearer to 2% than 15% and Inception phase schedule will be nearer to 2%
than 30% of the COCOMO II development cost estimates. The best we can offer at this time is
Table 47, which identifies the primary effort and schedule drivers for the Inception and
Transition phases.

These are presented in descending order of their effect on Inception phase effort and
schedule, and as well as possible in ascending order of their corresponding effect on the
Transition phase.

Version 2.1 51

© 1995 – 2000 Center for Software Engineering, USC

Table 47. Inception and Transition Phase Effort and Schedule Drivers

Factor Inception Transition

1. Complexity of LCO issues needing resolution Very Large Small
2. System involves major changes in stakeholder roles and
responsibilities

Very Large Large

3. Technical risk level Large Some
4. Stakeholder trust level Large Considerable
5. Heterogeneous stakeholder communities: Expertise, task
nature, language, culture, infrastructure

Large Large

6. Hardware/software integration Large Large
7 Complexity of transition from legacy system Considerable Large
8. Number of different installations, classes of installation Some Very Large
Note: Order of ratings – Small, Some, Considerable, Large, Very Large

For example, on Factor 1, the stakeholders might enter the Inception phase with a very
strong consensus that they wish to migrate some well-defined existing capabilities to a highly
feasible client-server architecture. In this case, one could satisfy the LCO criteria with roughly
2% each of the development effort and schedule. On the other hand, if the stakeholders entered
the Inception phase with strongly conflicting positions on desired capabilities, priorities,
infrastructure, etc., it could take up to 15% of the development effort and 30% of the
development schedule to converge to a stakeholder-consensus LCO package (a very large
effect).

However, these differences would have a relatively small effect on the amount of effort
and schedule it would take to transition the system as defined by the LCO. So the baseline
Transition phase percentages of 12% added effort and 12.5% added schedule would be
reasonable initial values to use.

Some of the Inception issues might persist into the Elaboration phase; such persisting
issues are the main source of the variations in relative effort and schedule between the
Elaboration and Construction phases shown in Table 46. Thus, if you estimate 30% added
Inception schedule to achieve a difficult LCO consensus, you may wish to adjust the Elaboration
schedule upward from 37.5% to something like 42%. Factors like your COCOMO II TEAM
rating would provide additional total effort and schedule to divide between Elaboration and
Construction.

In some cases, a factor can have a strong effect on both the Inception and Transition
phases. Factor 2 is an example: if the system’s effects involve changes in stakeholder roles and
responsibilities (e.g., turf, control, power), the amount of effort and schedule will be increased
significantly both in negotiating the changes and implementing them.

Some additional sources of variation in phase distributions are deferred for later versions
of COCOMO II. These include phase-dependent effort multipliers (as in Detailed COCOMO
81); effects of language level (reduced Construction effort for very high level languages); and
effects of optimizing one’s project on development cost, schedule, or quality.

Version 2.1 52

© 1995 – 2000 Center for Software Engineering, USC

6.3.2 Distribution of Effort Across Life Cycle Phases

Figure 5 shows the Waterfall and MBASE phases for distribution of estimated effort.
The Waterfall phase distributions are adapted from those in [Boehm 1981; Table 6-8]. The
figure shows that distribution of effort varies by size of the product and the size exponent, E.

The size exponent E corresponds to the three modes in COCOMO 81. Note that the effort
distribution for a small project with a low value for E has the most effort in the Code and Unit
Test phase. The top line shows this condition. A large project with a value of E has the most
effort concentrated in the Integration and Test phase. This is shown by the bottom line. These
distributions of effort are for a Waterfall model project where the development is done in a single
sequence through the phases.

Figure 5. Effort Distribution

The MBASE distribution of effort is taken from Table 46. The distribution of effort in
the table is 72 to 80 % for the Construction phase which includes Detailed Design, Code and
Unit Test, and Integration and Test. The shaded areas in Figure 5 are approximations of the
distribution of the Construction effort.

Contrast the Waterfall distributions with the MBASE/RUP distributions. MBASE/RUP
emphasizes planning up front and smaller, repeated iterations to develop the product. This
makes the distribution of effort less dependent on size and scale factors. The iterative approach
also starts the product integration earlier reducing large-system integration gridlock that can
occur if integration is left till the last step (as in the Waterfall model).

Milestone
Element

Life Cycle
Objectives

(LCO)
Life Cycle Architecture (LCA)

2 8 32 128 512 2 8 32 128 512 2 8 32 128 512 2 8 32 128 512 2 8 32 128 512
KSLOC KSLOC KSLOC KSLOC KSLOC

E=1.05 6 6 6 6 16 16 16 16 26 25 24 23 42 40 38 36 16 19 22 25
E=1.12 7 7 7 7 7 17 17 17 17 17 27 26 25 24 23 37 35 33 31 29 19 22 25 28 31
E=1.20 8 8 8 8 8 18 18 18 18 18 28 27 26 25 24 32 30 28 26 24 22 25 28 31 34
MBASE 6 (2 – 15) 24 (20 – 28) 76 (72 – 80)

Product
Design

Detailed
Design

Code &
Unit Test

Integration
& TestRequirements

P
er

ce
n

ta
g

e
o

f
E

ff
o

rt
 (

P
M

)

45

40

35

30

25

20

15

10

5

Small project with
low exponent

Large project with
high exponent

Version 2.1 53

© 1995 – 2000 Center for Software Engineering, USC

6.3.3 Distribution of Schedule Across Life Cycle Phases

Figure 6 shows the Waterfall and MBASE phase distribution of estimated schedule. The
waterfall distributions are taken from [Boehm 1981; Table 6-8]. As with effort discussed above,
schedule varies with size and the scale factor. The two lines bound the range of Waterfall
schedule distribution showing a small easy project and a large difficult project.

The MBASE schedule distribution is taken from Table 46. The shaded areas show the
range of distribution for each phase.

Figure 6. Distribution of Schedule

6.4 Waterfall and MBASE/RUP Activity Definitions

6.4.1 Waterfall Model Activity Categories

The COCOMO II Waterfall model estimates effort for the following eight major
activities [Boehm 1981; Table 4-2]:
• Requirements Analysis: Determination, specification, review, and update of software

functional, performance, interface, and verification requirements.
• Product Design: Determination, specification, review, and update of hardware-software

architecture, program design, and database design.

KSLOC 2 8 32 128 512 2 8 32 128 512 2 8 32 128 512 2 8 32 128 512

E=1.05 10 11 12 13 19 19 19 19 63 59 55 51 18 22 26 30
E=1.12 16 18 20 22 24 24 25 26 27 28 56 52 48 44 40 20 23 26 29 32
E=1.20 24 28 32 36 40 30 32 34 36 38 48 44 40 36 32 22 24 26 28 30
MBASE 12.5 (2 – 30) 37.5 (33 – 42) 62.5 (58 – 67)

Distribution of Schedule by Size and Scale Factor

Product
Design Programming

Integration
& TestRequirements

P
er

ce
n

ta
g

e
o

f
S

ch
ed

u
le

 (
T

D
E

V
)

45

40

35

30

25

20

15

10

5

50

55

60

65

Small project with
low exponent

Large project with
high exponent

Version 2.1 54

© 1995 – 2000 Center for Software Engineering, USC

• Programming: Detailed design, code, unit test, and integration of individual computer
program components. Includes programming personnel planning, tool acquisition, database
development, component-level documentation, and intermediate level programming
management.

• Test Planning: Specification, review, and update of product test and acceptance test plans.
Acquisition of associated test drivers, test tools, and test data.

• Verification and Validation: Performance of independent requirements validation, design V
& V, product test, and acceptance test. Acquisition of requirements and design V & V tools.

• Project Office Functions: Project-level management functions. Includes project-level
planning and control, contract and subcontract management, and customer interface.

• Configuration Management and Quality Assurance: Configuration management includes
product identification, change control, status accounting, operation of program support
library, development and monitoring of end item acceptance plan. Quality assurance
includes development and monitoring of project standards, and technical audits of software
products and processes.

• Manuals: Development and update of users’ manuals, operators’ manuals, and maintenance
manuals.

When the COCOMO II model is used to estimate effort, the estimated effort can be
distributed across the major activities. Section 6.5 provides the percentage distributions of
activity within each phase.

6.4.2 Waterfall Model Work Breakdown Structure

The COCOMO II Waterfall and MBASE/RUP activity distributions are defined in more
detail via work breakdown structures. Table 48 shows a work breakdown structure outline
adapted from [Boehm 1981; Figure 4-6B]. This WBS excludes the requirements-related
activities done up to SRR.

