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1. Introduction 

1.1 Overview 

This manual presents two models, the Post-Architecture and Early Design models.  These 
two models are used in the development of Application Generator, System Integration, or 
Infrastructure developments [Boehm et al. 2000].  The Post-Architecture is a detailed model that 
is used once the project is ready to develop and sustain a fielded system.  The system should 
have a life-cycle architecture package, which provides detailed information on cost driver inputs, 
and enables more accurate cost estimates.  The Early Design model is a high-level model that is 
used to explore of architectural alternatives or incremental development strategies.  This level of 
detail is consistent with the general level of information available and the general level of 
estimation accuracy needed. 

The Post-Architecture and Early Design models use the same approach for product sizing 
(including reuse) and for scale factors.  These will be presented first. Then, the Post-Architecture 
model will be explained followed by the Early Design model. 

1.2 Nominal-Schedule Estimation Equations 

Both the Post-Architecture and Early Design models use the same functional form to 
estimate the amount of effort and calendar time it will take to develop a software project.  These 
nominal-schedule (NS) formulas exclude the cost driver for Required Development Schedule, 
SCED.  The full formula is given in Section 3.  The amount of effort in person-months, PMNS, is 
estimated by the formula: 
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The amount of calendar time, TDEVNS, it will take to develop the product is estimated by 
the formula: 
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The value of n, the number of effort multipliers, EMi, is 16 for the Post-Architecture 
model effort multipliers, EMi, and 6 for the Early Design model.  SFj stands for the exponential 
scale factors.  The values of A, B, EM1, …, EM16, SF1, …, and SF5 for the COCOMO II.2000 
Post-Architecture model are obtained by calibration to the actual parameters and effort values for 
the 161 projects currently in the COCOMO II database.  The values of C and D for the 
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COCOMO II.2000 schedule equation are obtained by calibration to the actual schedule values 
for the 161 project currently in the COCOMO II database. 

The values of A, B, C, D, SF1, …, and SF5 for the Early Design model are the same as 
those for the Post-Architecture model.  The values of EM1, …, and EM6 for the Early Design 
model are obtained by combining the values of their 16 Post-Architecture counterparts; the 
specific combinations are given in Section 3.2.2. 

The subscript NS applied to PM and TDEV indicates that these are the nominal-schedule 
estimates of effort and calendar time.  The effects of schedule compression or stretch-out are 
covered by an additional cost driver, Required Development Schedule.  They are also included in 
the COCOMO II.2000 calibration to the 161 projects.  Its specific effects are given in Section 4. 

The specific milestones used as the end points in measuring development effort and 
calendar time are defined in Section 6, as are the other definitions and assumptions involved in 
defining development effort and calendar time.  Size is expressed as thousands of source lines of 
code (SLOC) or as unadjusted function points (UFP), as discussed in Section 2.  Development 
labor cost is obtained by multiplying effort in PM by the average labor cost per PM.  The values 
of A, B, C, and D in the COCOMO II.2000 calibration are: 

A = 2.94 B = 0.91 
C = 3.67 D = 0.28 

Details of the calibration are presented in Section 7, which also provides formulas for 
calibrating either A and C or A, B, C, and D to one’s own database of projects.  It is 
recommended that at least A and C be calibrated to the local development environment to 
increase the model’s accuracy. 

As an example, let's estimate how much effort and calendar time it would take to develop 
an average 100 KSLOC sized project.  For an average project, the effort multipliers are all equal 
to 1.0. E will be set to 1.15 reflecting an average, large project.  The estimated effort is PMNS =  
2.94(100)1.15 = 586.61.  

Continuing the example, the duration is estimated as TDEVNS = 3.67(586.6)(0.28+0.2×(1.15-

0.91)) = 3.67(586.6)0.328 = 29.7 months.  The average number of staff required for the nominal-
schedule development is PMNS / TDEVNS = 586.6 / 29.7 = 19.75 or about 20 people.  In this 
example, an average 100 KSLOC software project will take about 30 months to complete with an 
average of 20 people. 
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2. Sizing 

A good size estimate is very important for a good model estimation.  However, 
determining size can be challenging.  Projects are generally composed of new code, code reused 
from other sources--with or without modifications--and automatically translated code.  
COCOMO II only uses size data that influences effort which is new code and code that is copied 
and modified. 

For new and reused code, a method is used to make them equivalent so they can be rolled 
up into an aggregate size estimate.  The baseline size in COCOMO II is a count of new lines of 
code.  The count for code that is copied and then modified has to be adjusted to create a count 
that is equivalent to new lines of code.  The adjustment takes into account the amount of design, 
code and testing that was changed.  It also considers the understandability of the code and the 
programmer familiarity with the code. 

For automatically translated code, a separate translation productivity rate is used to 
determine effort from the amount of code to be translated. 

The following sections discuss sizing new code and reused code. 

2.1 Counting Source Lines of Code (SLOC) 

There are several sources for estimating new lines of code.  The best source is historical 
data.  For instance, there may be data that will convert Function Points, components, or anything 
available early in the project to estimate lines of code.  Lacking historical data, expert opinion 
can be used to derive estimates of likely, lowest-likely, and highest-likely size. 

Code size is expressed in thousands of source lines of code (KSLOC).  A source line of 
code is generally meant to exclude non-delivered support software such as test drivers.  
However, if these are developed with the same care as delivered software, with their own 
reviews, test plans, documentation, etc., then they should be counted [Boehm 1981, pp. 58-59].  
The goal is to measure the amount of intellectual work put into program development. 

Defining a line of code is difficult because of conceptual differences involved in 
accounting for executable statements and data declarations in different languages.  Difficulties 
arise when trying to define consistent measures across different programming languages.  In 
COCOMO II, the logical source statement has been chosen as the standard line of code.  The 
Software Engineering Institute (SEI) definition checklist for a logical source statement is used in 
defining the line of code measure.  The SEI has developed this checklist as part of a system of 
definition checklists, report forms and supplemental forms to support measurement definitions 
[Park 1992; Goethert et al. 1992]. 

A SLOC definition checklist is used to support the development of the COCOMO II 
model.  The full checklist is provided at the end of this manual, Table 64.  Each checkmark in the 
“Includes” column identifies a particular statement type or attribute included in the definition, 
and vice versa for the excludes.  Other sections in the definition clarify statement attributes for 
usage, delivery, functionality, replications and development status. 
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Some changes were made to the line-of-code definition that departs from the default 
definition provided in [Park 1992].  These changes eliminate categories of software, which are 
generally small sources of project effort.  For example, not included in the definition are 
commercial-off-the-shelf software (COTS), government-furnished software (GFS), other 
products, language support libraries and operating systems, or other commercial libraries.  Code 
generated with source code generators is handled by counting separate operator directives as 
lines of source code.  It is admittedly difficult to count "directives" in a highly visual 
programming system.  As this approach becomes better understood, we hope to provide more 
specific counting rules. For general source code sizing approaches, such as PERT sizing, expert 
consensus, analogy, top-down, and bottom-up, see Section 21.4 and Chapter 22 of [Boehm 
1981]. 

2.2 Counting Unadjusted Function Points (UFP) 

The function point cost estimation approach is based on the amount of functionality in a 
software project and a set of individual project factors [Behrens 1983; Kunkler 1985; IFPUG 
1994].  Function points are useful estimators since they are based on information that is available 
early in the project life-cycle.  A brief summary of function points and their calculation in 
support of COCOMO II follows. 

Function points measure a software project by quantifying the information processing 
functionality associated with major external data or control input, output, or file types.  Five user 
function types should be identified as defined in Table 1. 

Table 1. User Function Types 

Function Point Description 

External Input (EI) Count each unique user data or user control input type that enters the 
external boundary of the software system being measured. 

External Output 
(EO) 

Count each unique user data or control output type that leaves the external 
boundary of the software system being measured. 

Internal Logical File 
(ILF) 

Count each major logical group of user data or control information in the 
software system as a logical internal file type.  Include each logical file 
(e.g., each logical group of data) that is generated, used, or maintained by 
the software system. 

External Interface 
Files (EIF) 

Files passed or shared between software systems should be counted as 
external interface file types within each system. 

External Inquiry 
(EQ) 

Count each unique input-output combination, where input causes and 
generates an immediate output, as an external inquiry type. 

Each instance of these function types is then classified by complexity level.  The 
complexity levels determine a set of weights, which are applied to their corresponding function 
counts to determine the Unadjusted Function Points quantity.  This is the Function Point sizing 
metric used by COCOMO II.  The usual Function Point procedure, which is not followed by 
COCOMO II, involves assessing the degree of influence (DI) of fourteen application 
characteristics on the software project determined according to a rating scale of 0.0 to 0.05 for 
each characteristic.  The 14 ratings are added together and then added to a base level of 0.65 to 
produce a general characteristic adjustment factor that ranges from 0.65 to 1.35. 

Each of these fourteen characteristics, such as distributed functions, performance, and 
reusability, thus have a maximum of 5% contribution to estimated effort.  Having, for example, a 
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5% limit on the effect of reuse is inconsistent with COCOMO experience; thus COCOMO II 
uses Unadjusted Function Points for sizing, and applies its reuse factors, cost drivers, and scale 
factors to this sizing quantity to account for the effects of reuse, distribution, etc. on project 
effort. 

The COCOMO II procedure for determining Unadjusted Function Points follows the 
definitions in [IFPUG 1994].  This four step procedure, which follows, is used in both the Early 
Design and the Post-Architecture models. 

1. Determine function counts by type.  The unadjusted function counts should be counted by a 
lead technical person based on information in the software requirements and design 
documents.  The number of each of the five user function types should be counted (Internal 
Logical File (ILF), External Interface File (EIF), External Input (EI), External Output (EO), 
and External Inquiry (EQ)). See [IFPUG 1994] for more detailed interpretations of the 
counting rules for those quantities. 

2. Determine complexity levels.  Classify each function count into Low, Average and High 
complexity levels depending on the number of data element types contained and the number 
of file types referenced.  Use the scheme in Table 2. 

Table 2. FP Counting Weights 

For Internal Logical Files and External Interface Files 

 Data Elements 

Record Elements 1 - 19 20 - 50 51+ 

1 Low Low Avg. 
2 - 5 Low Avg. High 
6+ Avg. High High 

For External Output and External Inquiry 

 Data Elements 

File Types 1 - 5 6 - 19 20+ 

0 or 1 Low Low Avg. 
2 - 3 Low Avg. High 
4+ Avg. High High 

For External Input 

 Data Elements 

File Types 1 - 4 5 - 15 16+ 

0 or 1 Low Low Avg. 
2 - 3 Low Avg. High 
3+ Avg. High High 

3. Apply complexity weights.  Weight the number of function types at each complexity level 
using the following scheme (the weights reflect the relative effort required to implement the 
function): 



Version 2.1  6 

© 1995 – 2000 Center for Software Engineering, USC 

Table 3. UFP Complexity Weights 

 Complexity-Weight 
Function Type Low Average High 

Internal Logical Files 7 10 15 
External Interfaces Files 5 7 10 
External Inputs 3 4 6 
External Outputs 4 5 7 
External Inquiries 3 4 6 

4. Compute Unadjusted Function Points.  Add all the weighted functions counts to get one 
number, the Unadjusted Function Points. 

2.3 Relating UFPs to SLOC 

Next, convert the Unadjusted Function Points (UFP) to Lines of Code.  The unadjusted 
function points have to be converted to source lines of code in the implementation language 
(Ada, C, C++, Pascal, etc.).  COCOMO II does this for both the Early Design and Post-
Architecture models by using backfiring tables to convert Unadjusted Function Points into 
equivalent SLOC.  The current conversion ratios shown in Table 4 are from [Jones 1996].  
Updates to these conversion ratios as well as additional ratios can be found at 
http://www.spr.com/library/0Langtbl.htm. 

Table 4. UFP to SLOC Conversion Ratios 
 

Language 
Default 

SLOC / UFP 
 

 

Language 
Default 

SLOC / UFP 

Access 38  Jovial 107 
Ada 83 71  Lisp 64 
Ada 95 49  Machine Code 640 
AI Shell 49  Modula 2 80 
APL 32  Pascal 91 
Assembly - Basic 320  PERL 27 
Assembly - Macro 213  PowerBuilder 16 
Basic - ANSI 64  Prolog 64 
Basic - Compiled 91  Query – Default 13 
Basic - Visual 32  Report Generator 80 
C 128  Second Generation Language 107 
C++ 55  Simulation – Default 46 
Cobol (ANSI 85) 91  Spreadsheet 6 
Database – Default 40  Third Generation Language 80 
Fifth Generation Language 4  Unix Shell Scripts 107 
First Generation Language 320  USR_1 1 
Forth 64  USR_2 1 
Fortran 77 107  USR_3 1 
Fortran 95 71  USR_4 1 
Fourth Generation Language 20  USR_5 1 
High Level Language 64  Visual Basic 5.0 29 
HTML 3.0 15  Visual C++ 34 
Java 53    
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USR_1 through USR_5 are five extra slots provided by USC COCOMO II.2000 to 
accommodate user-specified additional implementation languages.  These ratios are easy to 
determine with historical data or with a recently completed project.  It would be prudent to 
determine your own ratios for your local environment. 

2.4 Aggregating New, Adapted, and Reused Code 

A product’s size discussed thus far has been for new development.  Code that is taken 
from another source and used in the product under development also contributes to the product's 
effective size.  Preexisting code that is treated as a black-box and plugged into the product is 
called reused code.  Preexisting code that is treated as a white-box and is modified for use with 
the product is called adapted code.  The effective size of reused and adapted code is adjusted to 
be its equivalent in new code.  The adjusted code is called equivalent source lines of code 
(ESLOC).  The adjustment is based on the additional effort it takes to modify the code for 
inclusion in the product.  The sizing model treats reuse with function points and source lines of 
code the same in either the Early Design model or the Post-Architecture model. 

2.4.1 Nonlinear Reuse Effects 

Analysis in [Selby 1988] of reuse costs across nearly three thousand reused modules in 
the NASA Software Engineering Laboratory indicates that the reuse cost function, relating the 
amount of modification of the reused code to the resulting cost to reuse, is nonlinear in two 
significant ways (see Figure 1).  The effort required to reuse code does not start at zero.  There is 
generally a cost of about 5% for assessing, selecting, and assimilating the reusable component. 

Figure 1 shows the results of the NASA analysis as blocks of relative cost.  A dotted line 
is superimposed on the blocks of relative cost to show increasing cost as more of the reused code 
is modified. (The solid lines are labeled AAM for Adaptation Adjustment Modifier.  AAM is 
explained in Equation 4.)  It can be seen that small modifications in the reused product generate 
disproportionately large costs.  This is primarily because of two factors: the cost of 
understanding the software to be modified, and the relative cost of checking module interfaces. 
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Figure 1. Non-Linear Reuse Effects 

[Parikh-Zvegintzov 1983] contains data indicating that 47% of the effort in software 
maintenance involves understanding the software to be modified.  Thus, as soon as one goes 
from unmodified (black-box) reuse to modified-software (white-box) reuse, one encounters this 
software understanding penalty.  Also, [Gerlich-Denskat 1994] shows that, if one modifies k out 
of m software modules, the number of module interface checks required, N, is expressed in 
Equation 3. 
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Figure 2 shows this relation between the number of modules modified k and the resulting 
number, N, of module interface checks required for an example of m = 10 modules.  In this 
example, modifying 20% (2 of 10) of the modules required revalidation of 38% (17 of 45) of the 
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Figure 2. Number of Module Interface Checks, N, vs. Modules Modified, k 

The size of both the software understanding penalty and the module interface-checking 
penalty can be reduced by good software structuring.  Modular, hierarchical structuring can 
reduce the number of interfaces which need checking [Gerlich-Denskat 1994], and software that 
is well-structured, explained, and related to its mission will be easier to understand.  COCOMO 
II reflects this in its allocation of estimated effort for modifying reusable software.   

2.4.2 A Reuse Model 

The COCOMO II treatment of software reuse uses a nonlinear estimation model, 
Equation 4.  This involves estimating the amount of software to be adapted and three degree-of-
modification factors: the percentage of design modified (DM), the percentage of code modified 
(CM), and the percentage of integration effort required for integrating the adapted or reused 
software (IM).  These three factors use the same linear model as used in COCOMO 81, but 
COCOMO II adds some nonlinear increments to the relation of Adapted KSLOC of Equivalent 
KSLOC to reflect the non-linear tendencies of the model. These are explained next. 
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The Software Understanding increment (SU) is obtained from Table 5.  SU is expressed 
quantitatively as a percentage.  If the software is rated very high on structure, applications 
clarity, and self-descriptiveness, the software understanding and interface-checking penalty is 
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10%.  If the software is rated very low on these factors, the penalty is 50%.  SU is determined by 
taking the subjective average of the three categories. 

Table 5. Rating Scale for Software Understanding Increment SU 

 Very Low Low Nominal High Very High 

 

Structure 

Very low 
cohesion, high 
coupling, 
spaghetti code. 

Moderately low 
cohesion, high 
coupling. 

Reasonably 
well-structured; 
some weak 
areas. 

High cohesion, 
low coupling. 

Strong 
modularity, 
information 
hiding in data / 
control 
structures. 

Application 

Clarity 

No match 
between 
program and 
application 
world-views. 

Some 
correlation 
between 
program and 
application. 

Moderate 
correlation 
between 
program and 
application. 

Good 
correlation 
between 
program and 
application. 

Clear match 
between 
program and 
application 
world-views. 

Self-
Descriptive-

ness 

Obscure code; 
documentation 
missing, 
obscure or 
obsolete. 

Some code 
commentary 
and headers; 
some useful 
documentation. 

Moderate level 
of code 
commentary, 
headers, 
documentation. 

Good code 
commentary 
and headers; 
useful 
documentation; 
some weak 
areas. 

Self-descriptive 
code; 
documentation 
up-to-date, 
well-organized, 
with design 
rationale. 

SU 
Increment to 

ESLOC 

 
50 

 
40 

 
30 

 
20 

 
10 

The other nonlinear reuse increment deals with the degree of Assessment and 
Assimilation (AA) needed to determine whether a reused software module is appropriate to the 
application, and to integrate its description into the overall product description.  Table 6 provides 
the rating scale and values for the assessment and assimilation increment.  AA is a percentage. 

Table 6. Rating Scale for Assessment and Assimilation Increment (AA) 

AA Increment Level of AA Effort 

0 None 
2 Basic module search and documentation 
4 Some module Test and Evaluation (T&E), documentation 
6 Considerable module T&E, documentation 
8 Extensive module T&E, documentation 

The amount of effort required to modify existing software is a function not only of the 
amount of modification (AAF) and understandability of the existing software (SU), but also of 
the programmer’s relative unfamiliarity with the software (UNFM).  The UNFM factor is applied 
multiplicatively to the software understanding effort increment.  If the programmer works with 
the software every day, the 0.0 multiplier for UNFM will add no software understanding 
increment.  If the programmer has never seen the software before, the 1.0 multiplier will add the 
full software understanding effort increment.  The rating of UNFM is shown in Table 7. 
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Table 7. Rating Scale for Programmer Unfamiliarity (UNFM) 

UNFM Increment Level of Unfamiliarity 

0.0 Completely familiar 
0.2 Mostly familiar 
0.4 Somewhat familiar 
0.6 Considerably familiar 
0.8 Mostly unfamiliar 
1.0 Completely unfamiliar 

Equation 4 is used to determine an equivalent number of new source lines of code.  The 
calculation of equivalent SLOC is based on the product size being adapted and a modifier that 
accounts for the effort involved in fitting adapted code into an existing product, called 
Adaptation Adjustment Modifier (AAM).  The term (1 – AT/100) is for automatically translated 
code and is discussed in Section 2.2.6. 

AAM uses the factors discussed above, Software Understanding (SU), Programmer 
Unfamiliarity (UNFM), and Assessment and Assimilation (AA) with a factor called the 
Adaptation Adjustment Factor (AAF).  AAF contains the quantities DM, CM, and IM where: 
• DM (Percent Design Modified) is the percentage of the adapted software’s design which is 

modified in order to adapt it to the new objectives and environment.  (This is necessarily a 
subjective quantity.) 

• CM (Percent Code Modified) is the percentage of the adapted software’s code which is 
modified in order to adapt it to the new objectives and environment.   

• IM (Percent of Integration Required for Adapted Software) is the percentage of effort 
required to integrate the adapted software into an overall product and to test the resulting 
product as compared to the normal amount of integration and test effort for software of 
comparable size. 

If there is no DM or CM (the component is being used unmodified) then there is no need 
for SU.  If the code is being modified then SU applies. 

The range of AAM is shown in Figure 1.  Under the worst case, it can take twice the 
effort to modify a reused module than it takes to develop it as new (the value of AAM can 
exceed 100).  The best case follows a one for one correspondence between adapting an existing 
product and developing it from scratch. 

2.4.3 Guidelines for Quantifying Adapted Software 

This section provides guidelines to estimate adapted software factors for different 
categories of code using COCOMO II.  The New category refers to software developed from 
scratch.  Adapted code is preexisting code that has some changes to it, while reused code has no 
changes to the preexisting source (i.e. used as-is).  COTS is off-the-shelf software that is 
generally treated the same as reused code when there are no changes to it.  One difference is that 
there may be some new glue code associated with it that also needs to be counted (this may 
happen with reused software, but here the option of modifying the source code may make 
adapting the software more attractive). 
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Since there is no source code modified in reused and COTS, DM=0, CM=0, and SU and 
UNFM don’t apply.  AA and IM can have non-zero values in this case.  Reuse doesn’t mean free 
integration and test.  However in the reuse approach, with well-architected product-lines, the 
integration and test is minimal. 

For adapted software, CM > 0, DM is usually > 0, and all other reuse factors normally 
have non-zero values.  IM is expected to be at least moderate for adapted software, but can be 
higher than 100% for adaptation into more complex applications.  Table 8 shows the valid ranges 
of reuse factors with additional notes for the different categories. 

Table 8. Adapted Software Parameter Constraints and Guidelines 

Reuse Parameters  
Code Category DM CM IM AA SU UNFM 

New 
all original 
software 

  not 
applicable 

   

Adapted 
changes to 
preexisting 
software  

 
0% -  100% 
normally > 

0% 

0+% - 100% 
usually > DM 
and must be 

> 0% 

0% - 100+% 
IM usually 
moderate 

and can be > 
100% 

 
 

0% – 8% 

 
 

0% - 50% 

 
 

0 - 1 

Reused 
unchanged 
existing  software 

 
0% 

 
0% 

0% - 100% 
rarely 0%, 

but could be 
very small 

 
0% – 8% 

 
not applicable 

COTS 
off-the-shelf 
software (often 
requires new glue 
code as a 
wrapper around 
the COTS) 

 
 
 

0% 

 
 
 

0% 

 
 
 

0% - 100% 

 
 
 

0% – 8% 

 
 
 

not applicable 

2.5 Requirements Evolution and Volatility (REVL) 

COCOMO II uses a factor called REVL, to adjust the effective size of the product caused 
by requirements evolution and volatility caused by such factors as mission or user interface 
evolution, technology upgrades, or COTS volatility.  It is the percentage of code discarded due to 
requirements evolution.  For example, a project which delivers 100,000 instructions but discards 
the equivalent of an additional 20,000 instructions has an REVL value of 20.  This would be 
used to adjust the project’s effective size to 120,000 instructions for a COCOMO II estimation. 

The use of REVL for computing size in given in Equation 5. 

 

software. delivered  theof equivalent-reuse  theis Size where

Size
100

REVL
1Size

D

D×




 +=

 Eq. 5 
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2.6 Automatically Translated Code 

The COCOMO II reuse model needs additional refinement to estimate the costs of 
software reengineering and conversion.  The major difference in reengineering and conversion is 
the efficiency of automated tools for software restructuring.  These can lead to very high values 
for the percentage of code modified (CM in the COCOMO II reuse model), but with very little 
corresponding effort.  For example, in the NIST reengineering case study [Ruhl-Gunn 1991], 
80% of the code (13,131 COBOL source statements) was re-engineered by automatic translation, 
and the actual reengineering effort, 35 Person-Months, was more than a factor of 4 lower than 
the COCOMO estimate of 152 person months. 

The COCOMO II reengineering and conversion estimation approach involves estimating 
an additional factor, AT, the percentage of the code that is re-engineered by automatic 
translation.  Based on an analysis of the project data above, the default productivity value for 
automated translation is 2400 source statements per person month.  This value could vary with 
different technologies and is designated in the COCOMO II model as another factor called 
ATPROD.  In the NIST case study ATPROD = 2400.  Equation 6 shows how automated 
translation affects the estimated effort, PMAuto. 

 
( )

ATPROD
100

ATSLOC Adapted
PMAuto

×
=  Eq. 6 

The NIST case study also provides useful guidance on estimating the AT factor, which is 
a strong function of the difference between the boundary conditions (e.g., use of COTS 
packages, change from batch to interactive operation) of the old code and the re-engineered code.  
The NIST data on percentage of automated translation (from an original batch processing 
application without COTS utilities) are given in Table 9 [Ruhl-Gunn 1991]. 

Table 9. Variation in Percentage of Automated Re-engineering 

Re-engineering Target AT (% automated translation) 

Batch processing 96% 
Batch with SORT 90% 
Batch with DBMS 88% 

Batch, SORT, DBMS 82% 
Interactive 50% 

Automated translation is considered to be a separate activity from development. Thus, its 
Adapted SLOC are not included as Size in Equivalent KSLOC, and its PMAUTO are not included 
in PMNS in estimating the project’s schedule.  If the automatically translated Adapted SLOC 
count is included as Size in the Equivalent KSLOC, it must be backed out to prevent double 
counting.  This is done by adding the term (1 – AT/100) to the equation for Equivalent KSLOC, 
Equation 2.4. 

2.7 Sizing Software Maintenance 

COCOMO II differs from COCOMO 81 in applying the COCOMO II scale factors to the 
size of the modified code rather than applying the COCOMO 81 modes to the size of the product 
being modified.  Applying the scale factors to a 10 million SLOC product produced overlarge 
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estimates as most of the product was not being touched by the changes.  COCOMO II accounts 
for the effects of the product being modified via its software understanding and unfamiliarity 
factors discussed for reuse in Section 2.4.2. 

The scope of “software maintenance” follows the COCOMO 81 guidelines in [Boehm 
1981; pp.534-536]. It includes adding new capabilities and fixing or adapting existing 
capabilities. It excludes major product rebuilds changing over 50% of the existing software, and 
development of sizable (over 20% changed) interfacing systems requiring little rework of the 
existing system. 

The maintenance size is normally obtained via Equation 7, when the base code size is 
known and the percentage of change to the base code is known. 

 [ ] MAFMCFSize) Code (Base(Size)M ××=  Eq. 7 

The Maintenance Adjustment Factor (MAF) is discussed below.  But first, the percentage 
of change to the base code is called the Maintenance Change Factor (MCF).  The MCF is similar 
to the Annual Change Traffic in COCOMO 81, except that maintenance periods other than a year 
can be used.  Conceptually the MCF represents the ratio in Equation 8: 

 
Size Code Base

Modified Size  Added Size
MCF

+=  Eq. 8 

A simpler version can be used when the fraction of code added or modified to the 
existing base code during the maintenance period is known.  Deleted code is not counted.  

 MAFModified) Size  Added (Size(Size)M ×+=  Eq. 9 

The size can refer to thousands of source lines of code (KSLOC), Function Points, or 
Application Points.  When using Function Points or Application Points, it is better to estimate 
MCF in terms of the fraction of the overall application being changed, rather than the fraction of 
inputs, outputs, screens, reports, etc.  touched by the changes.  Our experience indicates that 
counting the items touched can lead to significant over estimates, as relatively small changes can 
touch a relatively large number of items.  In some very large COBOL programs, we found ratios 
of 2 to 3 FP-touched/SLOC-changed as compared to 91 FP/SLOC for development. 

The Maintenance Adjustment Factor (MAF), Equation 10, is used to adjust the effective 
maintenance size to account for software understanding and unfamiliarity effects, as with reuse.  
COCOMO II uses the Software Understanding (SU) and Programmer Unfamiliarity (UNFM) 
factors from its reuse model (discussed in Section 2.4.2) to model the effects of well or poorly 
structured/understandable software on maintenance effort.  

 




 ×+= UNFM
100

SU
1MAF  Eq. 10 

The use of (Size)M in determining maintenance effort, Equation 9, is discussed in Section 
5. 
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3. Effort Estimation 

In COCOMO II effort is expressed as Person-Months (PM).  A person month is the 
amount of time one person spends working on the software development project for one month.  
COCOMO II treats the number of person-hours per person-month, PH/PM, as an adjustable 
factor with a nominal value of 152 hours per Person-Month.  This number excludes time 
typically devoted to holidays, vacations, and weekend time off.  The number of person-months is 
different from the time it will take the project to complete; this is called the development 
schedule or Time to Develop, TDEV.  For example, a project may be estimated to require 50 PM 
of effort but have a schedule of 11 months.  If you use a different value of PH/PM–say, 160 
instead of 152–COCOMO II adjusts  the PM estimate accordingly (in this case, reducing by 
about 5%).  This reduced PM will result in a smaller estimate of development schedule. 

The COCOMO II effort estimation model was introduced in Equation 1, and is 
summarized in Equation 11.  This model form is used for both the Early Design and Post-
Architecture cost models to estimate effort between the end points of LCO and IOC for the 
MBASE/RUP and SRR and SAR for the Waterfall lifecycle models (see Section 6.2).  The 
inputs are the Size of software development, a constant, A, an exponent, E, and a number of 
values called effort multipliers (EM).  The number of effort multipliers depends on the model. 

 

II.2000) COCOMO(for   2.94A where

EMSizeAPM
n

1i
i

E

=

××= ∏
=  Eq. 11 

The exponent E is explained in detail in Section 3.1.  The effort multipliers are explained 
in Section 3.2.  The constant, A, approximates a productivity constant in PM/KSLOC for the 
case where E = 1.0.  Productivity changes as E increases because of the non-linear effects on 
Size.  The constant A is initially set when the model is calibrated to the project database 
reflecting a global productivity average.  The COCOMO model should be calibrated to local data 
which then reflects the local productivity and improves the model's accuracy.  Section 7 
discusses how to calibrate the model to the local environment. 

The Size is KSLOC.  This is derived from estimating the size of software modules that 
will constitute the application program.  It can also be estimated from unadjusted function points 
(UFP), converted to SLOC, then divided by one thousand.  Procedures for counting SLOC or 
UFP were explained in Section 2, including adjustments for reuse, requirements evolution, and 
automatically translated code. 

Cost drivers are used to capture characteristics of the software development that affect 
the effort to complete the project.  A cost driver is a model factor that "drives" the cost (in this 
case Person-Months) estimated by the model.  All COCOMO II cost drivers have qualitative 
rating levels that express the impact of the driver on development effort.  These ratings can range 
from Extra Low to Extra High.  Each rating level of every multiplicative cost driver has a value, 
called an effort multiplier (EM), associated with it.  This scheme translates a cost driver's 
qualitative rating into a quantitative one for use in the model.  The EM value assigned to a 
multiplicative cost driver's nominal rating is 1.00.  If a multiplicative cost driver's rating level 
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causes more software development effort, then its corresponding EM is above 1.0.  Conversely, 
if the rating level reduces the effort then the corresponding EM is less than 1.0. 

The rating of cost drivers is based on a strong rationale that they would independently 
explain a significant source of project effort or productivity variation.  The difference between 
the Early Design and Post-Architecture models are the number of multiplicative cost drivers and 
the areas of influence they explain.  There are seven multiplicative cost drivers for the Early 
Design model and seventeen multiplicative cost drivers for the Post-Architecture model.  Each 
set is explained with its model later in the manual. 

It turns out that the most significant input to the COCOMO II model is Size.  Size is 
treated as a special cost driver in that it has an exponential factor, E.  This exponent is an 
aggregation of five scale factors.  These are discussed next. 

What is not apparent in the model definition form given in Equation 11 is that there are 
some model drivers that apply only to the project as a whole.  The scale factors in the exponent, 
E, are only used at the project level. Additionally, one of the multiplicative cost drivers that is in 
the product of effort multipliers, Required Development Schedule (SCED) is only used at the 
project level.  The other multiplicative cost drivers, which are all represented in the product of 
effort multipliers, and size apply to individual project components.  The model can be used to 
estimate effort for a project that has only one component or multiple components.  For multi-
component projects the project-level cost drivers apply to all components, see Section 3.3. 

3.1 Scale Factors 

The exponent E in Equation 11 is an aggregation of five scale factors (SF) that account 
for the relative economies or diseconomies of scale encountered for software projects of different 
sizes [Banker et al. 1994].  If E < 1.0, the project exhibits economies of scale.  If the product’s 
size is doubled, the project effort is less than doubled.  The project’s productivity increases as the 
product size is increased.  Some project economies of scale can be achieved via project-specific 
tools (e.g., simulations, testbeds), but in general these are difficult to achieve.  For small projects, 
fixed start-up costs such as tool tailoring and setup of standards and administrative reports are 
often a source of economies of scale. 

If E = 1.0, the economies and diseconomies of scale are in balance.  This linear model is 
often used for cost estimation of small projects. 

If E > 1.0, the project exhibits diseconomies of scale.  This is generally because of two 
main factors: growth of interpersonal communications overhead and growth of large-system 
integration overhead.  Larger projects will have more personnel, and thus more interpersonal 
communications paths consuming overhead.  Integrating a small product as part of a larger 
product requires not only the effort to develop the small product, but also the additional overhead 
effort to design, maintain, integrate, and test its interfaces with the remainder of the product.  See 
[Banker et al. 1994] for a further discussion of software economies and diseconomies of scale. 
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Figure 3. Diseconomies of Scale Effect on Effort 

Equation 12 defines the exponent, E, used in Equation 11.  Table 10 provides the rating 
levels for the COCOMO II scale factors.  The selection of scale factors is based on the rationale 
that they are a significant source of exponential variation on a project’s effort or productivity 
variation.  Each scale factors has a range of rating levels, from Very Low to Extra High.  Each 
rating level has a weight.  The specific value of the weight is called a scale factor (SF).  The 
project's scale factors, the selected scale factors ratings, are summed and used to determine a 
scale exponent, E, via Equation 12.  The B term in the equation is a constant that can be 
calibrated [Boehm et al. 2000]. 

 

II.2000) COCOMO(for  0.91B where

SF0.01BE
5

1j
j

=

×+= ∑
=  Eq. 12 

For example, scale factors in COCOMO II with an Extra High rating are each assigned a 
scale factor weight of (0).  Thus, a 100 KSLOC project with Extra High ratings for all scale 
factors will have ΣSFj = 0, E = 0.91, and a relative effort of 2.94(100)0.91 = 194 PM.  For the 
COCOMO II.2000 calibration of scale factors in Table 10, a project with Very Low ratings for 
all scale factors will have ΣSFj=31.6, E = 1.226, and a relative effort of 2.94(100)1.226 = 832 PM.  
This represents a large variation, but the increase involved in a one-unit rating level change in 
one of the scale factors is only about 6%.  For very large (1,000 KSLOC) products, the effect of 
the scale factors is much larger, as seen in Figure 3. 
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Table 10. Scale Factor Values, SFj, for COCOMO II Models 

Scale 
Factors 

 

Very Low 

 

Low 

 

Nominal 

 

High 

 

Very High 

 

Extra High 

 

PREC 

thoroughly 
unpreceden
ted 

largely 
unpreceden
ted 

somewhat 
unpreceden
ted 

generally 
familiar 

largely 
familiar 

thoroughly 
familiar 

SFj: 
6.20 4.96 3.72 2.48 1.24 0.00 

FLEX 
rigorous occasional 

relaxation 
some 

relaxation 
general 

conformity 
some 

conformity 
general 
goals 

SFj: 
5.07 4.05 3.04 2.03 1.01 0.00 

RESL 
little (20%) some (40%) often (60%) generally 

(75%) 
mostly 
(90%) 

full (100%) 

SFj: 
7.07 5.65 4.24 2.83 1.41 0.00 

 

TEAM 

very difficult 
interactions 

some 
difficult 

interactions 

basically 
cooperative 
interactions 

largely 
cooperative 

highly 
cooperative 

seamless 
interactions 

SFj: 
5.48 4.38 3.29 2.19 1.10 0.00 

 The estimated Equivalent Process Maturity Level (EPML) or 

PMAT 
SW-CMM 
Level 1 
Lower 

SW-CMM 
Level 1 
Upper 

SW-CMM 
Level 2 

SW-CMM 
Level 3 

SW-CMM 
Level 4 

SW-CMM 
Level 5 

SFj: 7.80 6.24 4.68 3.12 1.56 0.00 

The two scale factors, Precedentedness and Flexibility largely capture the differences 
between the Organic, Semidetached, and Embedded modes of the original COCOMO model 
[Boehm 1981].  Table 11 and Table 12 reorganize [Boehm 1981; Table 6.3] to map its project 
features onto the Precedentedness and Development Flexibility scales.  These tables can be used 
as a more in depth explanation for the PREC and FLEX rating scales given in Table 10. 