Table 48. Software Activity Work Breakdown Structure
1. Management

1.1. Cost, schedule, performance management
1.2. Contract management
1.3. Subcontract management
1.4. Customer interface
1.5. Branch office management
1.6. Management reviews and audits

Version 2.1 55

© 1995 – 2000 Center for Software Engineering, USC

Table 48. Software Activity Work Breakdown Structure
2. System Engineering

2.1. Software Requirements
2.1.1. Requirements update

2.2. Software product design
2.2.1. Design
2.2.2. Design V & V
2.2.3. Preliminary design review
2.2.4. Design update
2.2.5. Design tools

2.3. Configuration management
2.3.1. Program support library

2.4. End item acceptance
2.5. Quality assurance

2.5.1. Standards
3. Programming

3.1. Detailed design
3.2. Code and unit test
3.3. Integration

4. Test and Evaluation
4.1. Product test

4.1.1. Plans
4.1.2. Procedures
4.1.3. Test
4.1.4. Reports

4.2. Acceptance test
4.2.1. Plans
4.2.2. Procedures
4.2.3. Test
4.2.4. Reports

4.3. Test support
4.3.1. Test beds
4.3.2. Test tools
4.3.3. Test data

5. Data
5.1. Manuals

6.4.3 MBASE/RUP Model Activity Categories

6.4.3.1 Background

This section defines phase and activity distribution estimators for projects using the life-
cycle model provided by USC’s Model-Based (System) Architecting and Software Engineering
(MBASE) approach and the Rational Unified Process (RUP). Both MBASE and RUP use the
same phase definitions and milestones. MBASE has a more explicit emphasis on a stakeholder
win-win approach to requirements determination and management. RUP accommodates such an
approach but more as an option.

In developing these estimators, we have tried to maintain strong consistency with the
published Rational phase and activity distributions in [Royce 1998; Kruchten 1999; Jacobson et

Version 2.1 56

© 1995 – 2000 Center for Software Engineering, USC

al. 1999], and with the published anchor point/MBASE phase boundary definitions in [Boehm
1996, Boehm-Port 1999]. We have iterated and merged drafts of the estimators and definitions
with Rational.

Our main sources of information on the Rational phase and activity distributions are:

The common table of default estimators of effort and schedule distribution percentages
by phase on page 148 of Royce, page 118 of Kruchten, and page 335 of Jacobson et al.

The default estimators of total project activity distribution percentages in Table 10-1,
page 148 of Royce. These in turn draw on the definitions of the activity categories in Royce’s
Life Cycle Phase Emphases (Table 8-1, page 120) and Default Work Breakdown Structure --
WBS-- (Figure 10-2, pages 144-145).

We and Rational agree that these and the COCOMO table values below cannot fit all
project situations, and should be considered as draft values to be adjusted via context and
judgement to fit individual projects. We have research activities underway to provide stronger
guidance on the factors affecting phase and activity distributions.

6.4.3.2 Phase and Activity Category Definitions

Thus, we have begun with the overall phase and activity distributions in [Royce 1998]
and used these to develop a set of default MBASE/RUP phase and activity distributions for use
in COCOMO II as a counterpart to those provided for the waterfall model. In the process, we
found the need to elaborate a few of the activity-category definitions in Royce’s Figure 10-2
(e.g., including configuration management within Environment; adding stakeholder coordination
as a Management activity and stakeholder requirements negotiation as a Requirements activity;
and including explicit Transition Plan and Maintenance Plan activities in Deployment). We also
modified a few definitions and allocations (using “evolution” in place of “maintenance;” splitting
“Business case development” and “Business case analysis” between Management and
Assessment).

For comparison, we have reproduced Royce’s WBS as Table 49 and provided the
counterpart COCOMO II WBS as Table 50. We have also orthogonalized the WBS organization
in Table 50 (e.g., for each phase X, the planning WBS element is AXA and the control element
is AXB), and provided more explicit categories corresponding to the Level 2 and 3 project-
oriented Key Process Areas in the SEI Capability Maturity model. An exception is Software
Quality Assurance, where we agree with Royce that all activities and all people are involved in
SQA, and that a separate WBS element for QA is inappropriate.

Version 2.1 57

© 1995 – 2000 Center for Software Engineering, USC

Table 49. Rational Unified Process Default Work Breakdown Structure [Royce 1998]
A Management

AA Inception phase management
AAA Business case development
AAB Elaboration phase release specifications
AAC Elaboration phase WBS* baselining
AAD Software development plan
AAE Inception phase project control and status assessments

AB Elaboration phase management
ABA Construction phase release specifications
ABB Construction phase WBS baselining
ABC Elaboration phase project control and status assessments

AC Construction phase management
ACA Deployment phase planning
ACB Deployment phase WBS baselining
ACC Construction phase project control and status assessments

AD Transition phase management
ADA Next generation planning
ADB Transition phase project control and status assessments

B Environment
BA Inception phase environment specification
BB Elaboration phase environment baselining

BBA Development environment installation and administration
BBB Development environment integration and custom toolsmithing
BBC SCO* database formulation

BC Construction phase environment maintenance
BCA Development environment installation and administration
BCB SCO database maintenance

BD Transition phase environment maintenance
BDA Development environment maintenance and administration
BDB SCO database maintenance
BDC Maintenance environment packaging and transition

C Requirements
CA Inception phase requirements development

CAA Vision specification
CAB Use case modeling

CB Elaboration phase requirements baselining
CBA Vision baselining
CBB Use case model baselining

CC Construction phase requirements maintenance
CD Transition phase requirements maintenance

D Design
DA Inception phase architecture prototyping
DB Elaboration phase architecture baselining

DBA Architecture design modeling
DBB Design demonstration planning and conduct
DBC Software architecture description

DC Construction phase design modeling
DCA Architecture design model maintenance
DCB Component design modeling

DD Transition phase design maintenance

Version 2.1 58

© 1995 – 2000 Center for Software Engineering, USC

Table 49. Rational Unified Process Default Work Breakdown Structure [Royce 1998]
E Implementation

EA Inception phase component prototyping
EB Elaboration phase component implementation

EBA Critical component coding demonstration integration
EC Construction phase component implementation

ECA Initial release(s) component coding and stand-alone testing
ECB Alpha release component coding and stand-alone testing
ECC Beta release component coding and stand-alone testing
ECD Component maintenance

ED Transition phase component maintenance
F Assessment

FA Inception phase assessment planning
FB Elaboration phase assessment

FBA Test modeling
FBB Architecture test scenario implementation
FBC Demonstration assessment and release descriptions

FC Construction phase assessment
FCA Initial release assessment and release description
FCB Alpha release assessment and release description
FCC Beta release assessment and release description

FD Transition phase assessment
FDA product release assessment and release descriptions

G Deployment
GA Inception phase deployment planning
GB Elaboration phase deployment planning
GC Construction phase deployment

GCA User manual baselining
GD Transition phase deployment

GDA Product transition to user
*Acronyms: SCO – Software Change Order
 WBS – Work Breakdown Structure

Version 2.1 59

© 1995 – 2000 Center for Software Engineering, USC

Table 50. COCOMO II MBASE/RUP Default Work Breakdown Structure
A Management

AA Inception phase management
AAA Top-level Life Cycle Plan (LCO* version of LCP*)
AAB Inception phase project control and status assessments
AAC Inception phase stakeholder coordination and business case development
AAD Elaboration phase commitment package and review (LCO package preparation and ARB*

review)
AB Elaboration phase management

ABA Updated LCP with detailed Construction plan (LCA* version of LCP)
ABB Elaboration phase project control and status assessments
ABC Elaboration phase stakeholder coordination and business case update
ABD Construction phase commitment package and review (LCA package preparation and ARB

review)
AC Construction phase management

ACA Updated LCP with detailed Transition and Maintenance plans
ACB Construction phase project control and status assessments
ACC Construction phase stakeholder coordination
ACD Transition phase commitment package and review (IOC* package preparation and PRB*

review)
AD Transition phase management

ADA Updated LCP with detailed next-generation planning
ADB Transition phase project control and status assessments
ADC Transition phase stakeholder coordination
ADD Maintenance phase commitment package and review (PRR* package preparation and PRB

review)
B Environment and Configuration Management (CM)

BA Inception phase environment/CM scoping and initialization
BB Elaboration phase environment/CM

BBA Development environment installation and administration
BBB Elaboration phase CM
BBC Development environment integration and custom toolsmithing

BC Construction phase environment/CM evolution
BCA Construction phase environment evolution
BCB Construction phase CM

BD Transition phase environment/CM evolution
BDA Construction phase environment evolution
BDB Transition phase CM
BDC Maintenance phase environment packaging and transition

C Requirements
CA Inception phase requirements development

CAA Operational Concept Description and business modeling (LCO version of OCD*)
CAB Top-level System and Software Requirements Definition (LCO version of SSRD*)
CAC Initial stakeholder requirements negotiation

CB Elaboration phase requirements baselining
CBA OCD elaboration and baselining (LCA version of OCD)
CBB SSRD elaboration and baselining (LCA version of SSRD)

CC Construction phase requirements evolution
CD Transition phase requirements evolution

Version 2.1 60

© 1995 – 2000 Center for Software Engineering, USC

Table 50. COCOMO II MBASE/RUP Default Work Breakdown Structure
D Design

DA Inception phase architecting
DAA Top-level System and Software Architecture Description (LCD version of SSAD*)
DAB Evaluation of candidate COTS* components

DB Elaboration phase architecture baselining
DBA SSAD elaboration and baselining
DBB COTS integration assurance and baselining

DC Construction phase design
DCA SSAD evolution
DCB COTS integration evolution
DCC Component design