3.1.1 Precedentedness (PREC)  

If a product is similar to several previously developed projects, then the precedentedness 
is high. 

Table 11. Precedentedness Rating Levels 

Feature Very Low Nominal / High Extra High 

Organizational understanding of product 
objectives 

General Considerable Thorough 

Experience in working with related software 
systems 

Moderate Considerable Extensive 

Concurrent development of associated new 
hardware and operational procedures 

Extensive Moderate Some 
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Table 11. Precedentedness Rating Levels 

Feature Very Low Nominal / High Extra High 

Need for innovative data processing 
architectures, algorithms 

Considerable Some Minimal 

3.1.2 Development Flexibility (FLEX) 

Table 12. Development Flexibility Rating Levels 

Feature Very Low Nominal / High Extra High 

Need for software conformance with pre-
established requirements 

Full Considerable Basic 

Need for software conformance with external 
interface specifications 

Full Considerable Basic 

Combination of inflexibilities above with 
premium on early completion 

High Medium Low 

The PREC and FLEX scale factors are largely intrinsic to a project and uncontrollable. 
The next three scale factors identify management controllables by which projects can reduce 
diseconomies of scale by reducing sources of project turbulence, entropy, and rework. 

3.1.3 Architecture / Risk Resolution (RESL) 

This factor combines two of the scale factors in Ada COCOMO, “Design Thoroughness 
by Product Design Review (PDR)” and “Risk Elimination by PDR” [Boehm-Royce 1989; 
Figures 4 and 5].  Table 13 consolidates the Ada COCOMO ratings to form a more 
comprehensive definition for the COCOMO II RESL rating levels.  It also relates the rating level 
to the MBASE/RUP Life Cycle Architecture (LCA) milestone as well as to the waterfall PDR 
milestone.  The RESL rating is the subjective weighted average of the listed characteristics. 

Table 13. RESL Rating Levels 

Characteristic Very 
Low 

 
Low 

 
Nominal 

 
High 

Very 
High 

Extra 
High 

Risk Management Plan 
identifies all critical risk items, 
establishes milestones for 
resolving them by PDR or 
LCA. 

None Little Some Generally Mostly Fully 

Schedule, budget, and 
internal milestones through 
PDR or LCA compatible with 
Risk Management Plan. 

None Little Some Generally Mostly Fully 

Percent of development 
schedule devoted to 
establishing architecture, 
given general product 
objectives. 

5 10 17 25 33 40 
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Table 13. RESL Rating Levels 

Characteristic Very 
Low 

 
Low 

 
Nominal 

 
High 

Very 
High 

Extra 
High 

Percent of required top 
software architects available 
to project. 

20 40 60 80 100 120 

Tool support available for 
resolving risk items, 
developing and verifying 
architectural specs. 

None Little Some Good Strong Full 

Level of uncertainty in key 
architecture drivers: mission, 
user interface, COTS, 
hardware, technology, 
performance. 

Extreme Significant Consider-
able 

Some Little Very Little 

Number and criticality of risk 
items. 

> 10 
Critical 

5-10 
Critical 

2-4 
Critical 

1 Critical > 5Non-
Critical 

< 5 Non-
Critical 

3.1.4 Team Cohesion (TEAM) 

The Team Cohesion scale factor accounts for the sources of project turbulence and 
entropy because of difficulties in synchronizing the project’s stakeholders: users, customers, 
developers, maintainers, interfacers, others.  These difficulties may arise from differences in 
stakeholder objectives and cultures; difficulties in reconciling objectives; and stakeholders' lack 
of experience and familiarity in operating as a team.  Table 14 provides a detailed definition for 
the overall TEAM rating levels.  The final rating is the subjective weighted average of the listed 
characteristics. 

Table 14. TEAM Rating Components 

 
Characteristic 

Very 
Low 

 
Low 

 
Nominal 

 
High 

Very 
High 

Extra 
High 

Consistency of stakeholder 
objectives and cultures 

Little Some Basic Consider-
able 

Strong Full 

Ability, willingness of 
stakeholders to 
accommodate other 
stakeholders’ objectives 

Little Some Basic Consider-
able 

Strong Full 

Experience of stakeholders in 
operating as a team 

None Little Little Basic Consider-
able 

Extensive 

Stakeholder teambuilding to 
achieve shared vision and 
commitments 

None Little Little Basic Consider-
able 

Extensive 

3.1.5 Process Maturity (PMAT) 

Overall Maturity Levels 
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The procedure for determining PMAT is organized around the Software Engineering 
Institute’s Capability Maturity Model (CMM).  The time period for rating Process Maturity is the 
time the project starts.  There are two ways of rating Process Maturity.  The first captures the 
result of an organized evaluation based on the CMM, and is explained in Table 15. 

Table 15. PMAT Ratings for Estimated Process Maturity Level (EPML) 

PMAT Rating Maturity Level EPML 

Very Low CMM Level 1 (lower half) 0 
Low CMM Level 1 (upper half) 1 

Nominal CMM Level 2 2 
High CMM Level 3 3 

Very High CMM Level 4 4 
Extra High CMM Level 5 5 

Key Process Area Questionnaire 

The second is organized around the 18 Key Process Areas (KPAs) in the SEI Capability 
Maturity Model [Paulk et al. 1995].  The procedure for determining PMAT is to decide the 
percentage of compliance for each of the KPAs.  If the project has undergone a recent CMM 
Assessment, then the percentage compliance for the overall KPA (based on KPA Key Practice 
compliance assessment data) is used.  If an assessment has not been done, then the levels of 
compliance to the KPA’s goals are used (with the Likert scale in Table 16) to set the level of 
compliance.  The goal-based level of compliance is determined by a judgment-based averaging 
across the goals for each Key Process Area.  See [Paulk et al. 1995] for more information on the 
KPA definitions, goals and activities. 

Table 16. KPA Rating Levels 
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7  
Requirements Management 
• System requirements allocated to software are controlled to 

establish a baseline for software engineering and management use. 
• Software plans, products, and activities are kept consistent with the 

system requirements allocated to software. 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

Software Project Planning 
• Software estimates are documented for use in planning and tracking 

the software project. 
• Software project activities and commitments are planned and 

documented. 
• Affected groups and individuals agree to their commitments related 

to the software project. 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 
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Table 16. KPA Rating Levels 
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7  

Software Project Tracking and Oversight 
• Actual results and performances are tracked against the software 

plans 
• Corrective actions are taken and managed to closure when actual 

results and performance deviate significantly from the software 
plans. 

• Changes to software commitments are agreed to by the affected 
groups and individuals. 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

Software Subcontract Management 
• The prime contractor selects qualified software subcontractors. 
• The prime contractor and the subcontractor agree to their 

commitments to each other. 
• The prime contractor and the subcontractor maintain ongoing 

communications. 
• The prime contractor tracks the subcontractor’s actual results and 

performance against its commitments. 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

Software Quality Assurance (SQA) 
• SQA activities are planned. 
• Adherence of software products and activities to the applicable 

standards, procedures, and requirements is verified objectively. 
• Affected groups and individuals are informed of software quality 

assurance activities and results. 
• Noncompliance issues that cannot be resolved within the software 

project are addressed by senior management. 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

Software Configuration Management (SCM) 
• SCM activites are planned. 
• Selected workproducts are identified, controlled, and available. 
• Changes to identified work products are controlled. 
• Affected groups and individuals are informed of the status and 

content of software baselines. 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

Organization Process Focus 
• Software process development and improvement activities are 

coordinated across the organization. 
• The strengths and weaknesses of the software processes used are 

identified relative to a process standard. 
• Organization-level process development and improvement activities 

are planned. 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

Organization Process Definition 
• A standard software process for the organiation is developed and 

maintained. 
• Information related to the use of the organization’s standard 

software process by the software projects is collected, reviewed, and 
made available. 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 
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Table 16. KPA Rating Levels 
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Training Program 
• Training activities are planned. 
• Training for developing the skills and knowledge needed to perform 

software management and technical roles is provided. 
• Individuals in the software engineering group and software-related 

groups receive the training necessary to perform their roles. 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

Integrated Software Management 
• The project’s defined software process is a tailored version of the 

organization’s standard software process. 
• The project is planned and managed according to the project’s 

defined software process. 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

Software Product Engineering 
• The software engineering tasks are defined, integrated, and 

consistently performed to produce the software 
• Software work products are kept consistent with each other. 

 
 

• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

Intergroup Coordination 
• The customer’s requirements are agreed to by all affected groups. 
• The commitments between the engineering groups are agreed to by 

the affected groups. 
• The engineering groups identify, track, and resolve intergroup 

issues. 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

Peer Reviews 
• Peer review activities are planned. 
• Defects in the software work products are identified and removed. 

 
• 

 
• 

 
• 

 
• 

 
• 

 
• 

 
• 

Quantitative Process Management 
• The quantitative process management activities are planned. 
• The process performance of the project’s defined software process 

is controlled quantitatively. 
• The process capability of the organization’s standard software 

process is known in quantitative terms. 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

Software Quality Management 
• The project’s software quality management activities are planned. 
• Measurable goals of software product quality and their priorities are 

defined. 
• Actual progress toward achieving the quality goals for the software 

products is quantified and managed. 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

Defect Prevention 
• Defect prevention activities are planned. 
• Common causes of defects are sought out and identified. 
• Common causes of defects are priortized and systematically 

eliminated. 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 

 
 
• 
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Table 16. KPA Rating Levels 
 
 
 
 

Key Process Areas (KPA) 
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Technology Change Management 
• Incorporation of technology changes are planned. 
• New technologies are evaluated to determine their effect on quality 

and productivity. 
• Appropriate new technologies are transferred into normal practice 

across the organization. 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

Process Change Management 
• Continuous process improvement is planned. 
• Participation in the organization’s software process improvement 

activities is organization wide. 
• The organization’s standard software process and the project’s 

defined software processes are improved continuously. 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

 
 
 
• 

1. Check Almost Always when the goals are consistently achieved and are well established in standard operating 
procedures (over 90% of the time). 

2. Check Frequently when the goals are achieved relatively often, but sometimes are omitted under difficult 
circumstances (about 60 to 90% of the time). 

3. Check About Half when the goals are achieved about half of the time (about 40 to 60% of the time). 
4. Check Occasionally when the goals are sometimes achieved, but less often (about 10 to 40% of the time). 
5. Check Rarely If Ever when the goals are rarely if ever achieved (less than 10% of the time). 
6. Check Does Not Apply when you have the required knowledge about your project or organization and the KPA, 

but you feel the KPA does not apply to your circumstances. 
7. Check Don’t Know when you are uncertain about how to respond for the KPA. 

An equivalent process maturity level (EPML) is computed as five times the average 
compliance level of all n rated KPAs for a single project (Does Not Apply and Don’t Know are 
not counted which sometimes makes n less than 18).  After each KPA is rated, the rating level is 
weighted (100% for Almost Always, 75% for Frequently, 50% for About Half, 25% for 
Occasionally, 1% for Rarely if Ever).  The EPML is calculated as in Equation 2-13. 

 
n

1

100

KPA%
5EPML

n

1i

i ×




×= ∑

=

 Eq. 13 

An EPML of 0 corresponds with a PMAT rating level of Very Low in the rating scales of 
Table 10 and Table 15. 

The COCOMO II project is tracking the progress of the recent CMM Integration (CMM-
I) activity to determine likely future revisions in the definition of PMAT. 
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3.2 Effort Multipliers 

3.2.1 Post-Architecture Cost Drivers 

This model is the most detailed.  It is intended to be used when a software life-cycle 
architecture has been developed.  This model is used in the development and maintenance of 
software products in the Application Generators, System Integration, or Infrastructure sectors 
[Boehm et al. 2000]. 

The seventeen Post-Architecture effort multipliers (EM) are used in the COCOMO II 
model to adjust the nominal effort, Person-Months, to reflect the software product under 
development, see Equation 11.  Each multiplicative cost driver is defined below by a set of rating 
levels and a corresponding set of effort multipliers.  The Nominal level always has an effort 
multiplier of 1.00, which does not change the estimated effort.  Off-nominal ratings generally do 
change the estimated effort.  For example, a high rating of Required Software Reliability 
(RELY) will add 10% to the estimated effort, as determined by the COCOMO II.2000 data 
calibration.  A Very High RELY rating will add 26%.  It is possible to assign intermediate rating 
levels and corresponding effort multipliers for your project.  For example, the USC COCOMO II 
software tool supports rating cost drivers between the rating levels in quarter increments, e.g.  
Low+0.25, Nominal+0.50, High+0.75, etc.  Whenever an assessment of a cost driver is halfway 
between quarter increments always round to the Nominal rating, e.g. if a cost driver rating falls 
halfway between Low+0.5 and Low+0.75, then select Low+0.75; or if a rating falls halfway 
between High+0.25 and High+0.5, then select High+0.25.  Normally, linear interpolation is used 
to determine intermediate multiplier values, but nonlinear interpolation is more accurate for the 
high end of the TIME and STOR cost drivers and the low end of SCED. 

The COCOMO II model can be used to estimate effort and schedule for the whole project 
or for a project that consists of multiple modules.  The size and cost driver ratings can be 
different for each module, with the exception of the Required Development Schedule (SCED) 
cost driver and the scale factors.  The unique handling of SCED is discussed in Section 3.2.1.4 
and in 4. 

3.2.1.1 Product Factors 

Product factors account for variation in the effort required to develop software caused by 
characteristics of the product under development.  A product that is complex, has high reliability 
requirements, or works with a large testing database will require more effort to complete.  There 
are five product factors, and complexity has the strongest influence on estimated effort. 

Required Software Reliability (RELY) 

This is the measure of the extent to which the software must perform its intended 
function over a period of time.  If the effect of a software failure is only slight inconvenience 
then RELY is very low.  If a failure would risk human life then RELY is very high.  Table 17 
provides the COCOMOII.2000 rating scheme for RELY. 
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Table 17. RELY Cost Driver 
RELY 
Descriptors: 

slight 
inconven-
ience 

low, easily 
recoverable 
losses 

moderate, 
easily 
recoverable 
losses 

high 
financial 
loss 

risk to 
human life 

 

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 0.82 0.92 1.00 1.10 1.26 n/a 

This cost driver can be influenced by the requirement to develop software for reusability, 
see the description for RUSE. 

Data Base Size (DATA) 

This cost driver attempts to capture the effect large test data requirements have on 
product development.  The rating is determined by calculating D/P, the ratio of bytes in the 
testing database to SLOC in the program.  The reason the size of the database is important to 
consider is because of the effort required to generate the test data that will be used to exercise the 
program.  In other words, DATA is capturing the effort needed to assemble and maintain the data 
required to complete test of the program through IOC, see Table 18. 

Table 18. DATA Cost Driver 
DATA* 
Descriptors 

 Testing DB 
bytes/Pgm 
SLOC < 10 

10 ≤ D/P < 
100 

100 ≤ D/P < 
1000 

D/P ≥ 1000  

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers n/a 0.90 1.00 1.14 1.28 n/a 
* DATA is rated as Low if D/P is less than 10 and it is very high if it is greater than 1000.  P is measured in 

equivalent source lines of code (SLOC), which may involve function point or reuse conversions. 

Product Complexity (CPLX) 

Complexity is divided into five areas: control operations, computational operations, 
device-dependent operations, data management operations, and user interface management 
operations.  Using Table 19, select the area or combination of areas that characterize the product 
or the component of the product you are rating.  The complexity rating is the subjective weighted 
average of the selected area ratings.  Table 20 provides the COCOMO II.2000 effort multipliers 
for CPLX. 
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Table 19.  Component Complexity Ratings Levels 

 
 

Control 
Operations 

 

Computational 
Operations 

Device-
dependent 
Operations 

Data 
Management 
Operations 

User Interface 
Management 
Operations 

 
 
 
 
Very 
Low 

Straight-line 
code with a few 
non-nested 
structured 
programming 
operators: DOs, 
CASEs, IF-
THEN-ELSEs.  
Simple module 
composition via 
procedure calls 
or simple 
scripts. 

Evaluation of 
simple 
expressions: 
e.g., A=B+C*(D-
E) 

Simple read, 
write statements 
with simple 
formats. 

Simple arrays in 
main memory.  
Simple COTS-
DB queries, 
updates. 

Simple input 
forms, report 
generators. 

 
 
 
 
Low 

Straightforward 
nesting of 
structured 
programming 
operators.  
Mostly simple 
predicates 

Evaluation of 
moderate-level 
expressions: 
e.g., 
D=SQRT(B**2-
4.*A*C) 

No cognizance 
needed of 
particular 
processor or I/O 
device 
characteristics.  
I/O done at 
GET/PUT level. 

Single file 
subsetting with 
no data 
structure 
changes, no 
edits, no 
intermediate 
files.  
Moderately 
complex COTS-
DB queries, 
updates. 

Use of simple 
graphic user 
interface (GUI) 
builders. 

 
 
 
 
Nominal 

Mostly simple 
nesting.  Some 
intermodule 
control.  
Decision tables.   
Simple callbacks 
or message 
passing, 
including 
middleware-
supported 
distributed 
processing 

Use of standard 
math and 
statistical 
routines.  Basic 
matrix/vector 
operations. 

I/O processing 
includes device 
selection, status 
checking and 
error 
processing.   

Multi-file input 
and single file 
output.  Simple 
structural 
changes, simple 
edits.  Complex 
COTS-DB 
queries, 
updates. 

Simple use of 
widget set. 
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Table 19.  Component Complexity Ratings Levels 

 
 

Control 
Operations 

 

Computational 
Operations 

Device-
dependent 
Operations 

Data 
Management 
Operations 

User Interface 
Management 
Operations 

 
 
 
 
High 

Highly nested 
structured 
programming 
operators with 
many compound 
predicates.  
Queue and 
stack control.  
Homogeneous, 
distributed 
processing.  
Single processor 
soft real-time 
control. 

Basic numerical 
analysis: 
multivariate 
interpolation, 
ordinary 
differential 
equations.  
Basic truncation, 
round-off 
concerns. 

Operations at 
physical I/O 
level (physical 
storage address 
translations; 
seeks, reads, 
etc.).  Optimized 
I/O overlap. 

Simple triggers 
activated by 
data stream 
contents.  
Complex data 
restructuring. 

Widget set 
development 
and extension.  
Simple voice 
I/O, multimedia. 

 
 
 
 
Very 
High 

Reentrant and 
recursive 
coding.  Fixed-
priority interrupt 
handling.  Task 
synchronization, 
complex 
callbacks, 
heterogeneous 
distributed 
processing.  
Single-
processor hard 
real-time control. 

Difficult but 
structured 
numerical 
analysis: near-
singular matrix 
equations, 
partial 
differential 
equations.  
Simple 
parallelization. 

Routines for 
interrupt 
diagnosis, 
servicing, 
masking.  
Communication 
line handling.  
Performance-
intensive 
embedded 
systems. 

Distributed 
database 
coordination.  
Complex 
triggers.  Search 
optimization. 

Moderately 
complex 2D/3D, 
dynamic 
graphics, 
multimedia. 

 
 
 
Extra 
High 

Multiple 
resource 
scheduling with 
dynamically 
changing 
priorities.  
Microcode-level 
control.  
Distributed hard 
real-time control. 

Difficult and 
unstructured 
numerical 
analysis: highly 
accurate 
analysis of 
noisy, stochastic 
data.  Complex 
parallelization. 

Device timing-
dependent 
coding, micro-
programmed 
operations.  
Performance-
critical 
embedded 
systems. 

Highly coupled, 
dynamic 
relational and 
object 
structures.  
Natural 
language data 
management. 

Complex 
multimedia, 
virtual reality, 
natural language 
interface. 

 

Table 20. CPLX Cost Driver 
Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 0.73 0.87 1.00 1.17 1.34 1.74 
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Developed for Reusability (RUSE) 

This cost driver accounts for the additional effort needed to construct components 
intended for reuse on current or future projects.  This effort is consumed with creating more 
generic design of software, more elaborate documentation, and more extensive testing to ensure 
components are ready for use in other applications.  “Across project” could apply to reuse across 
the modules in a single financial applications project.  “Across program” could apply to reuse 
across multiple financial applications projects for a single organization.  “Across product line” 
could apply if the reuse is extended across multiple organizations.  “Across multiple product 
lines” could apply to reuse across financial, sales, and marketing product lines, see Table 21. 

Development for reusability imposes constraints on the project's RELY and DOCU 
ratings.  The RELY rating should be at most one level below the RUSE rating.  The DOCU 
rating should be at least Nominal for Nominal and High RUSE ratings, and at least High for 
Very High and Extra High RUSE ratings. 

Table 21. RUSE Cost Driver 
RUSE 
Descriptors: 

 none across 
project 

across 
program 

across 
product line 

across 
multiple 
product 

lines 
Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers n/a 0.95 1.00 1.07 1.15 1.24 

Documentation Match to Life-Cycle Needs (DOCU) 

Several software cost models have a cost driver for the level of required documentation.  
In COCOMO II, the rating scale for the DOCU cost driver is evaluated in terms of the suitability 
of the project’s documentation to its life-cycle needs.  The rating scale goes from Very Low 
(many life-cycle needs uncovered) to Very High (very excessive for life-cycle needs), see Table 
22. 

Attempting to save costs via Very Low or Low documentation levels will generally incur 
extra costs during the maintenance portion of the life-cycle.  Poor or missing documentation will 
increase the Software Understanding (SU) increment discussed in Section 2.4.2. 

Table 22. DOCU Cost Driver 
DOCU 
Descriptors: 

Many life-
cycle needs 
uncovered 

Some life-
cycle needs 
uncovered. 

Right-sized 
to life-cycle 
needs 

Excessive 
for life-cycle 
needs 

Very 
excessive 
for life-cycle 
needs 

 

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 0.81 0.91 1.00 1.11 1.23 n/a 

This cost driver can be influenced by the developed for reusability cost factor, see the 
description for RUSE. 
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3.2.1.2 Platform Factors 

The platform refers to the target-machine complex of hardware and infrastructure 
software (previously called the virtual machine).  The factors have been revised to reflect this as 
described in this section.  Some additional platform factors were considered, such as distribution, 
parallelism, embeddedness, and real-time operations.  These considerations have been 
accommodated by the expansion of the Component Complexity rating levels in Table 19. 

Execution Time Constraint (TIME) 

This is a measure of the execution time constraint imposed upon a software system.  The 
rating is expressed in terms of the percentage of available execution time expected to be used by 
the system or subsystem consuming the execution time resource.  The rating ranges from 
nominal, less than 50% of the execution time resource used, to extra high, 95% of the execution 
time resource is consumed, see Table 23. 

Table 23. TIME Cost Driver 
TIME 
Descriptors: 

  ≤ 50% use 
of available 
execution 
time 

70% use of 
available 
execution 
time 

85% use of 
available 
execution 
time 

95% use of 
available 
execution 
time 

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers n/a n/a 1.00 1.11 1.29 1.63 

Main Storage Constraint (STOR) 

This rating represents the degree of main storage constraint imposed on a software 
system or subsystem.  Given the remarkable increase in available processor execution time and 
main storage, one can question whether these constraint variables are still relevant.  However, 
many applications continue to expand to consume whatever resources are available---particularly 
with large and growing COTS products---making these cost drivers still relevant.  The rating 
ranges from nominal (less than 50%), to extra high (95%) see Table 24. 

Table 24. STOR Cost Driver 
STOR 
Descriptors: 

  ≤ 50% use 
of available 
storage 

70% use of 
available 
storage 

85% use of 
available 
storage 

95% use of 
available 
storage 

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers n/a n/a 1.00 1.05 1.17 1.46 

Platform Volatility (PVOL) 

“Platform” is used here to mean the complex of hardware and software (OS, DBMS, etc.) 
the software product calls on to perform its tasks.  If the software to be developed is an operating 
system then the platform is the computer hardware.  If a database management system is to be 
developed then the platform is the hardware and the operating system.  If a network text browser 
is to be developed then the platform is the network, computer hardware, the operating system, 
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and the distributed information repositories.  The platform includes any compilers or assemblers 
supporting the development of the software system.  This rating ranges from low, where there is 
a major change every 12 months, to very high, where there is a major change every two weeks, 
see Table 25. 

Table 25. PVOL Cost Driver 
PVOL 
Descriptors: 

 Major 
change 
every 12 
mo.; Minor 
change 
every 1 mo. 

Major: 6 
mo.; Minor: 
2 wk. 

Major: 2 
mo.;Minor: 
1 wk. 

Major: 2 
wk.;Minor: 2 
days 

 

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers n/a 0.87 1.00 1.15 1.30 n/a 

3.2.1.3 Personnel Factors 

After product size, people factors have the strongest influence in determining the amount 
of effort required to develop a software product.  The Personnel Factors are for rating the 
development team’s capability and experience – not the individual.  These ratings are most likely 
to change during the course of a project reflecting the gaining of experience or the rotation of 
people onto and off the project. 

Analyst Capability (ACAP) 

Analysts are personnel who work on requirements, high-level design and detailed design.  
The major attributes that should be considered in this rating are analysis and design ability, 
efficiency and thoroughness, and the ability to communicate and cooperate.  The rating should 
not consider the level of experience of the analyst; that is rated with APEX, LTEX, and PLEX.  
Analyst teams that fall in the fifteenth percentile are rated very low and those that fall in the 
ninetieth percentile are rated as very high, see Table 26. 

Table 26. ACAP Cost Driver 
ACAP 
Descriptors: 

15th 
percentile 

35th 
percentile 

55th 
percentile 

75th 
percentile 

90th 
percentile 

 

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 1.42 1.19 1.00 0.85 0.71 n/a 

Programmer Capability (PCAP) 

Current trends continue to emphasize the importance of highly capable analysts.  
However the increasing role of complex COTS packages, and the significant productivity 
leverage associated with programmers’ ability to deal with these COTS packages, indicates a 
trend toward higher importance of programmer capability as well. 

Evaluation should be based on the capability of the programmers as a team rather than as 
individuals.  Major factors which should be considered in the rating are ability, efficiency and 
thoroughness, and the ability to communicate and cooperate.  The experience of the programmer 
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should not be considered here; it is rated with APEX, LTEX, and PLEX.  A very low rated 
programmer team is in the fifteenth percentile and a very high rated programmer team is in the 
ninetieth percentile, see Table 27. 

Table 27. PCAP Cost Driver 
PCAP 
Descriptors 

15th 
percentile 

35th 
percentile 

55th 
percentile 

75th 
percentile 

90th 
percentile 

 

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 1.34 1.15 1.00 0.88 0.76 n/a 

Personnel Continuity (PCON) 

The rating scale for PCON is in terms of the project’s annual personnel turnover: from 
3%, very high continuity, to 48%, very low continuity, see Table 28. 

Table 28. PCON Cost Driver 
PCON Descriptors: 48% / year 24% / year 12% / year 6% / year 3% / year  
Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 1.29 1.12 1.00 0.90 0.81  

Applications Experience (APEX) 

The rating for this cost driver (formerly labeled AEXP) is dependent on the level of 
applications experience of the project team developing the software system or subsystem.  The 
ratings are defined in terms of the project team’s equivalent level of experience with this type of 
application.  A very low rating is for application experience of less than 2 months.  A very high 
rating is for experience of 6 years or more, see Table 29. 

Table 29. APEX Cost Driver 
APEX Descriptors: ≤ 2 months 6 months 1 year 3 years 6 years  
Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 1.22 1.10 1.00 0.88 0.81 n/a 

Platform Experience (PLEX) 

The Post-Architecture model broadens the productivity influence of platform experience, 
PLEX (formerly labeled PEXP), by recognizing the importance of understanding the use of more 
powerful platforms, including more graphic user interface, database, networking, and distributed 
middleware capabilities, see Table 30. 
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Table 30. PLEX Cost Driver 
PLEX Descriptors: ≤ 2 months 6 months 1 year 3 years 6 year  
Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 1.19 1.09 1.00 0.91 0.85 n/a 

Language and Tool Experience (LTEX) 

This is a measure of the level of programming language and software tool experience of 
the project team developing the software system or subsystem.  Software development includes 
the use of tools that perform requirements and design representation and analysis, configuration 
management, document extraction, library management, program style and formatting, 
consistency checking, planning and control, etc.  In addition to experience in the project’s 
programming language, experience on the project’s supporting tool set also affects development 
effort.  A low rating is given for experience of less than 2 months.  A very high rating is given 
for experience of 6 or more years, see Table 31. 

Table 31. LTEX Cost Driver 
LTEX Descriptors: ≤ 2 months 6 months 1 year 3 years 6 year  
Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 1.20 1.09 1.00 0.91 0.84  

3.2.1.4 Project Factors 

Project factors account for influences on the estimated effort such as use of modern 
software tools, location of the development team, and compression of the project schedule. 

Use of Software Tools (TOOL) 

Software tools have improved significantly since the 1970s’ projects used to calibrate the 
1981 version of COCOMO.  The tool rating ranges from simple edit and code, very low, to 
integrated life-cycle management tools, very high.  A Nominal TOOL rating in COCOMO 81 is 
equivalent to a Very Low TOOL rating in COCOMO II. An emerging extension of COCOMO II 
is in the process of elaborating the TOOL rating scale and breaking out the effects of TOOL 
capability, maturity, and integration, see Table 32. 
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Table 32. TOOL Cost Driver 
TOOL 
Descriptors 

edit, code, 
debug 

simple, 
frontend, 
backend 
CASE, little 
integration 

basic life-
cycle tools, 
moderately 
integrated 

strong, 
mature life-
cycle tools, 
moderately 
integrated 

strong, 
mature, 
proactive 
life-cycle 
tools, well 
integrated 
with 
processes, 
methods, 
reuse 

 

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 1.17 1.09 1.00 0.90 0.78 n/a 

Multisite Development (SITE) 

Given the increasing frequency of multisite developments, and indications that multisite 
development effects are significant, the SITE cost driver has been added in COCOMO II.  
Determining its cost driver rating involves the assessment and judgement-based averaging of two 
factors: site collocation (from fully collocated to international distribution) and communication 
support (from surface mail and some phone access to full interactive multimedia). 

For example, if a team is fully collocated, it doesn’t need interactive multimedia to 
achieve an Extra High rating.  Narrowband e-mail would usually be sufficient, see Table 33. 

Table 33. SITE Cost Driver 
SITE: 
Collocation 
Descriptors: 

Inter-
national 

Multi-city 
and Multi-
company 

Multi-city or 
Multi-
company 

Same city 
or metro.  
area 

Same 
building or 
complex 

Fully 
collocated 

SITE: 
Communications 
Descriptors: 

Some 
phone, mail 

Individual 
phone, FAX 

Narrow 
band email 

Wideband 
electronic 
communicat
ion. 

Wideband 
elect.  
comm., 
occasional 
video conf. 

Interactive 
multimedia 

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 1.22 1.09 1.00 0.93 0.86 0.80 

Required Development Schedule (SCED) 

This rating measures the schedule constraint imposed on the project team developing the 
software.  The ratings are defined in terms of the percentage of schedule stretch-out or 
acceleration with respect to a nominal schedule for a project requiring a given amount of effort.  
Accelerated schedules tend to produce more effort in the earlier phases to eliminate risks and 
refine the architecture, more effort in the later phases to accomplish more testing and 
documentation in parallel.  In Table 34, schedule compression of 75% is rated very low.  A 
schedule stretch-out of 160% is rated very high.  Stretch-outs do not add or decrease effort.  
Their savings because of smaller team size are generally balanced by the need to carry project 
administrative functions over a longer period of time.  The nature of this balance is undergoing 
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further research in concert with our emerging CORADMO extension to address rapid application 
development (goto http://sunset.usc.edu/COCOMOII/suite.html for more information). 

SCED is the only cost driver that is used to describe the effect of schedule compression / 
expansion for the whole project.  The scale factors are also used to describe the whole project.  
All of the other cost drivers are used to describe each module in a multiple module project.  
Using the COCOMO II Post-Architecture model for multiple module estimation is explained in 
Section 3.3. 

Table 34. SCED Cost Driver 
SCED 
Descriptors 

75% 
of nominal 

85% 
of nominal 

100% 
of nominal 

130% 
of nominal 

160% 
of nominal  

Rating Level Very Low Low Nominal High Very High Extra High 
Effort Multiplier 1.43 1.14 1.00 1.00 1.00 n/a 

SCED is also handled differently in the COCOMO II estimation of time to develop, 
TDEV.  This special use of SCED is explained in Section 4. 

3.2.2 Early Design Model Drivers 

This model is used in the early stages of a software project when very little may be 
known about the size of the product to be developed, the nature of the target platform, the nature 
of the personnel to be involved in the project, or the detailed specifics of the process to be used.  
This model could be employed in either Application Generator, System Integration, or 
Infrastructure development sectors.  For discussion of these marketplace sectors see [Boehm et 
al. 2000]. 

The Early Design model uses KSLOC or unadjusted function points (UFP) for size.  
UFPs are converted to the equivalent SLOC and then to KSLOC as discussed in Section 2.3.  
The application of exponential scale factors is the same for Early Design and the Post-
Architecture models and was described in Section 3.1.  In the Early Design model a reduced set 
of multiplicative cost drivers is used as shown in Table 35.  The Early Design cost drivers are 
obtained by combining the Post-Architecture model cost drivers.  Whenever an assessment of a 
cost driver is halfway between the rating levels always round to the Nominal rating, e.g. if a cost 
driver rating is halfway between Very Low and Low, then select Low.  The effort equation is the 
same as given in Equation 11 except that the number of effort multipliers is reduced to 7 (n = 7). 



Version 2.1  36 

© 1995 – 2000 Center for Software Engineering, USC 

Table 35. Early Design and Post-Architecture Effort Multipliers 

Early Design Cost Driver Counterpart Combined Post-Architecture Cost Drivers 

PERS ACAP, PCAP, PCON 
RCPX RELY, DATA, CPLX, DOCU 
RUSE RUSE 
PDIF TIME, STOR, PVOL 
PREX APEX, PLEX, LTEX 
FCIL TOOL, SITE 

SCED SCED 

Overall Approach 

The following approach is used for mapping the full set of Post-Architecture cost drivers 
and rating scales onto their Early Design model counterparts.  It involves the use and 
combination of numerical equivalents of the rating levels.  Specifically, a Very Low Post-
Architecture cost driver rating corresponds to a numerical rating of 1, Low is 2, Nominal is 3, 
High is 4, Very High is 5, and Extra High is 6.  For the combined Early Design cost drivers, the 
numerical values of the contributing Post-Architecture cost drivers are summed, and the resulting 
totals are allocated to an expanded Early Design model rating scale going from Extra Low to 
Extra High.  The Early Design model rating scales always have a Nominal total equal to the sum 
of the Nominal ratings of its contributing Post-Architecture elements.  An example is given 
below for the PERS cost driver. 

Personnel Capability (PERS) and Mapping Example 

An example will illustrate this approach.  The Early Design PERS cost driver combines 
the Post-Architecture cost drivers Analyst capability (ACAP), Programmer capability (PCAP), 
and Personnel continuity (PCON), see Table 36.  Each of these has a rating scale from Very Low 
(=1) to Very High (=5).  Adding up their numerical ratings produces values ranging from 3 to 15.  
These are laid out on a scale, and the Early Design PERS rating levels assigned to them, as 
shown below.  The associated effort multipliers are derived from the ACAP, PCAP, and PCON 
effort multipliers by averaging the products of each combination of effort multipliers associated 
with the given Early Design rating level.   