DD Transition phase design evolution
E Implementation

EA Inception phase prototyping
EB Elaboration phase component implementation

EBA Critical component implementation
EC Construction phase component implementation

ECA Alpha release component coding and stand-alone testing
ECB Beta release (IOC) component coding and stand-alone testing
ECC Component evolution

ED Transition phase component evolution
F Assessment

FA Inception phase assessment
FAA Initial assessment plan (LCO version; part of SDP*)
FAB Initial Feasibility Rationale Description (LCO version of FRD*)
FAC Inception phase element-level inspections and peer reviews
FAD Business case analysis (part of FRD)

FB Elaboration phase assessment
FBA Elaboration of assessment plan (LCA version; part of SDP)
FBB Elaboration of feasibility rationale (LCA version of FRD)
FBC Elaboration phase element-level inspections and peer reviews
FBD Business case analysis update

FC Construction phase assessment
FCA Detailed test plans and procedures
FCB Evolution of feasibility rationale
FCC Construction phase element-level inspections and peer reviews
FCD Alpha release assessment
FCE Beta release (IOC) assessment

FD Transition phase assessment
G Deployment

GA Inception phase deployment planning (LCO version; part of SDP)
GB Elaboration phase deployment planning (LCA version; part of SDP)
GC Construction phase deployment planning and preparation

GCA Transition plan development
GCB Evolution plan development
GCC Transition preparation

GD Transition phase deployment

Version 2.1 61

© 1995 – 2000 Center for Software Engineering, USC

Table 50. COCOMO II MBASE/RUP Default Work Breakdown Structure
*Acronyms: ARB -- Architecture Review Board
 CM -- Configuration Management
 COTS -- Commercial-Off-The-Shelf
 FRD -- Feasibility Rationale Description
 IOC -- Initial Operational Capability milestone
 LCA -- Life Cycle Architecture milestone
 LCO -- Life Cycle Objectives milestone
 LCP -- Life Cycle Plan
 OCD -- Operational Concept Description
 PRR -- Product Release Review milestone
 PRB -- Product Review Board
 SSAD -- System and Software Architecture Description
 SSRD -- System and Software Requirements Definition

6.5 Distribution of Effort Across Activities

6.5.1 Waterfall Model Activity Distribution

Tables 51 through 54, adapted from [Boehm 1981; Tables 7-1, 7-2, 7-3], show the
distribution of eight major activities (discussed in Section 6.4.1) across the estimated project
effort per phase. The activity distribution values should be interpolated for projects that are
between values in the table.

For example, a project with size 128 KSLOC and an exponent of 1.12 would spend 28%
of its effort in Integration and Test, see Table 54 Overall Phase Percentage row. From Table 54
we see that the Requirement Analysis activity takes 2.5% of the 28%, Product Design takes 5%
of the 28%, Programming takes 39% of the 28%, and so on. We see that the activity tables break
up the estimated effort for a phase into the different activities that occur during the phase.

Table 51. Plans and Requirements Activity Distribution

 Size Exponent
 E = 1.05 E = 1.12 E = 1.20

Size: S I M L S I M L VL S I M L VL

Overall Phase
Percentage

6

7

7

7

7

7

8

8

8

8

8

Requirements
Analysis

46

48

47

46

45

44

50

48

46

44

42

Product Design 20 16 16.5 17 17.5 18 12 13 14 15 16
Programming 3 2.5 3.5 4.5 5.5 6.5 2 4 6 8 10
Test Planning 3 2.5 3 3.5 4 4.5 2 3 4 5 6
V&V 6 6 6.5 7 7.5 8 6 7 8 9 10
Project Office 15 15.5 14.5 13.5 12.5 11.5 16 14 12 10 8
CM/QA 2 3.5 3 3 3 2.5 5 4 4 4 3
Manuals 5 6 6 5.5 5 5 7 7 6 5 5
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC

Version 2.1 62

© 1995 – 2000 Center for Software Engineering, USC

Table 52. Product Design Activity Distribution

 Size Exponent
 E = 1.05 E = 1.12 E = 1.20

Size: S I M L S I M L VL S I M L VL

Overall Phase
Percentage

16

17

17

17

17

17

18

18

18

18

18

Requirements
Analysis

15

12.5

12.5

12.5

12.5

12.5

10

10

10

10

10

Product Design 40 41 41 41 41 41 42 42 42 42 42
Programming 14 12 12.5 13 13.5 14 10 11 12 13 14
Test Planning 5 4.5 5 5.5 6 6.5 4 5 6 7 8
V&V 6 6 6.5 7 7.5 8 6 7 8 9 10
Project Office 11 13 12 11 10 9 15 13 11 9 7
CM/QA 2 3 2.5 2.5 2.5 2 4 3 3 3 2
Manuals 7 8 8 7.5 7 7 9 9 8 7 7
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC

Table 53. Programming Activity Distribution

 Size Exponent
 E = 1.05 E = 1.12 E = 1.20

Size: S I M L S I M L VL S I M L VL

Overall Phase
Percentage

68

65

62

59

64

61

58

55

52

60

57

54

51

48

Requirements
Analysis

5

4

4

4

4

4

3

3

3

3

3

Product Design 10 8 8 8 8 8 6 6 6 6 6
Programming 58 56.5 56.5 56.5 56.5 56.5 55 55 55 55 55
Test Planning 4 4 4.5 5 5.5 6 4 5 6 7 8
V&V 6 7 7.5 8 8.5 9 8 9 10 11 12
Project Office 6 7.5 7 6.5 6 5.5 9 8 7 6 5
CM/QA 6 7 6.5 6.5 6.5 6 8 7 7 7 6
Manuals 5 6 6 5.5 5 5 7 7 6 5 5
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC

Table 54. Integration and Test Activity Distribution

 Size Exponent
 E = 1.05 E = 1.12 E = 1.20

Size: S I M L S I M L VL S I M L VL

Overall Phase
Percentage

16

19

22

25

19

22

25

28

31

22

25

28

31

34

Requirements
Analysis

3

2.5

2.5

2.5

2.5

2.5

2

2

2

2

2

Product Design 6 5 5 5 5 5 4 4 4 4 4
Programming 34 33 35 37 39 41 32 36 40 44 48
Test Planning 2 2.5 2.5 3 3 3.5 3 3 4 4 5

Version 2.1 63

© 1995 – 2000 Center for Software Engineering, USC

Table 54. Integration and Test Activity Distribution

 Size Exponent
 E = 1.05 E = 1.12 E = 1.20

Size: S I M L S I M L VL S I M L VL

V&V 34 32 31 29.5 28.5 27 30 28 25 23 20
Project Office 7 8.5 8 7.5 7 6.5 10 9 8 7 6
CM/QA 7 8.5 8 8 8 7.5 10 9 9 9 8
Manuals 7 8 8 7.5 7 7 9 9 8 7 7
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC

The last two activity tables handle the situation where development or maintenance is
performed as a level of effort, Tables 55 and 56 respectively. In other words, there is a fixed
amount of staff that will be working on the project and the eight major activities are divided
among the fixed staffing.

As an example, a maintenance project has 10 staff for 12 months (120 Person-Months), a
size of 8 KSLOC, and an exponent of 1.20. From Table 56 we see that Requirements Analysis
will consume 6% of the staff’s effort or 7.2 PM, Program Design will consume 11% of the
staff’s effort or 13.2 PM, Programming will consume 39% of the staff’s effort or 46.8 PM, and
so on.

Table 55. Development Activity Distribution

 Size Exponent
 E = 1.05 E = 1.12 E = 1.20

Size: S I M L S I M L VL S I M L VL

Requirements
Analysis

6

5

5

5

5

5

4

4

4

4

4

Product Design 14 13 13 13 13 13 12 12 12 12 12
Programming 48 47 46 45 45 45 44.5 44.5 44.5 42 43 43 44 45
Test Planning 4 4 4 4.5 5 5.5 4 4 5 6 7
V&V 10 11 12 13 11 12 13 13.5 14 12 13 14 14 14
Project Office 7 8.5 8 7.5 7 6.5 10 9 8 7 6
CM/QA 5 6.5 6 6 6 5.5 8 7 7 7 6
Manuals 6 7 7 6.6 6 6 8 8 7 6 6
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC

Table 56. Maintenance Activity Distribution

 Size Exponent
 E = 1.05 E = 1.12 E = 1.20

Size: S I M L S I M L VL S I M L VL

Requirements
Analysis

7

6.5

6.5

6.5

6

6

6

6

6

5

5

Product Design 13 12 12 12 12 12 11 11 11 11 11
Programming 45 44 43 42 41.5 41.5 41 41 41 38 39 39 40 41
Test Planning 3 3 3 3.5 4 4.5 3 3 4 5 6

Version 2.1 64

© 1995 – 2000 Center for Software Engineering, USC

Table 56. Maintenance Activity Distribution

 Size Exponent
 E = 1.05 E = 1.12 E = 1.20

Size: S I M L S I M L VL S I M L VL

V&V 10 11 12 13 11 12 13 13.5 14 12 13 14 14 14
Proect Office 7 8.5 8 7.5 7 6.5 10 9 8 7 6
CM/QA 5 6.5 6 6 6 5.5 8 7 7 7 6
Manuals 10 11 11 10.5 10.5 10.5 12 12 11 11 11
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC

6.5.2 MBASE/RUP Model Activity Distribution Values

Table 57 shows the resulting COCOMO II MBASE/RUP default phase and activity
distribution values. The first two lines show the Rational and COCOMO II schedule percentages
by phase. Their only difference is that the Rational percentages sum to 100% for the full set of
Inception, Elaboration, Construction, and Transition phases (IECT), while COCOMO II counts
the core Elaboration and Construction phases as 100%. This is done because the scope and
duration of the Inception and Transition phases are much more variable, and because less data is
available to calibrate estimation models for these phases. For COCOMO II, this means that the
current model covering the Elaboration and Construction phases is considerably more accurate
and robust than we could achieve with counterpart models that would include the Inception
and/or Transition phases.