The effort multipliers for PERS, like the other Early Design model cost drivers, are 
derived from those of the Post-Architecture model by averaging the products of the constituent 
Post-Architecture multipliers (in this case ACAP, PCAP, PCON) for each combination of cost 
driver ratings corresponding with the Early Design rating level.  For PERS = Extra High, this 
would involve four combinations: ACAP, PCAP, and PCON all Very High, or only one High 
and the other two Very High. 

Table 36. PERS Cost Driver 
PERS Descriptors:        
• Sum of ACAP, PCAP, 

PCON Ratings 
3, 4 5, 6 7, 8 9 10, 

11 
12, 13 14, 15 

• Combined ACAP and 
PCAP Percentile 

20% 35% 45% 55% 65% 75% 85% 
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Table 36. PERS Cost Driver 
PERS Descriptors:        
• Annual Personnel Turnover 45% 30% 20% 12% 9% 6% 4% 
Rating Levels Extra 

Low 
Very 
Low 

 
Low 

 
Nominal 

 
High 

Very 
High 

Extra 
High 

Effort Multipliers 2.12 1.62 1.26 1.00 0.83 0.63 0.50 

The Nominal PERS rating of 9 corresponds to the sum (3 + 3 + 3) of the Nominal ratings 
for ACAP, PCAP, and PCON, and its corresponding effort multiplier is 1.0.  Note, however that 
the Nominal PERS rating of 9 can result from a number of other combinations, e.g.  1 + 3 + 5 = 9 
for ACAP = Very Low, PCAP = Nominal, and PCON = Very High. 

The rating scales and effort multipliers for PCAP and the other Early Design cost drivers 
maintain consistent relationships with their Post-Architecture counterparts.  For example, the 
PERS Extra Low rating levels (20% combined ACAP and PCAP percentile; 45% personnel 
turnover) represent averages of the ACAP, PCAP, and PCON rating levels adding up to 3 or 4. 

Maintaining these consistency relationships between the Early Design and Post-
Architecture rating levels ensures consistency of Early Design and Post-Architecture cost 
estimates.  It also enables the rating scales for the individual Post-Architecture cost drivers, 
Table 35, to be used as detailed backups for the top-level Early Design rating scales given above. 

Product Reliability and Complexity (RCPX) 

This Early Design cost driver combines the four Post-Architecture cost drivers Required 
software reliability (RELY), Database size (DATA), Product complexity (CPLX), and 
Documentation match to life-cycle needs (DOCU).  Unlike the PERS components, the RCPX 
components have rating scales with differing width.  RELY and DOCU range from Very Low to 
Very High; DATA ranges from Low to Very High, and CPLX ranges from Very Low to Extra 
High.  The numerical sum of their ratings thus ranges from 5 (VL, L, VL, VL) to 21 (VH, VH, 
EH, VH). 

Table 36 assigns RCPX ratings across this range, and associates appropriate rating scales 
to each of the RCPX ratings from Extra Low to Extra High.  As with PERS, the Post-
Architecture RELY, DATA CPLX, and DOCU rating scales discussed in Section 3.2.1.1 provide 
detailed backup for interpreting the Early Design RCPX rating levels. 

 

Table 37. RCPX Cost Driver 
RCPX Descriptors:        
• Sum of RELY, DATA, 

CPLX, DOCU Ratings 
5, 6 7, 8 9 - 11 12 13 - 15 16 - 18 19 - 21 

• Emphasis on reliability, 
documentation 

Very 
Little 

Little Some Basic Strong Very 
Strong 

Extreme 

• Product complexity Very 
simple 

Simple Some Moderate Complex Very 
complex 

Extremely 
complex 

• Database size Small Small Small Moderate Large Very 
Large 

Very 
Large 
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Table 37. RCPX Cost Driver 
RCPX Descriptors:        
Rating Levels Extra 

Low 
Very 
Low 

 
Low 

 
Nominal 

 
High 

Very 
High 

Extra 
High 

Effort Multipliers 0.49 0.60 0.83 1.00 1.33 1.91 2.72 

Developed for Reusability (RUSE) 

This Early Design model cost driver is the same as its Post-Architecture counterpart, 
which is covered in Section 3.2.1 

Platform Difficulty (PDIF) 

This Early Design cost driver combines the three Post-Architecture cost drivers 
Execution time constraint (TIME), Main storage constraint (STOR), and Platform volatility 
(PVOL).  TIME and STOR range from Nominal to Extra High; PVOL ranges from Low to Very 
High.  The numerical sum of their ratings thus ranges from 8 (N, N, L) to 17 (EH, EH, VH). 

Table 38 assigns PDIF ratings across this range, and associates the appropriate rating 
scales to each of the PDIF rating levels.  The Post-Architecture rating scales in Tables 23, 24, 25 
provide additional backup definition for the PDIF ratings levels.   

Table 38. PDIF Cost Driver 
PDIF Descriptors:      
• Sum of TIME, STOR, and 

PVOL ratings 
8 9 10 - 12 13 - 15 16, 17 

• Time and storage constraint ≤ 50% ≤ 50% 65% 80% 90% 
• Platform volatility Very stable Stable Somewhat 

volatile 
Volatile Highly 

volatile 
Rating Levels Low Nominal High Very High Extra High 
Effort Multipliers 0.87 1.00 1.29 1.81 2.61 

Personnel Experience (PREX) 

This Early Design cost driver combines the three Post-Architecture cost drivers 
Application experience (APEX), Language and tool experience (LTEX), and Platform 
experience (PLEX).  Each of these range from Very Low to Very High; as with PERS, the 
numerical sum of their ratings ranges from 3 to 15. 

Table 39 assigns PREX ratings across this range, and associates appropriate effort 
multipliers and rating scales to each of the rating levels. 

Table 39. PREX Cost Driver 
PREX Descriptors:        
• Sum of APEX, PLEX, and 

LTEX ratings 
3, 4 5, 6 7, 8 9 10, 11 12, 13 14, 15 

• Applications, Platform, 
Language and Tool 
Experience 

≤ 3 mo. 5 
months 

9 
months 

1 year 2 
years 

4 years 6 years 
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Table 39. PREX Cost Driver 
PREX Descriptors:        
Rating Levels Extra 

Low 
Very 
Low 

 
Low 

 
Nominal 

 
High 

Very 
High 

Extra 
High 

Effort Multipliers 1.59 1.33 1.22 1.00 0.87 0.74 0.62 

Facilities (FCIL) 

This Early Design cost driver combines two Post-Architecture cost drivers: Use of 
software tools (TOOL) and Multisite development (SITE).  TOOL ranges from Very Low to 
Very High; SITE ranges from Very Low to Extra High.  Thus, the numerical sum of their ratings 
ranges from 2 (VL, VL) to 11 (VH, EH). 

Table 40 assigns FCIL ratings across this range, and associates appropriate rating scales 
to each of the FCIL rating levels.  The individual Post-Architecture TOOL and SITE rating 
scales in Section 3.2.1 again provide additional backup definition for the FCIL rating levels. 

Table 40. FCIL Cost Driver 
FCIL 
Descriptors: 

       

• Sum of 
TOOL and 
SITE 
ratings 

 
2 

 
3 

 
4, 5 

 
6 

 
7, 8 

 
9, 10 

 
11 

• TOOL 
support 

Minimal Some Simple 
CASE tool 
collection 

Basic life-
cycle tools 

Good; 
moderately 
integrated 

Strong; 
moderately 
integrated 

Strong; 
well 
integrated 

• Multisite 
conditions 

Weak 
support of 
complex 
multisite 
developme
nt 

Some 
support of 
complex 
M/S devel. 

Some 
support of 
moderately 
complex 
M/S devel. 

Basic 
support of 
moderately 
complex 
M/S devel. 

Strong 
support of 
moderately 
complex 
M/S devel. 

Strong 
support of 
simple M/S 
devel. 

Very 
strong 
support of 
collocated 
or simple 
M/S devel. 

Rating 
Levels 

Extra 
Low 

Very 
Low 

 
Low 

 
Nominal 

 
High 

Very 
High 

Extra 
High 

Effort 
Multipliers 

1.43 1.30 1.10 1.0 0.87 0.73 0.62 

Required Development Schedule (SCED) 

This Early Design model cost driver is the same as its Post-Architecture counterpart, 
which is covered in Section 3.2.1. 

3.3  Multiple Module Effort Estimation 

Usually software systems are comprised of multiple subsystems or components.  It is 
possible to use COCOMO II to estimate effort and schedule for multiple components.  The 
technique described here is for one level of sub-components.  For multiple levels of sub-
components see [Boehm 1981]. 
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The COCOMO II method for doing this does not use the sum of the estimates for each 
component as this would ignore effort due to integration of the components.  The COCOMO II 
multiple module method for n number of modules has the following steps: 

 

1. Sum the sizes for all of the components, Sizei, to yield an aggregate size. 

∑
=

=
n

1i
iAggregate SizeSize  

2. Apply the project-level drivers, the scale factors and the SCED Cost Driver, to the 
aggregated size to derive the overall basic effort for the total project, PMBasic.  The scale 
factors are discussed in Section 2.3.1 and SCED is discussed in Section 2.3.2.1. 

SCED)(SizeAPM E
AggregateBasic ××=  

3. Determine each component’s basic effort, PMBasic(i), by apportioning the overall basic effort 
to each component based on its contribution to the aggregate size. 











×=

Aggregate

i
BasicBasic(i) Size

Size
PMPM  

4. Apply the component-level Cost Drivers (excluding SCED) to each component’s basic 
effort. 

∑
=

×=
16

1j
jBasic(i)i EMPMPM  

5. Sum each component’s effort to derive the aggregate effort, PMAggregate, for the total 
project. 

∑
=

=
n

1i
iAggregate PMPM  

6. The schedule is estimated by repeating steps 2 through 5 without the SCED Cost Driver 
used in step 2.  Using this modified aggregate effort, PM'Aggregate, the schedule is derive 
using Equation 14 in Section 4. 
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4. Schedule Estimation 

The initial version of COCOMO II provides a simple schedule estimation capability 
similar to those in COCOMO 81 and Ada COCOMO.  The initial baseline schedule equation for 
the COCOMO II Early Design and Post-Architecture stages is:  

 
0.91B 0.28,D 3.67,C where

100

SCED%
])(PM[CTDEV B))(E0.2(D

NS

===

××= −×+

 Eq. 14 

In Equation 14, C is a TDEV coefficient that can be calibrated, PMNS is the estimated PM 
excluding the SCED effort multiplier as defined in Equation 1, D is a TDEV scaling base-
exponent that can also be calibrated. E is the effort scaling exponent derived as the sum of 
project scale factors and B as the calibrated scale factor base-exponent (discussed in Sections 
3.1). SCED% is the compression / expansion percentage in the SCED effort multiplier rating 
scale discussed in Section 3.2.1. 

Time to Develop, TDEV, is the calendar time in months between the estimation end 
points of LCO and IOC for MBASE/RUP or SRR and SAR for Waterfall lifecycle models (see 
Section 6.2).  For the waterfall model, this goes from the determination of a product’s 
requirements baseline to the completion of an acceptance activity certifying that the product 
satisfies its requirements.  For the MBASE/RUP model discussed in Section 6, it covers the time 
span between LCO and IOC milestones. 

As COCOMO II evolves, it will have a more extensive schedule estimation model, 
reflecting the different classes of process models a project can use.  The effects of reusable and 
COTS software; the effects of applications composition capabilities; and the effects of alternative 
strategies such as Rapid Application Development are discussed in [Boehm et al. 2000; also at 
http://sunset.usc.edu/COOCMOII/suite.html]. 
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5. Software Maintenance 

Software maintenance is defined as the process of modifying existing software while not 
changing its primary functions [Boehm 1981].  The assumption made by the COCOMO II model 
is that software maintenance cost generally has the same cost driver attributes as software 
development costs.  Maintenance includes redesign and recoding of small portions of the original 
product, redesign and development of interfaces, and minor modification of the product 
structure.  Maintenance can be classified as either updates or repairs.  Product repairs can be 
further segregated into corrective (failures in processing, performance, or implementation), 
adaptive (changes in the processing or data environment), or perfective maintenance (enhancing 
performance or maintainability). Maintenance sizing is covered in Section 2.7. 

There are special considerations for using COCOMO II in software maintenance.  Some 
of these are adapted from [Boehm 1981]. 
• The SCED cost driver (Required Development Schedule) is not used in the estimation of 

effort for maintenance.  This is because the maintenance cycle is usually of a fixed duration. 
• The RUSE cost driver (Required Reusablity) is not used in the estimation of effort for 

maintenance.  This is because the extra effort required to maintain a component’s reusability 
is roughly balanced by the reduced maintenance effort due to the component’s careful design, 
documentation, and testing. 

• The RELY cost driver (Required Software Reliabilty) has a different set of effort multipliers 
for maintenance.  For maintenance the RELY cost driver depends on the required reliability 
under which the product was developed.  If the product was developed with low reliability it 
will require more effort to fix latent faults.  If the product was developed with very high 
reliability, the effort required to maintain that level of reliability will be above nominal.  
Table 41 below shows the effort multipliers for RELY. 

Table 41. RELY Maintenance Cost Driver 
RELY 
Descriptors: 

slight 
inconvenien
ce 

low, easily 
recoverable 
losses 

moderate, 
easily 
recoverable 
losses 

high 
financial 
loss 

risk to 
human life 

 

Rating Levels Very Low Low Nominal High Very High Extra High 
Effort Multipliers 1.23 1.10 1.00 0.99 1.07 n/a 
• The scaling exponent, E, is applied to the number of changed KSLOC (added and modified, 

not deleted) rather than the total legacy system KSLOC.  As discussed in Section 2.7, the 
effective maintenance size (Size)m is adjusted by a Maintenance Adjustment Factor (MAF) to 
account for legacy system effects. 

The maintenance effort estimation formula is the same as the COCOMO II Post-
Architecture development model (with the exclusion of SCED and RUSE): 

 ∏
=

××=
15

1i
i

E
MM EM)(SizeAPM  Eq. 15 
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The COCOMO II approach differs from the COCOMO 81 maintenance effort estimation 
by letting you use any desired maintenance activity duration, TM.  The average maintenance 
staffing level, FSPM, can then be obtained via the relationship: 

 FSPM = PMM / TM Eq. 16 
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6. COCOMO II: Assumptions and phase/activity distributions 

6.1 Introduction 

Section defines the particular COCOMO II assumptions about what life-cycle phases and 
labor categories are covered by its effort and schedule estimates.  These and other definitions 
given in Section 6 were used in collecting all the data to which COCOMO II has been calibrated.  
If you use other definitions and assumptions, you need to either adjust the COCOMO II 
estimates or recalibrate its coefficients. 

COCOMO II has been developed to be usable by projects employing either waterfall or 
spiral processes.  For these to be reasonably compatible, the waterfall implementation needs to 
be strongly risk-driven, in order to avoid incurring large amounts of rework not included in 
spiral-model-based estimates.  Fortunately, this was the case for the normative waterfall 
implementation provided in Chapter 4 of [Boehm 1981] as the underlying process model for 
COCOMO 81. 

The implementation of the spiral model used by COCOMO II also needs an added 
feature: a set of well-defined common milestones which can serve as the end points between 
which COCOMO II estimates and actuals are assessed.  In 1995, we devoted parts of two 
COCOMO II Affiliates’ workshops to determining such milestones.  The result was the set of 
Anchor Point milestones: Life Cycle Objectives (LCO), Life Cycle Architecture (LCA), and 
Initial Operational Capability (IOC) [Boehm 1996]. Those milestones were a good fit to key life-
cycle project commitment points being used within both our commercial and government 
contractor Affiliate communities. The LCO and LCA milestones involve concurrent rather than 
sequential development and elaboration of a system’s operational concept, requirements, 
architecture, prototypes, life-cycle plan, and feasibility rationale. The milestones correspond well 
with real-life commitment milestones: LCO is roughly equivalent to getting engaged to your 
system definition; LCA to getting married; and IOC to having your first child. 

These anchor points and the stakeholder win-win extension of the spiral model became 
the key milestones in our Model-Based (System) Architecting and Software Engineering 
(MBASE) life-cycle process model  [Boehm-Port 1999; Boehm et al. 1999].  We have also 
collaborated with one of our Affiliates, Rational, Inc., to ensure the compatibility of MBASE and 
the Rational Unified Process (RUP).  Thus, we have adopted Rational’s approach to the four 
main spiral-oriented phases: Inception, Elaboration, Construction, and Transition.  Rational has 
adopted our definitions of the LCO, LCA, and IOC anchor point milestones defining the entry 
and exit criteria between the phases [Royce 1998; Kruchten 1999; Jacobson et al. 1999]. 

Section 6.2 proceeds to define the content of the milestones used as end points for the 
waterfall and MBASE/RUP spiral models to which COCOMO II project estimates are related.  
Section 6.3 compares the phase distributions of effort and schedule used by COCOMO II for the 
waterfall and initial MBASE/RUP spiral process models. Section 6.4 defines the activity 
categories for the Waterfall and MBASE/RUP spiral models, and their content.  Section 6.5 
presents the corresponding effort distributions by activity for each Waterfall and MBASE/RUP 
phase.  Section 6.6 covers other COCOMO II assumptions, such as the labor categories 
considered as "project effort," and the number of person-hours in a person-month. 
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6.2 Waterfall and MBASE/RUP Phase Definitions 

6.2.1 Waterfall Model Phases and Milestones 

Table 42 defines the milestones used as end points for COCOMO II Waterfall phase 
effort and schedule estimates.  The milestone definitions are the same as those in [Boehm 1981; 
Table 4-1]. 

A basic risk-orientation is provided with the inclusion of “Identification and resolution of 
all high-risk development issues” as a Product Design milestone element.  However, the other 
early milestones should have a more risk-driven interpretation.  For example, having 
“…specifications validated for…feasibility” by the end of the Plans and Requirements phase of a 
user-interactive system development would imply doing an appropriate amount of user-interface 
prototyping. 