Lines 1 and 2 in Table 57 show the Rational and COCOMO II phase distributions for the
project’s schedule in months. Lines 3 and 4 in Table 57 show the corresponding phase
distributions for effort. The sum of the COCOMO II percentages for the total IECT project span
is 125% for schedule and 118% for effort.

Table 57. COCOMO II MBASE/RUP Phase and Activity Distribution Values

 Development Total Total

 In

ce
p

ti
o

n

 E
la

b
o

ra
ti

o
n

 C

o
n

st
ru

ct
io

n

 T
ra

n
si

ti
o

n

 R
o

yc
e

 C
O

C
O

M
O

 II

M
ai

n
te

n
an

ce

Rational Schedule 10 30 50 10 100
COCOMO II Schedule 12.5 37.5 62.5 12.5 125
Rational Effort 5 20 65 10 100
COCOMO II Effort 6 24 76 12 118 100
Activity % of phase / IECT 100 100 100 100 118 118 100
Management 14 12 10 14 12 13 11
Environment / CM 10 8 5 5 12 7 6
Requirements 38 18 8 4 12 13 12
Design 19 36 16 4 18 22 17
Implementation 8 13 34 19 29 32 24
Assessment 8 10 24 24 29 24 22

Version 2.1 65

© 1995 – 2000 Center for Software Engineering, USC

Table 57. COCOMO II MBASE/RUP Phase and Activity Distribution Values

 Development Total Total

 In

ce
p

ti
o

n

 E
la

b
o

ra
ti

o
n

 C

o
n

st
ru

ct
io

n

 T
ra

n
si

ti
o

n

 R
o

yc
e

 C
O

C
O

M
O

 II

M
ai

n
te

n
an

ce

Deployment 3 3 3 30 6 7 8

Lines 6 to 12 in Table 57 show the default percentage of effort by activity for each of the
MBASE/RUP phases. For example, the Management activities are estimated to consume 14% of
the effort in the Inception phase, 12% in the Elaboration phase, 10% in Construction, and 14% in
Transition. For the total IECT span, the Management activities consume

(14%)(6%) + (12%)(24%) + (10%)(76%) + (14%)(12%) = 13%

This sum is slightly larger but quite comparable to the IECT percentage of 12% derived
from Royce’s Table 10-1. The WBS definitions in Tables 49 and 50 are sufficiently similar that
the values in Table 57 can be applied equally well to both.

These values can be used to determine draft project staffing plans for each of the phases.
For example, suppose there was a 100 KSLOC software system that had an estimated
development effort of 466 PM and an estimated schedule of 26 months. From lines 2 and 4 of
Table 57, we can compute the estimated schedule and effort of the Construction phase as:

Schedule: (26 Mo.) (.625) = 16.25 Mo.

Effort: (466 PM) (.76) = 354 PM

The average staff level of the Construction phase is thus:

354 PM/ 16.25 Mo. = 21.8 persons.

We can then use lines 6-12 of Table 57 to provide a draft estimate of what these 21.8
persons will be doing during the Construction phase. For example, the estimated average
number of personnel performing Management activities is:

(21.8 persons) (.10) = 2.2 persons

Table 58 shows the full set of draft activity estimates for the Construction phase.

Table 58. Example Staffing Estimate for Construction Phase

Activity Percentage Average Staff

Total 100 21.8
Management 10 2.2
Environment 5 1.1
Requirements 8 1.7
Design 16 3.5
Implementation 34 7.4
Assessment 24 5.2

Version 2.1 66

© 1995 – 2000 Center for Software Engineering, USC

Table 58. Example Staffing Estimate for Construction Phase

Activity Percentage Average Staff

Deployment 3 0.7

These staffing estimates can be used for other purposes as well. When multiplied by
associated average labor costs for activity categories, they can be used as starting points for
project WBS and budget allocations, or for earned values associated with phase deliverables.

It is important to understand that these numbers are just draft default starting points for
the actual numbers you use to manage your project. Every project will have special
circumstances which should be considered in adjusting the draft values (see also [Royce 1998; p.
218; Kruchten 1999; pp.118-119; Jacobson et al. 1999; p. 336]). For example, an ultra-reliable
product will have higher Assessment efforts and costs; a project with a stable environment
already in place will have lower up-front Environment efforts and costs. The COCOMO II
research agenda includes activities to provide further guidelines for adjusting the phase and
activity distributions to special circumstances. Even then, however, the estimated phase and
activity distribution numbers should be subject to critical review. As with other COCOMO II
estimates, the default phase and activity distribution estimates should be considered as a stimulus
to thought, and not as a substitute for thought.

6.6 Definitions and Assumptions

COCOMO II’s definitions and assumptions are similar to those for COCOMO 81
[Boehm 1981; pp. 58-61], but with some differences. Here is a summary of similarities and
differences.

1. Sizing. COCOMO 81 just used Delivered Source Instructions for sizing. COCOMO
II uses combinations of Function Points (FP) and Source Lines of Code for the Early
Design and Post-Architecture models, with counting rules in [IFPUG 1994] for FP
and Table 63 for SLOC.

2. Development Periods Included. For the Waterfall process model, COCOMO II uses
the same milestone end points (Software Requirements Review to Software
Acceptance Review) as COCOMO 81. For the MBASE/RUP process model,
COCOMO II uses the Life Cycle Objectives and Initial Operational Capability
milestone as end points for counting effort and schedule. Details for both are in
Section 6.2.

3. Project Activities Included. For the Waterfall process model, COCOMO II includes
the same activities as did COCOMO 81. For the MBASE and RUP process models,
the Work Breakdown Structures in Section 6.4 define the project activities included
by phase. For all the models, all software development activities such as
documentation, planning and control, and configuration management (CM) are
included, while database administration is not. For all the models, the software
portions of a hardware-software project are included (e.g., software CM, software
project management) but general CM and management are not. Both models have
add-on efforts for a front-end phase (Plans and Requirements for COCOMO 81;
Inception for (MBASE/RUP). COCOMO II differs from COCOMO 81 in having

Version 2.1 67

© 1995 – 2000 Center for Software Engineering, USC

add-on efforts for a back-end Transition phase, including conversion, installation, and
training. As discussed in Section 6.3 the size of these add-on efforts can vary a great
deal, and their effort estimates should be adjusted for particularly small or large add-
on endeavors.

4. Labor categories included. COCOMO 81 and COCOMO II estimates both use the
same definitions of labor categories included as direct-charged project effort vs.
overhead effort. Thus, they include project managers and program librarians, but
exclude computer center operators, personnel-department personnel, secretaries,
higher management, janitors, and so on.

5. Dollar Estimates. COCOMO 81 and COCOMO II avoid estimating labor costs in
dollars because of the large variations between organizations in what is included in
labor costs, e.g. unburdened (by overhead cost), burdened, including pension plans,
office rental, and profit margin. Person months are a more stable quantity than
dollars given current inflation rates and international money fluctuations.

6. Person-month definition. A COCOMO PM consists of 152 hours of working time.
This has been found to be consistent with practical experience with the average
monthly time off because of holidays, vacation, and sick leave. To convert a
COCOMO estimate in person-months to other units, use the following:

Person-hours: multiply by 152
Person-days: multiply by 19
Person-years: divide by 12

Some implementations, such as USC COCOMO II, provide an adjustable parameter for
the number of person-hours per person-month. Thus, if you enter 137 (10% less) for this
parameter, USC COCOMO II will increase your person-month estimate by 10%, and calculate
an appropriately longer development schedule.

Version 2.1 68

© 1995 – 2000 Center for Software Engineering, USC

7. Model Calibration to the Local Environment

Studies of the data used to calibrate all the parameters of the COCOMO II Post-
Architecture model have shown the model to be significantly more accurate when calibrated to
an organization. All that was done in the study was to calibrate the constant, A, in the effort
estimation equation. This is simple enough to do that it can be performed with a calculator,
spreadsheet, or a statistical regression tool.

The intent of calibration is to take the productivity and activity distributions of the local
development environment into account. Figure 7 is a fictitious example of data from 8 projects.
The effect of calibrating the constant A is to raise or lower the fitted line from the “out-of-the-
box” COCOMO estimates to estimates that reflect local conditions.

Figure 7. Difference Between COCOMO II and Local Calibrations

Calibration to the local environment consists of adjusting the constant, A, in the model.
Only the calibration of A is discussed here; however for calibration of A and E see Chapter 4 in
[Boehm et al. 2000]. The applicable portion of Equation 1 is repeated here for this discussion.

 ∏
=

××=
n

1i
i

E
NS EMSizeAPM

There is more than one method to calibrate the constant A (see other examples in [Boehm
1981; Chapter 29; Boehm et al. 2000; Chapter 4]. The technique described here uses natural
logs. It is recommended that at least 5 data points from projects be used in calibrating the
constant A.

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000 100000

2 Estimates of Effort (PM)
Ln Scale

A
ct

ua
l E

ffo
rt

 (
P

M
)

Ln
 S

ca
le

Version 2.1 69

© 1995 – 2000 Center for Software Engineering, USC

As an example, the table below shows eight projects. The data needed is the actual effort
(PMactual) that was expended between the end of Requirements Analysis and the end of software
Integration and Test. The activities should be the same as those discussed in Section 6.4. The
end-product size, Scale Factors, and Cost Drivers are also needed. An unadjusted estimated is
created using Equation 1 without the constant A. Next, natural logs (ln) are taken of the actual
effort and unadjusted estimate. For each project, the difference between the log of the actual
effort and the log of the unadjusted estimate are determined. The average of the differences, X,
will determine the constant A by taking the anti-log of the average: A = eX.

Table 59. Example of Local Calibration of A

PMactual

KSLOC

ΠEMi

E
Unadjusted

Estimate

ln(PMactual)
ln(Unadjusted

Estimate)

Difference

1854.6 134.5 1.89 1.20 686.7 7.53 6.53 0.99
258.5 132.0 0.49 1.08 94.3 5.55 4.55 1.01
201.0 44.0 1.06 1.13 77.7 5.30 4.35 0.95
58.9 3.6 5.05 1.09 20.3 4.08 3.01 1.07

9661.0 380.8 3.05 1.18 3338.8 9.18 8.11 1.06
7021.3 980.0 0.92 1.16 2753.5 8.86 7.92 0.94
91.7 11.2 2.45 1.15 38.9 4.52 3.66 0.86
689.7 61.6 2.38 1.17 301.1 6.54 5.71 0.83

 X= 0.96
 A= 2.62

This example shows that instead of using the COCOMO II.2000 constant of A = 2.94, a
local constant of 2.62 should be used for estimating software projects in the local development.

In addition to calibrating the estimation equations, the distribution of the estimates should
be calibrated too. Recall the distribution of effort in Section 6.4. This may be different for the
local environment due to the use of different development methodologies and organizational
processes.

The table below is an example of a collection of effort data by lifecycle phase and by
activity. This table could be expanded to cover all activities and phases of the local development
lifecycle. Even if the local activities are not all covered by the COCOMO effort estimate the
information will still be useful in planning and tracking project progress.

Version 2.1 70

© 1995 – 2000 Center for Software Engineering, USC

Table 60. Example of Local Effort Data Collection

 Effort by Lifecycle Phase in Person-Months

Activity

A
rc

h
it

ec
tu

ra
l D

es
ig

n

S

o
ft

w
ar

e
D

es
ig

n

Im
p

le
m

en
ta

ti
o

n
 B

u
ild

-1

(D
D

 &
 C

U
T

)

In
te

g
ra

ti
o

n
 T

es
t

B
u

ild
-1

Im
p

le
m

en
ta

ti
o

n
 B

u
ild

-2

(D
D

 &
 C

U
T

)

In

te
g

ra
ti

o
n

 T
es

t
B

u
ild

-2

T

o
ta

l E
ff

o
rt

 b
y

A
ct

iv
it

y

Management 3.72 6.24 7.08 0 9.96 0 27.00
Requirements
Engineering

3.72 5.88 4.20 0 7.08 0 20.88

Test Engineering 3.72 7.08 12.24 10.56 11.4 5.16 50.16
Software
Engineering (A+B)

19.56 26.88 46.92 3.96 65.28 6.84 169.44

Subsystem A 13.20 16.44 34.56 3.00 42.48 5.76 115.44
Subsystem B 6.36 10.44 12.36 0.96 22.80 1.08 54.00
Support 3.96 4.92 12.00 4.80 10.56 0 36.24
Total Effort by
Phase

34.68 51.00 82.44 19.32 104.28 12.00 303.72

The data from the above table can be converted into phase distribution percentages. This
is used with the calibrated COCOMO II model to derive estimates broken down by phase and
activity.

Table 61. Example of Local Effort Distribution

 Percentage Effort by Lifecycle Phase

Activity A
rc

h
it

ec
tu

ra
l

D
es

ig
n

 S
o

ft
w

ar
e

D
es

ig
n

 Im
p

le
m

en
ta

ti
o

n

 In
te

g
ra

ti
o

n
 T

es
ti

n
g

 T
o

ta
l E

ff
o

rt
 b

y
A

ct
iv

it
y

Management 1.22% 2.05% 5.61% 0.00% 8.89%
Requirements Engineering 1.22% 1.94% 3.71% 0.00% 6.87%
Test Engineering 1.22% 2.33% 7.78% 5.18% 16.52%
Software Engineering 6.44% 8.85% 36.94% 3.56% 55.79%
Support 1.30% 1.62% 7.43% 1.58% 11.93%
Total Effort by Phase 11.42% 16.79% 61.48% 10.31% 100.00%

Calibration of the model to the local environment is an important activity. The results of
the calibration can be an important input to planning and quantitative management practices.

Version 2.1 71

© 1995 – 2000 Center for Software Engineering, USC

8. Summary

8.1 Models

8.1.1 Sizing equations

The Post-Architecture and Early Design models use the same sizing equations. Sizing is
summarized below and discussed in Section 2.

()

[]

() () ()IM0.3CM0.3DM0.4AAF

50AAFfor ,
100

UNFM) (SUAAFAA

50 AAFfor ,
100

)UNFMSU0.02(1AAFAA

AAM where

AAM
100

AT
1KSLOC AdaptedKSLOC Equivalent

KSLOC Equivalent KSLOC New
100

REVL
1Size

×+×+×=

>×++

≤××+×+

=

×

 −×=

+×

 +=

Symbol Description

AA Assessment and Assimilation
AAF Adaptation Adjustment Factor
AAM Adaptation Adjustment Modifier
CM Percent Code Modified
DM Percent Design Modified
IM Percent of Integration Integration Required for the Adapted Software

KSLOC Thousands of Source Lines of Code
REVL Requirements Evolution and Volatility

SU Software Understanding
UNFM Programmer Unfamiliarity with Software

8.1.2 Post-Architecture Model equations

This model is explained in Section 3.

()
ATPROD

100
ATSLOC Adapted

PM

SF0.01BE

PMEMSizeAPM

Auto

5

1j j

Auto

17

1i i
E

×
=

×+=

+×⋅=

∑
∏

=

=

Symbol Description

A Effort coefficient that can be calibrated, currently set to 2.94

Version 2.1 72

© 1995 – 2000 Center for Software Engineering, USC

AT Percentage of the code that is re-engineered by automatic translation
ATPROD Automatic translation productivity

B Scaling base-exponent that can be calibrated, currently set to 0.91
E Scaling exponent described in Section 3.1

EM 17 Effort Multipliers discussed in Section 3.2.1
PM Person-Months effort from developing new and adapted code

PMAuto Person-Months effort from automatic translation activities discussed in Section 2.6.
SF 5 Scale Factors discussed in Section 3.1

8.1.3 Early Design Model equations

This model is explained in Section 3.

 Auto

7

1i i
E PM EMSizeAPM ∏ =

+×⋅=

Symbol Description

A Effort coefficient that can be calibrated, currently set to 2.94
E Scaling exponent described in Section 3.1

EM 7 Effort Multipliers discussed in Section 3.2.2
PM Person-Months effort from developing new and adapted code

PMAuto Person-Months effort from automatic translation activities discussed in Section 2.6.
SF 5 Scale Factors discussed in Section 3.1

8.1.4 Time to Develop equation

This model is explained in Section 4.

 []()B-E0.2DF
100

SCED%
])(PM[CTDEV F

NS

×+=

××=

Symbol Description

B The scaling base-exponent for the effort equation, currently set to 0.91
C Coefficient that can be calibrated, currently set to 3.67
D Scaling base-exponent that can be calibrated, currently set to 0.28
E The scaling exponent for the effort equation

PMNS Person-Months estimated without the SCED cost driver (Nominal Schedule)
SCED Required Schedule Compression
TDEV Time to Develop in calendar months

Version 2.1 73

© 1995 – 2000 Center for Software Engineering, USC

8.2 Rating Scales

The rating scales for the scale factors are given below and discussed in Section 3.1.