Table 42. COCOMO II Waterfall Milestones 
1. Begin Plans and Requirements Phase.  (Completion of Life Cycle Concept Review - LCR) 
��Approved, validated system architecture, including basic hardware-software allocations. 
��Approved, validated concept of operation, including basic human-machine allocations. 
��Top-level life-cycle plan, including milestones, resources, responsibilities, schedules, and major 

activities. 
2. End Plans and Requirements Phase.  Begin Product Design Phase.  (Completion of Software 

Requirements Review - SRR) 
��Detailed development plan – detailed development milestone criteria, resource budgets, 

organization, responsibilities, schedules, activities, techniques, and products. 
��Detailed usage plan – counterparts of the development plan items for training, conversion, 

installation, operations, and support. 
��Detailed product control plan – configuration management plan, quality assurance plan, overall 

V&V plan (excluding detailed test plans). 
��Approved, validated software requirements specifications – functional, performance, and interface 

specifications validated for completeness, consistency, testability, and feasibility. 
��Approved (formal or informal) development contract – based on the above items. 

3. End Product Design Phase.  Begin Detailed Design Phase.  (Completion of Product Design Review 
- PDR) 
��Verified software product design specification. 
��Program component hierarchy, control and data interfaces through unit level*. 
��Physical and logical data structure through field level. 
��Data processing resource budgets (timing, storage, accuracy). 
��Verified for completeness, consistency, feasibility, and traceability to requirements. 
��Identification and resolution of all high-risk development issues. 
��Preliminary integration and test plan, acceptance test plan, and user’s manual. 

4. End Detailed Design Phase.  Begin Code and Unit Test Phase.  (Completion of design walkthrough 
or Critical Design Review for unit - CDR) 
��Verified detailed design specification for each unit. 
��For each routine (< 100 source instructions) within the unit, specifies name, purpose, 

assumptions, sizing, calling sequence, error exits, inputs, outputs, algorithms, and processing 
flow. 
��Data base description through parameter/character/bit level. 
��Verified for completeness, consistency, and traceability to requirements and system design 

specifications and budgets. 
��Approved acceptance test plan. 
��Complete draft of integration and test plan and user’s manual. 
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Table 42. COCOMO II Waterfall Milestones 
5. End Code and Unit Test Phase.  Begin Integration and Test Phase.  (Satisfaction of Unit Test 

criteria for unit - UTC) 
��Verification of all unit computations, using not only nominal values but also singular and extreme 

values. 
��Verification of all unit input and output options, including error messages. 
��Exercise of all executable statements and all branch options. 
��Verification of programming standards compliance. 
��Completion of unit-level, as-built documentation. 

6. End Integration and Test Phase.  Begin Implementation Phase.  (Completion of Software 
Acceptance Review - SAR) 
��Satisfaction of software acceptance test. 
��Verification of satisfaction of software requirements. 
��Demonstration of acceptable off-nominal performance as specified. 
��Acceptance of all deliverable software products: reports, manuals, as-built specifications, data 

bases. 
7. End Implementation Phase.  Begin Operations and Maintenance Phase.  (Completion of System 

Acceptance Review) 
��Satisfaction of system acceptance test. 
��Verification of satisfaction of system requirements. 
��Verification of operational readiness of software, hardware, facilities, and personnel. 
��Acceptance of all deliverable system products: hardware, software, documentation, training, and 

facilities. 
��Completion of all specified conversion and installation activities. 

8. End Operations and Maintenance Phase (via Phaseout). 
��Completion of all items in phaseout plan: conversion, documentation, archiving, transition to new 

system(s). 
* A software unit performs a single well-defined function, can be developed by one person, and is 

typically 100 to 300 source instructions in size. 

6.2.2 MBASE and Rational Unified Process (RUP)  Phases and Milestones 

Table 43 defines the milestones used as end points for COCOMO II MBASE/RUP phase 
effort and schedule estimates (the content of the Life Cycle Objectives (LCO) and Life Cycle 
Architecture (LCA) milestones are elaborated in Table 44).  The definitions of the Inception 
Readiness Review (IRR) and Product Release Review (PRR) have been added in Table 43.  They 
ensure that the Inception and Transition phases have milestones at each end between which to 
measure effort and schedule.  The PRR is defined consistently with its Rational counterpart in 
[Royce 1998; Kruchten 1999].  The IRR was previously undefined; its content focuses on the 
preconditions for a successful Inception phase. 

Table 43. MBASE and Rational Unified Software Development Process Milestones 
1. Inception Readiness Review (IRR) 
��Candidate system objectives, scope, boundary 
��Key stakeholders identified 
��Committed to support Inception phase 
��Resources committed to achieve successful LCO package 
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Table 43. MBASE and Rational Unified Software Development Process Milestones 
2. Life Cycle Objectives Review (LCO) 
��Life Cycle Objectives (LCO) Package (see Table 44) 
��Key elements of Operational Concept, Prototype, Requirements, Architecture, Life Cycle Plan, 

Feasibility Rationale 
��Feasibility assured for at least one architecture, using the criteria: 
��Acceptable business case 
��A system developed from the architecture would support the operational concept, be compatible 

with the prototype, satisfy the requirements, and be buildable within the budgets and schedules 
in the life-cycle plan. 

��Feasibility validated by an Architecture Review Board (ARB) 
��ARB includes project-leader peers, architects, specialty experts, key stakeholders [Marenzano 

1995]. 
��Key stakeholders concur on essentials, commit to support Elaboration phase 
��Resources committed to achieve successful LCA package 

3. Life Cycle Architecture Review (LCA) 
��Life Cycle Architecture (LCA) Package (see Table 44) 
��Feasibility assured for selected architecture, using the LCO feasibility criteria 
��Feasibility validated by ARB 
��Stakeholders concur on their success-critical items, commit to support Construction, Transition, 

and Maintenance phases. 
��All major risks resolved or covered by risk management plan 
��Resources committed to achieve Initial Operational Capability (IOC), life-cycle support 

4. Initial Operational Capability (IOC) 
��Software preparation, including both operational and support software with appropriate 

commentary and documentation; initial data preparation or conversion; the necessary licenses 
and rights for COTS and reused software, and appropriate operational readiness testing. 
��Site preparation, including initial facilities, equipment, supplies, and COTS vendor support 

arrangements. 
��Initial user, operator and maintainer preparation, including selection, teambuilding, training and 

other qualification for familiarization usage, operations, or maintenance. 
��Successful Transition Readiness Review 
��Plans, preparations for full conversion, installation, training, and operational cutover 
��Stakeholders confirm commitment to support Transition and Maintenance phases 

5. Product Release Review (PRR) 
��Assurance of successful cutover from previous system for key operational sites 
��Personnel fully qualified to operate and maintain new system 
��Stakeholder concurrence that the deployed system operates consistently with negotiated and 

evolving stakeholder agreements 
��Stakeholders confirm commitment to support Maintenance phase 
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Table 44. Detailed LCO and LCA Milestone Content 

Milestone 
Element 

 

Life Cycle Objectives (LCO) 

 

Life Cycle Architecture (LCA) 

 
 
Definition of 
Operational 
Concept 

Top-level system objectives and scope 
System boundary 
Environment parameters and 

assumptions 
Current system shortfalls 
Operational concept: key nominal 

scenarios, stakeholder roles and 
responsibilities 

Elaboration of system objectives and 
scope by increment 

Elaboration of operational concept by 
increment 

Nominal and key off-nominal scenarios 

System 
Prototype(s) 

Exercise key usage scenarios 
Resolve critical risks 

Exercise range of usage scenarios 
Resolve major outstanding risks 

 
Definition of 
System and 
Software 
Requirements 

Top-level capabilities, interfaces, quality 
attribute levels, including: 

Evolution requirements 
Priorities 
Stakeholders’ concurrence on essentials 

Elaboration of functions, interfaces, 
quality attributes by increment 
Identification of TBDs (to-be-determined 
items), evolution requirements 
Stakeholders’ concurrence on their 
priority concerns 

 
 
Definition of 
System and 
Software 
Architecture 

Top-level definition of at least one 
feasible architecture 

Physical and logical elements and 
relationships 

Choices of COTS and reusable software 
elements 

Identification of infeasible architecture 
options 

Choice of architecture and elaboration by 
increment 

Physical and logical components, 
connectors, configurations, constraints 

COTS, reuse choices 
Domain-architecture and architectural 

style choices 
Architecture evolution parameters 

 
 
Definition of Life 
cycle Plan 

Identification of life-cycle stakeholders 
Users, customers, developers, 

maintainers, interfacers, general 
public, others 

Identification of life-cycle process model 
Top-level stages, increments 
Top-level WWWWWHH* by stage 

Elaboration of WWWWWHH for Initial 
Operational Capability (IOC) 

Partial elaboration, identification of key 
TBDs for later increments 

 
 
Feasibility 
Rationale 

Assurance of consistency among 
elements above via analysis, 
measurement, prototyping, simulation, 
etc. 

Business case analysis for requirements, 
feasible architectures 

Assurance of consistency among 
elements above 

Rationale for major options rejected 
All major risks resolved or covered  by 

risk management plan within the life-
cycle plan 

* WWWWWHH: Why, What, When, Who, Where, How, How Much 

Figure 4 shows the relationship of the Waterfall and MBASE/RUP phases and the most 
likely COCOMO II model to be used in estimating effort and schedule.  The milestones have 
some variation due to the differences in distribution of effort and schedule between the two 
models. 
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Figure 4. Life Cycle Phases 

6.3 Phase Distribution of Effort and Schedule 

Provisional phase distributions of effort and schedule are provided below for both the 
Waterfall and MBASE/RUP process models.  These are provisional since not enough calibration 
data has been collected on phase distributions to date. 

The Waterfall phase distribution percentages in Table 45 are numbers from COCOMO 81 
used in USC COCOMO II.2000.  The percentages vary as product size varies from 2 KSLOC to 
512 KSLOC (see the E = 1.12 line in Figures 5 and 6).  The values are taken from the COCOMO 
81 Semidetached (average) mode provided in Table 6-8 of [Boehm 1981], except for the 
Transition phase.  This phase was undefined in COCOMO 81 and is set equal to MBASE values 
in Table 46.  The percentages from PRR to SWAR add up to 100%.  The percentages for Plans 
and Requirements and Transition are in addition to the 100% of the effort and schedule 
quantities estimated by COCOMO II. 

Table 45. Waterfall Phase Distribution Percentages 

Phase (end points) Effort% Schedule% 

 
Plans and Requirements (LCCR-PRR) 

 
7 (2-15) 

 
16-24 (2-30) 

 
Product Design (PRR-PDR) 
 
Programming (PDR-UTC) 
 Detailed Design (PDR-CDR) 
 Code and Unit Test (CDR-UTC) 
 
Integration and Test (UTC-SWAR) 

 
17 
 

64-52 
 27-23 
 37-29 

 
19-31 

 
24-28 

 
56-40 

 
 
 

20-32 
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Table 45. Waterfall Phase Distribution Percentages 

Phase (end points) Effort% Schedule% 

 
Transition (SWAR-SAR) 

 
12 (0-20) 

 
12.5 (0-20) 

The MBASE phase distribution percentages in Table 46 are chosen to be consistent with 
those provided for the Rational RUP in [Royce 1998] and [Kruchten 1999].  They are rescaled to 
match the COCOMO II definition that 100% of the development effort is done in the Elaboration 
and Construction phases (between the LCO and IOC milestones, for which most calibration data 
is available).  The corresponding figures for the RUP development cycle are also provided in 
Table 46. 

Table 46. MBASE and RUP Phase Distribution Percentages 

 MBASE RUP 

Phase (end points) Effort% Schedule% Effort% Schedule% 

Inception (IRR to LCO) 6 (2-15) 12.5 (2-30) 5 10 
Elaboration (LCO to 
LCA) 

24 (20-28) 37.5 (33-42) 20 30 

Construction (LCA to 
IOC) 

76 (72-80) 62.5 (58-67) 65 50 

Transition (IOC to PRR) 12 (0-20) 12.5 (0-20) 10 10 
Totals: 118 125 100 100 

6.3.1 Variations in Effort and Schedule Distributions 

The effort and schedule distributions in the Waterfall model vary somewhat by size, 
primarily reflecting the amount of integration and test required.  But the major variations in both 
the Waterfall model and MBASE/RUP phase effort and schedule quantities come in the phases 
outside the core development phases (Plans & Requirements and Transition for Waterfall; 
Inception and Transition for MBASE/RUP). 

These large variations are the main reason that the main COCOMO II development 
estimates do not cover these outer phases (the other strong reason is that calibration data is 
scanty for the outer phases). 

At this time, there is no convenient algorithm for determining whether your Inception 
phase effort will be nearer to 2% than 15% and Inception phase schedule will be nearer to 2% 
than 30% of the COCOMO II development cost estimates.  The best we can offer at this time is 
Table 47, which identifies the primary effort and schedule drivers for the Inception and 
Transition phases. 

These are presented in descending order of their effect on Inception phase effort and 
schedule, and as well as possible in ascending order of their corresponding effect on the 
Transition phase. 
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Table 47. Inception and Transition Phase Effort and Schedule Drivers 

Factor Inception Transition 

1.  Complexity of LCO issues needing resolution Very Large Small 
2.  System involves major changes in stakeholder roles and 
responsibilities 

Very Large Large 

3.  Technical risk level Large Some 
4.  Stakeholder trust level Large Considerable 
5.  Heterogeneous stakeholder communities: Expertise, task 
nature, language, culture, infrastructure 

Large Large 

6.  Hardware/software integration Large Large 
7  Complexity of transition from legacy system Considerable Large 
8.  Number of different installations, classes of installation Some Very Large 
Note: Order of ratings – Small, Some, Considerable, Large, Very Large 

For example, on Factor 1, the stakeholders might enter the Inception phase with a very 
strong consensus that they wish to migrate some well-defined existing capabilities to a highly 
feasible client-server architecture.  In this case, one could satisfy the LCO criteria with roughly 
2% each of the development effort and schedule.  On the other hand, if the stakeholders entered 
the Inception phase with strongly conflicting positions on desired capabilities, priorities, 
infrastructure, etc., it could take up to 15% of the development effort and 30% of the 
development schedule to converge to a stakeholder-consensus LCO package (a very large 
effect). 

However, these differences would have a relatively small effect on the amount of effort 
and schedule it would take to transition the system as defined by the LCO.  So the baseline 
Transition phase percentages of 12% added effort and 12.5% added schedule would be 
reasonable initial values to use. 

Some of the Inception issues might persist into the Elaboration phase; such persisting 
issues are the main source of the variations in relative effort and schedule between the 
Elaboration and Construction phases shown in Table 46.  Thus, if you estimate 30% added 
Inception schedule to achieve a difficult LCO consensus, you may wish to adjust the Elaboration 
schedule upward from 37.5% to something like 42%.  Factors like your COCOMO II TEAM 
rating would provide additional total effort and schedule to divide between Elaboration and 
Construction. 

In some cases, a factor can have a strong effect on both the Inception and Transition 
phases.  Factor 2 is an example: if the system’s effects involve changes in stakeholder roles and 
responsibilities (e.g., turf, control, power), the amount of effort and schedule will be increased 
significantly both in negotiating the changes and implementing them. 

Some additional sources of variation in phase distributions are deferred for later versions 
of COCOMO II.  These include phase-dependent effort multipliers (as in Detailed COCOMO 
81); effects of language level (reduced Construction effort for very high level languages); and 
effects of optimizing one’s project on development cost, schedule, or quality. 
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6.3.2 Distribution of Effort Across Life Cycle Phases 

Figure 5 shows the Waterfall and MBASE phases for distribution of estimated effort.  
The Waterfall phase distributions are adapted from those in [Boehm 1981; Table 6-8].  The 
figure shows that distribution of effort varies by size of the product and the size exponent, E.  

The size exponent E corresponds to the three modes in COCOMO 81.  Note that the effort 
distribution for a small project with a low value for E has the most effort in the Code and Unit 
Test phase.  The top line shows this condition.  A large project with a value of E has the most 
effort concentrated in the Integration and Test phase.  This is shown by the bottom line.  These 
distributions of effort are for a Waterfall model project where the development is done in a single 
sequence through the phases. 

Figure 5. Effort Distribution 

The MBASE distribution of effort is taken from Table 46.  The distribution of effort in 
the table is 72 to 80 % for the Construction phase which includes Detailed Design, Code and 
Unit Test, and Integration and Test.  The shaded areas in Figure 5 are approximations of the 
distribution of the Construction effort. 

Contrast the Waterfall distributions with the MBASE/RUP distributions.  MBASE/RUP 
emphasizes planning up front and smaller, repeated iterations to develop the product.  This 
makes the distribution of effort less dependent on size and scale factors.  The iterative approach 
also starts the product integration earlier reducing large-system integration gridlock that can 
occur if integration is left till the last step (as in the Waterfall model). 
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6.3.3 Distribution of Schedule Across Life Cycle Phases 

Figure 6 shows the Waterfall and MBASE phase distribution of estimated schedule.  The 
waterfall distributions are taken from [Boehm 1981; Table 6-8].  As with effort discussed above, 
schedule varies with size and the scale factor.  The two lines bound the range of Waterfall 
schedule distribution showing a small easy project and a large difficult project. 

The MBASE schedule distribution is taken from Table 46.  The shaded areas show the 
range of distribution for each phase. 

Figure 6. Distribution of Schedule 

6.4 Waterfall and MBASE/RUP Activity Definitions 

6.4.1 Waterfall Model Activity Categories 

The COCOMO II Waterfall model estimates effort for the following eight major 
activities [Boehm 1981; Table 4-2]: 
• Requirements Analysis: Determination, specification, review, and update of software 

functional, performance, interface, and verification requirements. 
• Product Design: Determination, specification, review, and update of hardware-software 

architecture, program design, and database design.   
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• Programming: Detailed design, code, unit test, and integration of individual computer 
program components.  Includes programming personnel planning, tool acquisition, database 
development, component-level documentation, and intermediate level programming 
management. 

• Test Planning: Specification, review, and update of product test and acceptance test plans.  
Acquisition of associated test drivers, test tools, and test data. 