Scale
Factors

Very Low

Low

Nominal

High

Very High

Extra High

PREC

thoroughly
unpreceden
ted

largely
unpreceden
ted

somewhat
unpreceden
ted

generally
familiar

largely
familiar

thoroughly
familiar

FLEX
rigorous occasional

relaxation
some
relaxation

general
conformity

some
conformity

general
goals

RESL
little (20%) some (40%) often (60%) generally

(75%)
mostly
(90%)

full (100%)

TEAM

very difficult
interactions

some
difficult
interactions

basically
cooperative
interactions

largely
cooperative

highly
cooperative

seamless
interactions

 The estimated Equivalent Process Maturity Level (EPML) or

PMAT
SW-CMM
Level 1
Lower

SW-CMM
Level 1
Upper

SW-CMM
Level 2

SW-CMM
Level 3

SW-CMM
Level 4

SW-CMM
Level 5

The rating scales for the Post-Architecture model cost drivers are given below in Table
62 and discussed in Section 3.2.1. The cost drivers for the Early Design model are discussed in
Section 3.2.2

Version 2.1 74

© 1995 – 2000 Center for Software Engineering, USC

Cost
Drivers

Very Low

Low

Nominal

High

Very High

Extra High

RELY
slight

inconvenienc
e

low, easily
recoverable

losses

moderate,
easily

recoverable
losses

high financial
loss

risk to human
life

DATA
 Testing DB

bytes / Pgm
SLOC < 10

10 ≤ D/P <
100

100 ≤ D/P <
1000

D/P > 1000

CPLX see Table 19

RUSE
 none across

project
across

program
across

product line
across
multiple

product lines

DOCU
Many life-

cycle needs
uncovered

Some life-
cycle needs
uncovered.

Right-sized to
life-cycle
needs

Excessive for
life-cycle
needs

Very
excessive for
life-cycle
needs

TIME
 ≤ 50% use of

available
execution
time

70% 85% 95%

STOR
 ≤ 50% use of

available
storage

70% 85% 95%

PVOL
 major change

every 12 mo.;
minor change
every 1 mo.

major: 6 mo.;
minor: 2 wk.

major: 2 mo.;
minor: 1 wk.

major: 2 wk.;
minor: 2 days

ACAP
15th

percentile
35th

percentile
55th

percentile
75th

percentile
90th

percentile

PCAP
15th

percentile
35th

percentile
55th

percentile
75th

percentile
90th

percentile

PCON
48% / year 24% / year 12% / year 6% / year 3% / year

APEX ≤ 2 months 6 months 1 year 3 years 6 years

PLEX ≤ 2 months 6 months 1 year 3 years 6 year

LTEX ≤ 2 months 6 months 1 year 3 years 6 year

TOOL
edit, code,

debug
simple,
frontend,
backend
CASE, little
integration

basic lifecycle
tools,
moderately
integrated

strong,
mature
lifecycle
tools,
moderately
integrated

strong,
mature,
proactive
lifecycle
tools, well
integrated
with
processes,
methods,
reuse

Version 2.1 75

© 1995 – 2000 Center for Software Engineering, USC

Cost
Drivers

Very Low

Low

Nominal

High

Very High

Extra High

SITE:

Collo-
cation

International Multi-city and
multi-
company

Multi-city or
multi-
company

Same city or
metro area

Same
building or
complex

Fully
collocated

SITE:

Com-
muni-
cation

Some phone,
mail

Individual
phone, FAX

Narrow-band
email

Wide-band
electronic
communica-
tion.

Wide-band
elect. comm,
occasional
video conf.

Interactive
multimedia

SCED
75% of
nominal

85% of
nominal

100% of
nominal

130% of
nominal

160% of
nominal

8.3 COCOMO II Version Parameter Values

8.3.1 COCOMO II.2000 Calibration

The following table, Table 62, shows the COCOMO II.2000 calibrated values for Post-
Architecture scale factors and effort multipliers.

Table 62. COCOMO II 2000 Calibrated Post-Architecture Model Values
Baseline Effort Constants: A = 2.94; B = 0.91
Baseline Schedule Constants: C = 3.67; D = 0.28

Driver Symbol VL L N H VH XH

PREC SF1 6.20 4.96 3.72 2.48 1.24 0.00
FLEX SF2 5.07 4.05 3.04 2.03 1.01 0.00
RESL SF3 7.07 5.65 4.24 2.83 1.41 0.00
TEAM SF4 5.48 4.38 3.29 2.19 1.10 0.00
PMAT SF5 7.80 6.24 4.68 3.12 1.56 0.00
RELY EM1 0.82 0.92 1.00 1.10 1.26
DATA EM2 0.90 1.00 1.14 1.28
CPLX EM3 0.73 0.87 1.00 1.17 1.34 1.74
RUSE EM4 0.95 1.00 1.07 1.15 1.24
DOCU EM5 0.81 0.91 1.00 1.11 1.23
TIME EM6 1.00 1.11 1.29 1.63
STOR EM7 1.00 1.05 1.17 1.46
PVOL EM8 0.87 1.00 1.15 1.30
ACAP EM9 1.42 1.19 1.00 0.85 0.71
PCAP EM10 1.34 1.15 1.00 0.88 0.76
PCON EM11 1.29 1.12 1.00 0.90 0.81
APEX EM12 1.22 1.10 1.00 0.88 0.81
PLEX EM13 1.19 1.09 1.00 0.91 0.85
LTEX EM14 1.20 1.09 1.00 0.91 0.84
TOOL EM15 1.17 1.09 1.00 0.90 0.78
SITE EM16 1.22 1.09 1.00 0.93 0.86 0.80
SCED EM17 1.43 1.14 1.00 1.00 1.00

Version 2.1 76

© 1995 – 2000 Center for Software Engineering, USC

Table 63 shows the COCOMO II.2000 calibrated values for Early Design effort
multipliers. The scale factors are the same as for the Post-Architecture model.

Table 63. COCOMO II.2000 Calibrated Early Design Model Values
Baseline Effort Constants: A = 2.94; B = 0.91
Baseline Schedule Constants: C = 3.67; D = 0.28

Driver Symbol XL VL L N H VH XH

PERS EM1 2.12 1.62 1.26 1.00 0.83 0.63 0.50
RCPX EM2 0.49 0.60 0.83 1.00 1.33 1.91 2.72
PDIF EM3 0.87 1.00 1.29 1.81 2.61
PREX EM4 1.59 1.33 1.12 1.00 0.87 0.74 0.62
FCIL EM5 1.43 1.30 1.10 1.0 0.87 0.73 0.62

RUSE EM6 0.95 1.00 1.07 1.15 1.24
SCED EM7 1.43 1.14 1.00 1.00 1.00

8.3.2 COCOMO II.1997 Calibration

The following table shows the COCOMO II.1997 calibrated values for scale factors and
effort multipliers.

Baseline Effort Constants: A = 2.45; B = 1.01
Baseline Schedule Constants: C = 2.66; D = 0.33

Driver Symbol VL L N H VH XH

PREC SF1 4.05 3.24 2.43 1.62 0.81 0.00
FLEX SF2 6.07 4.86 3.64 2.43 1.21 0.00
RESL SF3 4.22 3.38 2.53 1.69 0.84 0.00
TEAM SF4 4.94 3.95 2.97 1.98 0.99 0.00
PMAT SF5 4.54 3.64 2.73 1.82 0.91 0.00
RELY EM1 0.75 0.88 1.00 1.15 1.39
DATA EM2 0.93 1.00 1.09 1.19
RUSE EM3 0.91 1.00 1.14 1.29 1.49
DOCU EM4 0.89 0.95 1.00 1.06 1.13
CPLX EM5 0.75 0.88 1.00 1.15 1.30 1.66
TIME EM6 1.00 1.11 1.31 1.67
STOR EM7 1.00 1.06 1.21 1.57
PVOL EM8 0.87 1.00 1.15 1.30
ACAP EM9 1.50 1.22 1.00 0.83 0.67
PCAP EM10 1.37 1.16 1.00 0.87 0.74
PCON EM11 1.24 1.10 1.00 0.92 0.84
APEX EM12 1.22 1.10 1.00 0.89 0.81
PLEX EM13 1.25 1.12 1.00 0.88 0.81
LTEX EM14 1.22 1.10 1.00 0.91 0.84
TOOL EM15 1.24 1.12 1.00 0.86 0.72
SITE EM16 1.25 1.10 1.00 0.92 0.84 0.78
SCED EM17 1.29 1.10 1.00 1.00 1.00

Version 2.1 77

© 1995 – 2000 Center for Software Engineering, USC

8.4 Source Code Counting Rules

What is a line of source code? This checklist, adopted from the Software Engineering
Institute [Park 1992], attempts to define a logical line of source code. The intent is to define a
logical line of code while not becoming too language specific for use in collection data to
validate the COCOMO 2.0 model.

Table 64. COCOMO II SLOC Checklist
Definition Checklist for Source Statements Counts

Definition name: Logical Source Statements Date:_______________
 (basic definition) Originator: COCOMO II
Measurement unit: Physical source lines
 Logical source statements √
Statement type Definition √ Data Array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence: 1 √
2 Nonexecutable

3 Declarations 2 √
4 Compiler directives 3 √
5 Comments

6 On their own lines 4 √
7 On lines with source code 5 √
8 Banners and non-blank spacers 6 √
9 Blank (empty) comments 7 √

10 Blank lines 8 √
How produced Definition √ Data array Includes Excludes
1 Programmed √
2 Generated with source code generators √
3 Converted with automated translators √
4 Copied or reused without change √
5 Modified √
6 Removed √
Origin Definition √ Data array Includes Excludes
1 New work: no prior existence √
2 Prior work: taken or adapted from

3 A previous version, build, or release √
4 Commercial, off-the-shelf software (COTS), other than libraries √
5 Government furnished software (GFS), other than reuse libraries √
6 Another product √
7 A vendor-supplied language support library (unmodified) √
8 A vendor-supplied operating system or utility (unmodified) √
9 A local or modified language support library or operating system √
10 Other commercial library √
11 A reuse library (software designed for reuse) √
12 Other software component or library √

Usage Definition √ Data array Includes Excludes

Version 2.1 78

© 1995 – 2000 Center for Software Engineering, USC

Table 64. COCOMO II SLOC Checklist
Definition Checklist for Source Statements Counts

Definition name: Logical Source Statements Date:_______________
 (basic definition) Originator: COCOMO II
1 In or as part of the primary product √
2 External to or in support of the primary product √
Delivery Definition √ Data array Includes Excludes
1 Delivered:

2 Delivered as source √
3 Delivered in compiled or executable form, but not as source √

4 Not delivered:
5 Under configuration control √
6 Not under configuration control √

Functionality Definition √ Data array Includes Excludes
1 Operative √
2 Inoperative (dead, bypassed, unused, unreferenced, or

unaccessible):

3 Functional (intentional dead code, reactivated for special
purposes)

 √

4 Nonfunctional (unintentionally present) √
Replications Definition √ Data array Includes Excludes
1 Master source statements (originals) √
2 Physical replicates of master statements, stored in the master code √
3 Copies inserted, instantiated, or expanded when compiling or linking √
4 Postproduction replicates—as in distributed, redundant, or

reparameterized systems
 √

Development status Definition √ Data array Includes Excludes
Each statement has one and only one status, usually that of its
parent unit.

1Estimated or planned √
2 Designed √
3 Coded √
4 Unit tests completed √
5 Integrated into components √
6 Test readiness review completed √
7 Software (CSCI) tests completed √
8 System tests completed √

Version 2.1 79

© 1995 – 2000 Center for Software Engineering, USC

Table 64. COCOMO II SLOC Checklist
Definition Checklist for Source Statements Counts

Definition name: Logical Source Statements Date:_______________
 (basic definition) Originator: COCOMO II
Language Definition √ Data array Includes Excludes

List each source language on a separate line.
1 Separate totals for each language √
Clarifications Definition √ Data array Includes Excludes

(general)
1 Nulls, continues, and no-ops √
2 Empty statements, e.g. “;;” and lone semicolons on separate lines √
3 Statements that instantiate generics √
4 Begin...end and {...} pairs used as executable statements √
5 Begin...end and {...} pairs that delimit (sub)program bodies √
6 Logical expressions used as test conditions √
7 Expression evaluations used as subprograms arguments √
8 End symbols that terminate executable statements √
9 End symbols that terminate declarations or (sub)program bodies √
10 Then, else, and otherwise symbols √
11 Elseif statements √
12 Keywords like procedure division, interface, and implementation √
13 Labels (branching destinations) on lines by themselves √
Clarifications Definition √ Data array Includes Excludes

(language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies √
2 Block statements, e.g. begin...end √
3 With and use clauses √
4 When (the keyword preceding executable statements) √
5 Exception (the keyword, used as a frame header) √
6 Pragmas √

Assembly
1 Macro calls √
2 Macro expansions √

C and C++
1 Null statement, e.g. “;” by itself to indicate an empty body √
2 Expression statements (expressions terminated by semicolons) √
3 Expression separated by semicolons, as in a “for” statement √
4 Block statements, e.g. {...} with no terminating semicolon √
5 “;”, “;” or “;” on a line by itself when part of a declaration √
6 “;” or “;” on a line by itself when part of an executable statement √
7 Conditionally compiled statements (#if, #ifdef, #ifndef) √
8 Preprocessor statements other than #if, #ifdef, and #ifndef √

CMS-2
1 Keywords like SYS-PROC and SYS-DD √

COBOL
1 “PROCEDURE DIVISION”, “END DECLARATIVES”, etc. √

Version 2.1 80

© 1995 – 2000 Center for Software Engineering, USC

Table 64. COCOMO II SLOC Checklist
Definition Checklist for Source Statements Counts

Definition name: Logical Source Statements Date:_______________
 (basic definition) Originator: COCOMO II
FORTRAN

1 END statements √
2 Format statements √
3 Entry statements √

Pascal
1 Executable statements not terminated by semicolons √
2 Keywords like INTERFACE and IMPLEMENTATION √
3 FORWARD declarations √

Summary of Statement Types

Executable statements
Executable statements cause runtime actions. They may be simple statements such as
assignments, goto’s, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls, no-
ops, empty statements, and FORTRAN’s END. Or they may be structured or compound statements,
such as conditional statements, repetitive statements, and “with” statements. Languages like Ada, C,
C++, and Pascal have block statements [begin...end and {...}] that are classified as executable when
used where other executable statements would be permitted. C and C++ define expressions as
executable statements when they terminate with a semicolon, and C++ has a <declaration>
statement that is executable.
Declarations
Declarations are nonexecutable program elements that affect an assembler’s or compiler’s
interpretation of other program elements They are used to name, define, and initialize; to specify
internal and external interfaces; to assign ranges for bounds checking; and to identify and bound
modules and sections of code. Examples include declarations of names, numbers, constants,
objects, types, subtypes, programs, subprograms, tasks, exceptions, packages, generics, macros,
and deferred constants. Declarations also include renaming declarations, use clauses, and
declarations that instantiate generics. Mandatory begin...end and {...} symbols that delimit bodies of
programs and subprograms are integral parts of program and subprogram declarations. Language
superstructure elements that establish boundaries for different sections of source code are also
declarations. Examples include terms such as PROCEDURE DIVISION, DATA DIVISION,
DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION, SYS-PROC and SYS-
DD. Declarations, in general, are never required by language specifications to initiate runtime
actions, although some languages permit compilers to implement them that way.
Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems) to
perform special actions. Some, such as Ada’s pragma and COBOL’s COPY, REPLACE, and USE,
are integral parts of the source language. In other languages like C and C++, special symbols like #
are used along with standardized keywords to direct preprocessor or compiler actions. Still other
languages rely on nonstandardized methods supplied by compiler vendors. In these languages,
directives are often designated by special symbols such as #, $, and {$}.

Version 2.1 81

© 1995 – 2000 Center for Software Engineering, USC

Acronyms and Abbreviations
3GL Third Generation Language
4GL Fourth Generation Language
A Effort coefficient that can be calibrated
ATPROD Automatic translation productivity
AA Percentage of reuse effort due to assessment and assimilation
AAF Adaptation Adjustment Factor, a component of the overall Adaptation

Adjustment Multiplier for reuse sizing, including the effects of Design
Modified, Code Modified, and Integration Modified factors (COCOMO
Reuse model).

AAM Adaptation Adjustment Multiplier for reuse sizing (COCOMO Reuse
model)

ACAP Analyst Capability Cost Driver
APEX Applications Experience Cost Driver
API Application Program Interface
ASLOC Adapted Source Lines of Code, used in reuse sizing (COCOMO Reuse

model)
AT Automated Translation
B The scaling base-exponent for the effort equation that can be calibrated
C Coefficient that can be calibrated
CASE Computer Aided Software Engineering
CCB Change Control Board
CD Commercial technology and DoD general practice
CDR Critical Design Review milestone (Waterfall development process)
CII COCOMO II.2000
CM Percentage of code modified during reuse (COCOMO Reuse model)
CM Configuration Management
CMM Capability Maturity Model
COCOMO Constructive Cost Model; refers collectively to COCOMO 81 and

COCOMO II.
COCOMO 81 The original version of the Constructive Cost Model, published in 1981
COCOMO II The revised version of the Constructive Cost Model, first released in 1997
COCOMO II.1997 The original year 1997 calibration of the revised Constructive Cost Model
COCOMO II.2000 The year 2000 calibration of the revised Constructive Cost Model
COCOTS Constructive COTS cost model
COPROMO Constructive Productivity improvement Model
COPSEMO Constructive Phased Schedule & Effort Model
COQUALMO Constructive Quality Model
CORADMO Constructive RAD cost model
Cost Driver A particular characteristic of the software development that has a

multiplicative effect of increasing or decreasing the amount of
development effort, e.g. required product reliability, execution time
constraints, project team application experience.