• Verification and Validation: Performance of independent requirements validation, design V 
& V, product test, and acceptance test.  Acquisition of requirements and design V & V tools. 

• Project Office Functions: Project-level management functions.  Includes project-level 
planning and control, contract and subcontract management, and customer interface. 

• Configuration Management and Quality Assurance: Configuration management includes 
product identification, change control, status accounting, operation of program support 
library, development and monitoring of end item acceptance plan.  Quality assurance 
includes development and monitoring of project standards, and technical audits of software 
products and processes. 

• Manuals: Development and update of users’ manuals, operators’ manuals, and maintenance 
manuals. 

When the COCOMO II model is used to estimate effort, the estimated effort can be 
distributed across the major activities.  Section 6.5 provides the percentage distributions of 
activity within each phase. 

6.4.2  Waterfall Model Work Breakdown Structure 

The COCOMO II Waterfall and MBASE/RUP activity distributions are defined in more 
detail via work breakdown structures.  Table 48 shows a work breakdown structure outline 
adapted from [Boehm 1981; Figure 4-6B]. This WBS excludes the requirements-related 
activities done up to SRR. 

Table 48. Software Activity Work Breakdown Structure 
1. Management 

1.1. Cost, schedule, performance management 
1.2. Contract management 
1.3. Subcontract management 
1.4. Customer interface 
1.5. Branch office management 
1.6. Management reviews and audits 



Version 2.1  55 

© 1995 – 2000 Center for Software Engineering, USC 

Table 48. Software Activity Work Breakdown Structure 
2. System Engineering 

2.1. Software Requirements 
2.1.1. Requirements update 

2.2. Software product design 
2.2.1. Design 
2.2.2. Design V & V 
2.2.3. Preliminary design review 
2.2.4. Design update 
2.2.5. Design tools 

2.3. Configuration management 
2.3.1. Program support library 

2.4. End item acceptance 
2.5. Quality assurance 

2.5.1. Standards 
3. Programming 

3.1. Detailed design 
3.2. Code and unit test 
3.3. Integration 

4. Test and Evaluation 
4.1. Product test 

4.1.1. Plans 
4.1.2. Procedures 
4.1.3. Test 
4.1.4. Reports 

4.2. Acceptance test 
4.2.1. Plans 
4.2.2. Procedures 
4.2.3. Test 
4.2.4. Reports 

4.3. Test support 
4.3.1. Test beds 
4.3.2. Test tools 
4.3.3. Test data 

5. Data 
5.1. Manuals 

6.4.3 MBASE/RUP Model Activity Categories 

6.4.3.1 Background 

This section defines phase and activity distribution estimators for projects using the life-
cycle model provided by USC’s Model-Based (System) Architecting and Software Engineering 
(MBASE) approach and the Rational Unified Process (RUP).  Both MBASE and RUP use the 
same phase definitions and milestones.  MBASE has a more explicit emphasis on a stakeholder 
win-win approach to requirements determination and management. RUP accommodates such an 
approach but more as an option. 

In developing these estimators, we have tried to maintain strong consistency with the 
published Rational phase and activity distributions in [Royce 1998; Kruchten 1999; Jacobson et 
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al. 1999], and with the published anchor point/MBASE phase boundary definitions in [Boehm 
1996, Boehm-Port 1999].  We have iterated and merged drafts of the estimators and definitions 
with Rational. 

Our main sources of information on the Rational phase and activity distributions are: 

The common table of default estimators of effort and schedule distribution percentages 
by phase on page 148 of Royce, page 118 of Kruchten, and page 335 of Jacobson et al. 

The default estimators of total project activity distribution percentages in Table 10-1,  
page 148 of Royce.  These in turn draw on the definitions of the activity categories in Royce’s 
Life Cycle Phase Emphases (Table 8-1, page 120) and Default Work Breakdown Structure --
WBS-- (Figure 10-2, pages 144-145). 

We and Rational agree that these and the COCOMO table values below cannot fit all 
project situations, and should be considered as draft values to be adjusted via context and 
judgement to fit individual projects.  We have research activities underway to provide stronger 
guidance on the factors affecting phase and activity distributions. 

6.4.3.2 Phase and Activity Category Definitions 

Thus, we have begun with the overall phase and activity distributions in [Royce 1998] 
and used these to develop a set of default MBASE/RUP phase and activity distributions for use 
in COCOMO II as a counterpart to those provided for the waterfall model.  In the process, we 
found the need to elaborate a few of the activity-category definitions in Royce’s Figure 10-2 
(e.g., including configuration management within Environment; adding stakeholder coordination 
as a Management activity and stakeholder requirements negotiation as a Requirements activity; 
and including explicit Transition Plan and Maintenance Plan activities in Deployment).  We also 
modified a few definitions and allocations (using “evolution” in place of “maintenance;” splitting 
“Business case development” and “Business case analysis” between Management and 
Assessment). 

For comparison, we have reproduced Royce’s WBS as Table 49 and provided the 
counterpart COCOMO II WBS as Table 50.  We have also orthogonalized the WBS organization 
in Table 50 (e.g., for each phase X, the planning WBS element is AXA and the control element 
is AXB), and provided more explicit categories corresponding to the Level 2 and 3 project-
oriented Key Process Areas in the SEI Capability Maturity model.  An exception is Software 
Quality Assurance, where we agree with Royce that all activities and all people are involved in 
SQA, and that a separate WBS element for QA is inappropriate.  
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Table 49. Rational Unified Process Default Work Breakdown Structure [Royce 1998] 
A Management  

AA Inception phase management 
AAA Business case development 
AAB Elaboration phase release specifications  
AAC Elaboration phase WBS* baselining 
AAD Software development plan 
AAE Inception phase project control and status assessments 

AB Elaboration phase management 
ABA Construction phase release specifications 
ABB Construction phase WBS baselining 
ABC Elaboration phase project control and status assessments 

AC Construction phase management  
ACA Deployment phase planning 
ACB Deployment phase WBS baselining 
ACC Construction phase project control and status assessments 

AD Transition phase management 
ADA Next generation planning  
ADB Transition phase project control and status assessments 

B Environment 
BA Inception phase environment specification  
BB Elaboration phase environment baselining 

BBA Development environment installation and administration 
BBB Development environment integration and custom toolsmithing 
BBC SCO* database formulation 

BC Construction phase environment maintenance  
BCA Development environment installation and administration 
BCB SCO database maintenance 

BD Transition phase environment maintenance  
BDA Development environment maintenance and administration 
BDB SCO database maintenance 
BDC Maintenance environment packaging and transition 

C Requirements 
CA Inception phase requirements development 

CAA Vision specification 
CAB Use case modeling 

CB Elaboration phase requirements baselining  
CBA Vision baselining 
CBB Use case model baselining 

CC Construction phase requirements maintenance  
CD Transition phase requirements maintenance 

D Design 
DA Inception phase architecture prototyping 
DB Elaboration phase architecture baselining 

DBA Architecture design modeling 
DBB Design demonstration planning and conduct 
DBC Software architecture description 

DC Construction phase design modeling 
DCA Architecture design model maintenance 
DCB Component design modeling 

DD Transition phase design maintenance 
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Table 49. Rational Unified Process Default Work Breakdown Structure [Royce 1998] 
E Implementation 

EA Inception phase component prototyping 
EB Elaboration phase component implementation 

EBA Critical component coding demonstration integration 
EC Construction phase component implementation  

ECA Initial release(s) component coding and stand-alone testing 
ECB Alpha release component coding and stand-alone testing  
ECC Beta release component coding and stand-alone testing 
ECD Component maintenance 

ED Transition phase component maintenance 
F Assessment 

FA Inception phase assessment planning  
FB Elaboration phase assessment 

FBA Test modeling 
FBB Architecture test scenario implementation 
FBC Demonstration assessment and release descriptions 

FC Construction phase assessment 
FCA Initial release assessment and release description 
FCB Alpha release assessment and release description  
FCC Beta release assessment and release description 

FD Transition phase assessment 
FDA product release assessment and release descriptions 

G Deployment 
GA Inception phase deployment planning 
GB Elaboration phase deployment planning 
GC Construction phase deployment 

GCA User manual baselining  
GD Transition phase deployment  

GDA Product transition to user 
*Acronyms: SCO – Software Change Order 
 WBS – Work Breakdown Structure 

 



Version 2.1  59 

© 1995 – 2000 Center for Software Engineering, USC 

Table 50. COCOMO II MBASE/RUP Default Work Breakdown Structure 
A Management 

AA Inception phase management 
AAA Top-level Life Cycle Plan  (LCO* version of LCP*) 
AAB Inception phase project control and status assessments 
AAC Inception phase stakeholder coordination and business case development 
AAD Elaboration phase commitment package and review (LCO package preparation and ARB* 

review) 
AB Elaboration phase management 

ABA Updated LCP with detailed Construction plan (LCA* version of LCP) 
ABB Elaboration phase project control and status assessments 
ABC Elaboration phase stakeholder coordination and business case update 
ABD Construction phase commitment package and review (LCA package preparation and ARB 

review) 
AC Construction phase management  

ACA Updated LCP with detailed Transition and Maintenance plans  
ACB Construction phase project control and status assessments 
ACC Construction phase stakeholder coordination 
ACD Transition phase commitment package and review (IOC* package preparation and PRB* 

review) 
AD Transition phase management 

ADA Updated LCP with detailed next-generation planning 
ADB Transition phase project control and status assessments 
ADC Transition phase stakeholder coordination 
ADD Maintenance phase commitment package and review (PRR* package preparation and PRB 

review) 
B Environment and Configuration Management  (CM) 

BA Inception phase environment/CM scoping and initialization 
BB Elaboration phase environment/CM  

BBA Development environment installation and administration 
BBB Elaboration phase CM 
BBC Development environment integration and custom toolsmithing 

BC Construction phase environment/CM evolution 
BCA Construction phase environment evolution 
BCB Construction phase CM 

BD Transition phase environment/CM evolution 
BDA Construction phase environment evolution 
BDB Transition phase CM 
BDC Maintenance phase environment packaging and transition 

C Requirements 
CA Inception phase requirements development  

CAA Operational Concept Description and business modeling (LCO version of OCD*) 
CAB Top-level System and Software Requirements Definition (LCO version of SSRD*) 
CAC Initial stakeholder requirements negotiation 

CB Elaboration phase requirements baselining  
CBA OCD elaboration and baselining (LCA version of OCD) 
CBB SSRD elaboration and baselining (LCA version of SSRD) 

CC Construction phase requirements evolution  
CD Transition phase requirements evolution 
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Table 50. COCOMO II MBASE/RUP Default Work Breakdown Structure 
D Design 

DA Inception phase architecting  
DAA Top-level System and Software Architecture Description (LCD version of SSAD*) 
DAB Evaluation of candidate COTS* components 

DB Elaboration phase architecture baselining  
DBA SSAD elaboration and baselining  
DBB COTS integration assurance and baselining 

DC Construction phase design  
DCA SSAD evolution 
DCB COTS integration evolution 
DCC Component design 

DD Transition phase design evolution 
E Implementation 

EA Inception phase prototyping 
EB Elaboration phase component implementation 

EBA Critical component implementation 
EC Construction phase component implementation 

ECA Alpha release component coding and stand-alone testing  
ECB Beta release (IOC) component coding and stand-alone testing 
ECC Component evolution 

ED Transition phase component evolution 
F Assessment 

FA Inception phase assessment 
FAA Initial assessment plan (LCO version; part of SDP*) 
FAB Initial Feasibility Rationale Description (LCO version of FRD*) 
FAC Inception phase element-level inspections and peer reviews 
FAD Business case analysis (part of FRD) 

FB Elaboration phase assessment 
FBA Elaboration of assessment plan (LCA version; part of SDP) 
FBB Elaboration of feasibility rationale (LCA version of FRD) 
FBC Elaboration phase element-level inspections and peer reviews 
FBD Business case analysis update 

FC Construction phase assessment 
FCA Detailed  test plans and procedures 
FCB Evolution of feasibility rationale 
FCC Construction phase element-level inspections and peer reviews 
FCD Alpha release assessment 
FCE Beta release (IOC) assessment 

FD Transition phase assessment 
G Deployment 

GA Inception phase deployment planning (LCO version; part of SDP) 
GB Elaboration phase deployment planning (LCA version; part of SDP) 
GC Construction phase deployment planning and preparation 

GCA Transition plan development 
GCB Evolution plan development 
GCC Transition preparation  

GD Transition phase deployment 
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Table 50. COCOMO II MBASE/RUP Default Work Breakdown Structure 
*Acronyms: ARB -- Architecture Review Board 
 CM -- Configuration Management 
 COTS -- Commercial-Off-The-Shelf 
 FRD -- Feasibility Rationale Description 
 IOC -- Initial Operational Capability milestone 
 LCA -- Life Cycle Architecture milestone 
 LCO -- Life Cycle Objectives milestone 
 LCP -- Life Cycle Plan 
 OCD -- Operational Concept Description 
 PRR -- Product Release Review milestone 
 PRB -- Product Review Board 
 SSAD -- System and Software Architecture Description 
 SSRD -- System and Software Requirements Definition 

6.5 Distribution of Effort Across Activities 

6.5.1 Waterfall Model Activity Distribution 

Tables 51 through 54, adapted from [Boehm 1981; Tables 7-1, 7-2, 7-3], show the 
distribution of eight major activities (discussed in Section 6.4.1) across the estimated project 
effort per phase.  The activity distribution values should be interpolated for projects that are 
between values in the table. 

For example, a project with size 128 KSLOC and an exponent of 1.12 would spend 28% 
of its effort in Integration and Test, see Table 54 Overall Phase Percentage row.  From Table 54 
we see that the Requirement Analysis activity takes 2.5% of the 28%, Product Design takes 5% 
of the 28%, Programming takes 39% of the 28%, and so on.  We see that the activity tables break 
up the estimated effort for a phase into the different activities that occur during the phase. 

Table 51. Plans and Requirements Activity Distribution 

 Size Exponent 
 E = 1.05 E = 1.12 E = 1.20 

Size: S I M L S I M L VL S I M L VL 

Overall Phase 
Percentage 

   
6 

  
7 

 
7 

 
7 

 
7 

 
7 

 
8 

 
8 

 
8 

 
8 

 
8 

Requirements 
Analysis 

   
46 

  
48 

 
47 

 
46 

 
45 

 
44 

 
50 

 
48 

 
46 

 
44 

 
42 

Product Design   20  16 16.5 17 17.5 18 12 13 14 15 16 
Programming   3  2.5 3.5 4.5 5.5 6.5 2 4 6 8 10 
Test Planning   3  2.5 3 3.5 4 4.5 2 3 4 5 6 
V&V   6  6 6.5 7 7.5 8 6 7 8 9 10 
Project Office   15  15.5 14.5 13.5 12.5 11.5 16 14 12 10 8 
CM/QA   2  3.5 3 3 3 2.5 5 4 4 4 3 
Manuals   5  6 6 5.5 5 5 7 7 6 5 5 
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC 
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Table 52. Product Design Activity Distribution 

 Size Exponent 
 E = 1.05 E = 1.12 E = 1.20 

Size: S I M L S I M L VL S I M L VL 

Overall Phase 
Percentage 

   
16 

  
17 

 
17 

 
17 

 
17 

 
17 

 
18 

 
18 

 
18 

 
18 

 
18 

Requirements 
Analysis 

   
15 

  
12.5 

 
12.5 

 
12.5 

 
12.5 

 
12.5 

 
10 

 
10 

 
10 

 
10 

 
10 

Product Design   40  41 41 41 41 41 42 42 42 42 42 
Programming   14  12 12.5 13 13.5 14 10 11 12 13 14 
Test Planning   5  4.5 5 5.5 6 6.5 4 5 6 7 8 
V&V   6  6 6.5 7 7.5 8 6 7 8 9 10 
Project Office   11  13 12 11 10 9 15 13 11 9 7 
CM/QA   2  3 2.5 2.5 2.5 2 4 3 3 3 2 
Manuals   7  8 8 7.5 7 7 9 9 8 7 7 
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC 

 

Table 53. Programming Activity Distribution 

 Size Exponent 
 E = 1.05 E = 1.12 E = 1.20 

Size: S I M L S I M L VL S I M L VL 

Overall Phase 
Percentage 

 
68 

 
65 

 
62 

 
59 

 
64 

 
61 

 
58 

 
55 

 
52 

 
60 

 
57 

 
54 

 
51 

 
48 

Requirements 
Analysis 

   
5 

  
4 

 
4 

 
4 

 
4 

 
4 

 
3 

 
3 

 
3 

 
3 

 
3 

Product Design   10  8 8 8 8 8 6 6 6 6 6 
Programming   58  56.5 56.5 56.5 56.5 56.5 55 55 55 55 55 
Test Planning   4  4 4.5 5 5.5 6 4 5 6 7 8 
V&V   6  7 7.5 8 8.5 9 8 9 10 11 12 
Project Office   6  7.5 7 6.5 6 5.5 9 8 7 6 5 
CM/QA   6  7 6.5 6.5 6.5 6 8 7 7 7 6 
Manuals   5  6 6 5.5 5 5 7 7 6 5 5 
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC 

 

Table 54. Integration and Test Activity Distribution 

 Size Exponent 
 E = 1.05 E = 1.12 E = 1.20 

Size: S I M L S I M L VL S I M L VL 

Overall Phase 
Percentage 

 
16 

 
19 

 
22 

 
25 

 
19 

 
22 

 
25 

 
28 

 
31 

 
22 

 
25 

 
28 

 
31 

 
34 

Requirements 
Analysis 

   
3 

  
2.5 

 
2.5 

 
2.5 

 
2.5 

 
2.5 

 
2 

 
2 

 
2 

 
2 

 
2 

Product Design   6  5 5 5 5 5 4 4 4 4 4 
Programming   34  33 35 37 39 41 32 36 40 44 48 
Test Planning   2  2.5 2.5 3 3 3.5 3 3 4 4 5 
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Table 54. Integration and Test Activity Distribution 

 Size Exponent 
 E = 1.05 E = 1.12 E = 1.20 

Size: S I M L S I M L VL S I M L VL 

V&V   34  32 31 29.5 28.5 27 30 28 25 23 20 
Project Office   7  8.5 8 7.5 7 6.5 10 9 8 7 6 
CM/QA   7  8.5 8 8 8 7.5 10 9 9 9 8 
Manuals   7  8 8 7.5 7 7 9 9 8 7 7 
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC 

The last two activity tables handle the situation where development or maintenance is 
performed as a level of effort, Tables 55 and 56 respectively.  In other words, there is a fixed 
amount of staff that will be working on the project and the eight major activities are divided 
among the fixed staffing. 