COTS Commercial-off-the-shelf

Version 2.1 82

© 1995 – 2000 Center for Software Engineering, USC

CPLX Product Complexity Cost Driver
D The scaling base-exponent for the schedule equation that can be calibrated
DATA Database Size Cost Driver
DBMS Database Management System
DM Percentage of design modified during reuse (COCOMO Reuse model)
DOCU Documentation Match to Lifecycle Needs Cost Driver
E The scaling exponent for the schedule equation that can be calibrated
EAF Effort Adjustment Factor – product of Cost Drivers
EM Effort Multiplier; a value associated with a specific Cost Driver rating
ESLOC Equivalent Source Lines of Code for reuse software (COCOMO Reuse

model)
F Scaling exponent for the schedule equation
FCIL Facilities
FLEX Development Flexibility scale factor
FP Function Points
FSP Full-time Software Personnel
GUI Graphical User Interface
H High driver rating
IFPUG International Function Point Users Group
IM Integration Modified: percentage of integration and test redone during

reuse (COCOMO Reuse model)
IOC Initial Operational Capability milestone (MBASE/RUP development

process)
IECT Inception, Elaboration, Construction, and Transition phases for the

MBASE/RUP lifecycle model
IRR Initial Readiness Review milestone (MBASE/RUP development process)
KASLOC Thousands of Adapted Source Lines of Code (COCOMO Reuse model)
KESLOC Thousands of Equivalent Source Lines of Code (COCOMO Reuse model)
KNCSS Thousands of Non-Commented Source Statements
KSLOC Thousands (K) of Source Lines of Code
L Low driver rating
LCA Life cycle Architecture milestone (MBASE/RUP development process)
LCO Life cycle Objectives milestone (MBASE/RUP development process)
LCR Life cycle Concept Review milestone (MBASE/RUP development

process)
LEXP Programming Language Experience, used in COCOMO 81
LOC Lines of Code
LTEX Language and Tool Experience Cost Driver
MAF Maintenance Adjustment Factor; used to account for software

understanding and unfamiliarity effects (COCOMO Reuse and
Maintenance models)

MBASE Model-Based (System) Architecting and Software Engineering
MCF Maintenance Change Factor: fraction of legacy code modified or added

(COCOMO Maintenance model)
Mo Months
N Nominal driver rating

Version 2.1 83

© 1995 – 2000 Center for Software Engineering, USC

NIST National Institute of Standards and Technology
PCAP Programmer Capability Cost Driver
PCON Personnel continuity Cost Driver
PDIF Platform Difficulty: composite Cost Driver for Early Design model
PDR Product Design Review milestone (Waterfall development process)
PERS Personnel Capability: composite Cost Driver for Early Design model
PLEX Platform Experience Cost Driver
PM Person-Months; a person month is the amount of time one person spends

working on the software development project for one month; in
COCOMO normally assumed to be 152 person-hours.

PMAUTO Person-months effort from automatic translation activities
PMNS Person-months estimated without the SCED cost driver (Nominal

Schedule)
PMAT Process Maturity scale factor
PR Productivity Range
PREC Precedentedness scale factor
PRED(X) Prediction Accuracy: percentage of estimates within X% of the actuals
PREX Personnel Experience: composite Cost Driver for Early Design model
PROD Productivity rate
PVOL Platform Volatility Cost Driver
RAD Rapid Application Development; applies to both schedule and effort
RCPX Product Reliability and Complexity: composite Cost Driver for Early

Design model
RELY Required Software Reliability Cost Driver
RESL Architecture and Risk Resolution scale factor
REVL Requirements Evolution and Volatility: size adjustment factor
ROI Return on Investment
RUP Rational Software Corporation’s Unified Process
RUSE Developed for Reusability Cost Driver
RVOL Requirements Volatility, used in COCOMO 81
SAR Software Acceptance Review milestone (Waterfall development process)
Scale Factor A particular characteristic of the software development that has an

exponential effect of increasing or decreasing the amount of development
effort, e.g. precedentedness, process maturity.

SCED Required Development Schedule: project-level Cost Driver
SCED% Required Schedule Compression percentage
SECU Classified Security Application, used in Ada COCOMO
SEI Software Engineering Institute
SF Scale Factor; a value for a specific rating of a Scale Factor
SITE Multi-site Development Cost Driver
SLOC Source Lines of Code
SRR Software Requirements Review milestone (Waterfall development

process)
STOR Main Storage Constraint Cost Driver
SU Percentage of reuse effort due to software understanding (COCOMO

Reuse model)

Version 2.1 84

© 1995 – 2000 Center for Software Engineering, USC

SW-CMM Software Capability Maturity Model
T&E Test and Evaluation
TCR Transition Completion Review milestone (MBASE/RUP development

process)
TDEV Time to Develop (in months)
TEAM Team Cohesion scale factor
TIME Execution Time Constraint Cost Driver
TOOL Use of Software Tools Cost Driver
UNFM Programmer Unfamiliarity; factor used in reuse and maintenance

estimation (COCOMO Reuse and Maintenance models)
USAF/ESD U.S. Air Force Electronic Systems Division
UTC Unit Test Completion milestone (Waterfall development process)
VH Very High driver rating
VL Very Low driver rating
XH Extra High driver rating

Version 2.1 85

© 1995 – 2000 Center for Software Engineering, USC

References

[Banker et al. 1994]. Banker R. D., Chang H., Kemerer C., “Evidence on Economies of Scale in
Software Development”, Information and Software Technology, 1994, pp. 275-
282.

[Behrens 1983]. C. Behrens, “Measuring the Productivity of Computer Systems Development
Activities with Function Points,” IEEE Transactions on Software Engineering,
November 1983.

[Boehm 1981]. B. Boehm, Software Engineering Economics, Prentice Hall, Englewood Cliffs,
N.J., 1981.

[Boehm-Royce 1989]. B. Boehm, and W. Royce, “Ada COCOMO and the Ada Process
Model,” Proceedings, Fifth COCOMO Users’ Group Meeting, Software
Engineering Institute, Pittsburgh, PA, November 1989.

[Boehm 1996]. B. Boehm, “Anchoring the Software Process,” IEEE Software, July 1996.

[Boehm et al. 1999]. B. Boehm, D. Port., A. Egyed, and M. Abi-Antoun, “The MBASE Life
Cycle Architecture Package: No Architecture is an Island,” in P. Donohoe (ed.),
Software Architecture, Kluwer, 1999, pp. 511-528.

[Boehm-Port 1999]. B. Boehm and D. Port, “Escaping the Software Tar Pit: Model Clashes and
How to Avoid Them,” ACM Software Engineering Notes, Jan. 1999, pp. 36-48.

[Boehm et al. 2000]. Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford
K. Clark, Ellis Horowitz, Ray Madachy, Donald Reifer, and Bert Steece, Software
Cost Estimation with COCOMO II, Prentice Hall, Englewood Cliffs, N.J., to
appear June 2000.

[Gerlich-Denskat 1994]. R. Gerlich, and U. Denskat, “A Cost Estimation Model for
Maintenance and High Reuse,” Proceedings, ESCOM 1994, Ivrea, Italy, 1994.

[Goethert et al.1992]. W. Goethert, E. Bailey, M. Busby, “Software Effort and Schedule
Measurement: A Framework for Counting Staff Hours and Reporting Schedule
Information.” CMU/SEI-92-TR-21, Software Engineering Institute, Pittsburgh,
PA.

[IFPUG 1994]. Function Point Counting Practices: Manual Release 4.0, International Function
Point Users’ Group, Blendonview Office Park, 5008-28 Pine Creek Drive,
Westerville, OH 43081-4899.

[Jacobson et al. 1999]. I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software
Development Process, Addison Wesley Longman, Reading, Ma., 1999.

[Jones 1996]. C. Jones, Applied Software Measurement, Assuring Productivity and Quality,
McGraw-Hill, New York, N.Y, 1996.

[Kruchten 1999]. P. Kruchten, The Rational Unified Process: An Introduction, Addison-Wesley,
1999.

Version 2.1 86

© 1995 – 2000 Center for Software Engineering, USC

[Kunkler 1983]. J. Kunkler, “A Cooperative Industry Study on Software Development /
Maintenance Productivity,” Xerox Corporation, Xerox Square --- XRX2 52A,
Rochester, NY 14644, Third Report, March 1985.

[Marenzano 1995]. J. Marenzano, “System Architecture Validation Review Findings,” in D.
Garlan, ed., ICSE17 Architecture Workshop Proceedings, CMU, Pittsburgh, PA
1995.

[Park 1992]. R. Park, “Software Size Measurement: A Framework for Counting Source
Statements.” CMU/SEI-92-TR-20, Software Engineering Institute, Pittsburgh,
PA, 1992.

[Paulk et al. 1995]. M. Paulk, C. Weber, B. Curtis, and M. Chrissis, The Capability Maturity
Model: Guidelines for Improving the Software Process, Addison-Wesley, 1995.

[Parikh-Zvegintzov 1983]. G. Parikh, and N. Zvegintzov, “The World of Software
Maintenance,” Tutorial on Software Maintenance, IEEE Computer Society Press,
pp. 1-3, 1995.

[Royce 1998]. R. Royce, Software Project Management A Unified Framework, Addison-Wesley,
Reading, Ma., 1998.

[Ruhl-Gunn 1991]. M. Ruhl and M. Gunn, “Software Reengineering: A Case Study and Lessons
Learned,” NIST Special Publication 500-193, Washington, DC, September 1991.

[Selby 1988]. R. Selby, “Empirically Analyzing Software Reuse in a Production Environment,”
In Software Reuse: Emerging Technology, W. Tracz (Ed.), IEEE Computer
Society Press, 1988., pp. 176-189.

[Stensrud 1998]. E. Stensrud, “Estimating with Enhanced Object Points vs. Function Points,”
Proceedings, 13th COCOMO/SCM Forum, USC, October 1998.