As an example, a maintenance project has 10 staff for 12 months (120 Person-Months), a 
size of 8 KSLOC, and an exponent of 1.20.  From Table 56 we see that Requirements Analysis 
will consume 6% of the staff’s effort or 7.2 PM, Program Design will consume 11% of the 
staff’s effort or 13.2 PM, Programming will consume 39% of the staff’s effort or 46.8 PM, and 
so on. 

 

Table 55. Development Activity Distribution 

 Size Exponent 
 E = 1.05 E = 1.12 E = 1.20 

Size: S I M L S I M L VL S I M L VL 

Requirements 
Analysis 

   
6 

  
5 

 
5 

 
5 

 
5 

 
5 

 
4 

 
4 

 
4 

 
4 

 
4 

Product Design   14  13 13 13 13 13 12 12 12 12 12 
Programming 48 47 46 45 45 45 44.5 44.5 44.5 42 43 43 44 45 
Test Planning   4  4 4 4.5 5 5.5 4 4 5 6 7 
V&V 10 11 12 13 11 12 13 13.5 14 12 13 14 14 14 
Project Office   7  8.5 8 7.5 7 6.5 10 9 8 7 6 
CM/QA   5  6.5 6 6 6 5.5 8 7 7 7 6 
Manuals   6  7 7 6.6 6 6 8 8 7 6 6 
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC 

 

Table 56. Maintenance Activity Distribution 

 Size Exponent 
 E = 1.05 E = 1.12 E = 1.20 

Size: S I M L S I M L VL S I M L VL 

Requirements 
Analysis 

   
7 

  
6.5 

 
6.5 

 
6.5 

 
6 

 
6 

 
6 

 
6 

 
6 

 
5 

 
5 

Product Design   13  12 12 12 12 12 11 11 11 11 11 
Programming 45 44 43 42 41.5 41.5 41 41 41 38 39 39 40 41 
Test Planning   3  3 3 3.5 4 4.5 3 3 4 5 6 
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Table 56. Maintenance Activity Distribution 

 Size Exponent 
 E = 1.05 E = 1.12 E = 1.20 

Size: S I M L S I M L VL S I M L VL 

V&V 10 11 12 13 11 12 13 13.5 14 12 13 14 14 14 
Proect Office   7  8.5 8 7.5 7 6.5 10 9 8 7 6 
CM/QA   5  6.5 6 6 6 5.5 8 7 7 7 6 
Manuals   10  11 11 10.5 10.5 10.5 12 12 11 11 11 
S: 2 KSLOC; I: 8 KSLOC; M: 32 KSLOC; L: 128 KSLOC; VL: 512 KSLOC 

6.5.2 MBASE/RUP Model Activity Distribution Values 

Table 57 shows the resulting COCOMO II MBASE/RUP default phase and activity 
distribution values.  The first two lines show the Rational and COCOMO II schedule percentages 
by phase.  Their only difference is that the Rational percentages sum to 100% for the full set of 
Inception, Elaboration, Construction, and Transition phases (IECT), while COCOMO II counts 
the core Elaboration and Construction phases as 100%.  This is done because the scope and 
duration of the Inception and Transition phases are much more variable, and because less data is 
available to calibrate estimation models for these phases.  For COCOMO II, this means that the 
current model covering the Elaboration and Construction phases is considerably more accurate 
and robust than we could achieve with counterpart models that would include the Inception 
and/or Transition phases.   

Lines 1 and 2 in Table 57 show the Rational and COCOMO II phase distributions for the 
project’s schedule in months.  Lines 3 and 4 in Table 57 show the corresponding phase 
distributions for effort.  The sum of the COCOMO II percentages for the total IECT project span 
is 125% for schedule and 118% for effort. 

Table 57. COCOMO II MBASE/RUP Phase and Activity Distribution Values 

  Development  Total Total 
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Rational Schedule 10 30 50 10 100   
COCOMO II Schedule 12.5 37.5 62.5 12.5  125  
Rational Effort 5 20 65 10 100   
COCOMO II Effort 6 24 76 12  118 100 
Activity % of phase / IECT 100 100 100 100 118 118 100 
Management 14 12 10 14 12 13 11 
Environment / CM 10 8 5 5 12 7 6 
Requirements 38 18 8 4 12 13 12 
Design 19 36 16 4 18 22 17 
Implementation 8 13 34 19 29 32 24 
Assessment 8 10 24 24 29 24 22 
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Table 57. COCOMO II MBASE/RUP Phase and Activity Distribution Values 

  Development  Total Total 
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Deployment 3 3 3 30 6 7 8 

Lines 6 to 12 in Table 57 show the default percentage of effort by activity for each of the 
MBASE/RUP phases.  For example, the Management activities are estimated to consume 14% of 
the effort in the Inception phase, 12% in the Elaboration phase, 10% in Construction, and 14% in 
Transition.  For the total IECT span, the Management activities consume 

(14%)(6%) + (12%)(24%) + (10%)(76%) + (14%)(12%) = 13% 

This sum is slightly larger but quite comparable to the IECT percentage of 12% derived 
from Royce’s Table 10-1.  The WBS definitions in Tables 49 and 50 are sufficiently similar that 
the values in Table 57 can be applied equally well to both. 

These values can be used to determine draft project staffing plans for each of the phases.  
For example, suppose there was a 100 KSLOC software system that had an estimated 
development effort of 466 PM and an estimated schedule of 26 months.  From lines 2 and 4 of 
Table 57, we can compute the estimated schedule and effort of the Construction phase as:  

Schedule: (26 Mo.) (.625) = 16.25 Mo. 

Effort: (466 PM) (.76) = 354 PM 

The average staff level of the Construction phase is thus: 

354 PM/ 16.25 Mo. = 21.8 persons. 

We can then use lines 6-12 of Table 57 to provide a draft estimate of what these 21.8 
persons will be doing during the Construction phase.  For example, the estimated average 
number of personnel performing Management activities is: 

(21.8 persons) (.10) = 2.2 persons 

Table 58 shows the full set of draft activity estimates for the Construction phase. 

Table 58. Example Staffing Estimate for Construction Phase 

Activity Percentage Average Staff 

Total  100 21.8 
Management 10 2.2 
Environment 5 1.1 
Requirements 8 1.7 
Design 16 3.5 
Implementation 34 7.4 
Assessment 24 5.2 
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Table 58. Example Staffing Estimate for Construction Phase 

Activity Percentage Average Staff 

Deployment 3 0.7 

These staffing estimates can be used for other purposes as well.  When multiplied by 
associated average labor costs for activity categories, they can be used as starting points for 
project WBS and budget allocations, or for earned values associated with phase deliverables. 

It is important to understand that these numbers are just draft default starting points for 
the actual numbers you use to manage your project.  Every project will have special 
circumstances which should be considered in adjusting the draft values (see also [Royce 1998; p. 
218; Kruchten 1999; pp.118-119; Jacobson et al. 1999; p. 336]).  For example, an ultra-reliable 
product will have higher Assessment efforts and costs; a project with a stable environment 
already in place will have lower up-front Environment efforts and costs.  The COCOMO II 
research agenda includes activities to provide further guidelines for adjusting the phase and 
activity distributions to special circumstances.  Even then, however, the estimated phase and 
activity distribution numbers should be subject to critical review.  As with other COCOMO II 
estimates, the default phase and activity distribution estimates should be considered as a stimulus 
to thought, and not as a substitute for thought. 

6.6 Definitions and Assumptions 

COCOMO II’s definitions and assumptions are similar to those for COCOMO 81 
[Boehm 1981; pp. 58-61], but with some differences.  Here is a summary of similarities and 
differences. 

1. Sizing.  COCOMO 81 just used Delivered Source Instructions for sizing.  COCOMO 
II uses combinations of Function Points (FP) and Source Lines of Code for the Early 
Design and Post-Architecture models, with counting rules in [IFPUG 1994] for FP 
and Table 63 for SLOC. 

2. Development Periods Included.  For the Waterfall process model, COCOMO II uses 
the same milestone end points (Software Requirements Review to Software 
Acceptance Review) as COCOMO 81.  For the MBASE/RUP process model, 
COCOMO II uses the Life Cycle Objectives and Initial Operational Capability 
milestone as end points for counting effort and schedule.  Details for both are in 
Section 6.2. 

3. Project Activities Included.  For the Waterfall process model, COCOMO II includes 
the same activities as did COCOMO 81.  For the MBASE and RUP process models, 
the Work Breakdown Structures in Section 6.4 define the project activities included 
by phase.  For all the models, all software development activities such as 
documentation, planning and control, and configuration management (CM) are 
included, while database administration is not.  For all the models, the software 
portions of a hardware-software project are included (e.g., software CM, software 
project management) but general CM and management are not.  Both models have 
add-on efforts for a front-end phase (Plans and Requirements for COCOMO 81; 
Inception for (MBASE/RUP).  COCOMO II differs from COCOMO 81 in having 
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add-on efforts for a back-end Transition phase, including conversion, installation, and 
training.  As discussed in Section 6.3 the size of these add-on efforts can vary a great 
deal, and their effort estimates should be adjusted for particularly small or large add-
on endeavors. 

4. Labor categories included.  COCOMO 81 and COCOMO II estimates both use the 
same definitions of labor categories included as direct-charged project effort vs. 
overhead effort.  Thus, they include project managers and program librarians, but 
exclude computer center operators, personnel-department personnel, secretaries, 
higher management, janitors, and so on.  

5. Dollar Estimates.  COCOMO 81 and COCOMO II avoid estimating labor costs in 
dollars because of the large variations between organizations in what is included in 
labor costs, e.g. unburdened (by overhead cost), burdened, including pension plans, 
office rental, and profit margin.  Person months are a more stable quantity than 
dollars given current inflation rates and international money fluctuations. 

6. Person-month definition. A COCOMO PM consists of 152 hours of working time. 
This has been found to be consistent with practical experience with the average 
monthly time off because of holidays, vacation, and sick leave.  To convert a 
COCOMO estimate in person-months to other units, use the following: 

 
Person-hours:  multiply by 152 
Person-days:   multiply by 19 
Person-years:  divide by 12 

 

Some implementations, such as USC COCOMO II, provide an adjustable parameter for 
the number of person-hours per person-month.  Thus, if you enter 137 (10% less) for this 
parameter, USC COCOMO II will increase your person-month estimate by 10%, and calculate 
an appropriately longer development schedule. 
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7. Model Calibration to the Local Environment 

Studies of the data used to calibrate all the parameters of the COCOMO II Post-
Architecture model have shown the model to be significantly more accurate when calibrated to 
an organization.  All that was done in the study was to calibrate the constant, A, in the effort 
estimation equation.  This is simple enough to do that it can be performed with a calculator, 
spreadsheet, or a statistical regression tool. 

The intent of calibration is to take the productivity and activity distributions of the local 
development environment into account.  Figure 7 is a fictitious example of data from 8 projects.  
The effect of calibrating the constant A is to raise or lower the fitted line from the “out-of-the-
box” COCOMO estimates to estimates that reflect local conditions. 

Figure 7. Difference Between COCOMO II and Local Calibrations 

Calibration to the local environment consists of adjusting the constant, A, in the model.  
Only the calibration of A is discussed here; however for calibration of A and E see Chapter 4 in 
[Boehm et al. 2000].  The applicable portion of Equation 1 is repeated here for this discussion. 

 ∏
=

××=
n

1i
i

E
NS EMSizeAPM  

There is more than one method to calibrate the constant A (see other examples in [Boehm 
1981; Chapter 29; Boehm et al. 2000; Chapter 4].  The technique described here uses natural 
logs.  It is recommended that at least 5 data points from projects be used in calibrating the 
constant A. 
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As an example, the table below shows eight projects.  The data needed is the actual effort 
(PMactual) that was expended between the end of Requirements Analysis and the end of software 
Integration and Test.  The activities should be the same as those discussed in Section 6.4.  The 
end-product size, Scale Factors, and Cost Drivers are also needed.  An unadjusted estimated is 
created using Equation 1 without the constant A.  Next, natural logs (ln) are taken of the actual 
effort and unadjusted estimate.  For each project, the difference between the log of the actual 
effort and the log of the unadjusted estimate are determined.  The average of the differences, X, 
will determine the constant A by taking the anti-log of the average: A = eX. 

 

Table 59. Example of Local Calibration of A 
 

PMactual 

 

KSLOC 

 

ΠEMi 

 

E 
Unadjusted 

Estimate 

 

ln(PMactual) 
ln(Unadjusted 

Estimate) 

 

Difference 

1854.6 134.5 1.89 1.20 686.7 7.53 6.53 0.99 
258.5 132.0 0.49 1.08 94.3 5.55 4.55 1.01 
201.0 44.0 1.06 1.13 77.7 5.30 4.35 0.95 
58.9 3.6 5.05 1.09 20.3 4.08 3.01 1.07 

9661.0 380.8 3.05 1.18 3338.8 9.18 8.11 1.06 
7021.3 980.0 0.92 1.16 2753.5 8.86 7.92 0.94 
91.7 11.2 2.45 1.15 38.9 4.52 3.66 0.86 
689.7 61.6 2.38 1.17 301.1 6.54 5.71 0.83 

      X= 0.96 
      A= 2.62 

 

This example shows that instead of using the COCOMO II.2000 constant of A = 2.94, a 
local constant of 2.62 should be used for estimating software projects in the local development. 

In addition to calibrating the estimation equations, the distribution of the estimates should 
be calibrated too.  Recall the distribution of effort in Section 6.4.  This may be different for the 
local environment due to the use of different development methodologies and organizational 
processes. 

The table below is an example of a collection of effort data by lifecycle phase and by 
activity.  This table could be expanded to cover all activities and phases of the local development 
lifecycle.  Even if the local activities are not all covered by the COCOMO effort estimate the 
information will still be useful in planning and tracking project progress. 
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Table 60. Example of Local Effort Data Collection 

 Effort by Lifecycle Phase in Person-Months 
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Management 3.72 6.24 7.08 0 9.96 0 27.00 
Requirements 
Engineering 

3.72 5.88 4.20 0 7.08 0 20.88 

Test Engineering 3.72 7.08 12.24 10.56 11.4 5.16 50.16 
Software 
Engineering (A+B) 

19.56 26.88 46.92 3.96 65.28 6.84 169.44 

Subsystem A 13.20 16.44 34.56 3.00 42.48 5.76 115.44 
Subsystem B 6.36 10.44 12.36 0.96 22.80 1.08 54.00 
Support 3.96 4.92 12.00 4.80 10.56 0 36.24 
Total Effort by 
Phase 

34.68 51.00 82.44 19.32 104.28 12.00 303.72 

The data from the above table can be converted into phase distribution percentages.  This 
is used with the calibrated COCOMO II model to derive estimates broken down by phase and 
activity. 

Table 61. Example of Local Effort Distribution 

 Percentage Effort by Lifecycle Phase 
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Management 1.22% 2.05% 5.61% 0.00% 8.89% 
Requirements Engineering 1.22% 1.94% 3.71% 0.00% 6.87% 
Test Engineering 1.22% 2.33% 7.78% 5.18% 16.52% 
Software Engineering 6.44% 8.85% 36.94% 3.56% 55.79% 
Support 1.30% 1.62% 7.43% 1.58% 11.93% 
Total Effort by Phase 11.42% 16.79% 61.48% 10.31% 100.00% 

Calibration of the model to the local environment is an important activity.  The results of 
the calibration can be an important input to planning and quantitative management practices. 
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8. Summary 

8.1 Models 

8.1.1 Sizing equations 

The Post-Architecture and Early Design models use the same sizing equations.  Sizing is 
summarized below and discussed in Section 2. 
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Symbol Description 

AA Assessment and Assimilation 
AAF Adaptation Adjustment Factor 
AAM Adaptation Adjustment Modifier 
CM Percent Code Modified 
DM Percent Design Modified 
IM Percent of Integration Integration Required for the Adapted Software 

KSLOC Thousands of Source Lines of Code 
REVL Requirements Evolution and Volatility 

SU Software Understanding 
UNFM Programmer Unfamiliarity with Software 

8.1.2 Post-Architecture Model equations 

This model is explained in Section 3. 
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Symbol Description 

A Effort coefficient that can be calibrated, currently set to 2.94 



Version 2.1  72 

© 1995 – 2000 Center for Software Engineering, USC 

AT Percentage of the code that is re-engineered by automatic translation 
ATPROD Automatic translation productivity 

B Scaling base-exponent that can be calibrated, currently set to 0.91 
E Scaling exponent described in Section 3.1 

EM 17 Effort Multipliers discussed in Section 3.2.1 
PM Person-Months effort from developing new and adapted code 

PMAuto Person-Months effort from automatic translation activities discussed in Section 2.6. 
SF 5 Scale Factors discussed in Section 3.1 

8.1.3 Early Design Model equations 

This model is explained in Section 3. 

 Auto
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Symbol Description 

A Effort coefficient that can be calibrated, currently set to 2.94 
E Scaling exponent described in Section 3.1 

EM 7 Effort Multipliers discussed in Section 3.2.2 
PM Person-Months effort from developing new and adapted code 

PMAuto Person-Months effort from automatic translation activities discussed in Section 2.6. 
SF 5 Scale Factors discussed in Section 3.1 

8.1.4 Time to Develop equation 

This model is explained in Section 4. 
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Symbol Description 

B The scaling base-exponent for the effort equation, currently set to 0.91 
C Coefficient that can be calibrated, currently set to 3.67 
D Scaling base-exponent that can be calibrated, currently set to 0.28 
E The scaling exponent for the effort equation 

PMNS Person-Months estimated without the SCED cost driver (Nominal Schedule) 
SCED Required Schedule Compression 
TDEV Time to Develop in calendar months 
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8.2 Rating Scales 

The rating scales for the scale factors are given below and discussed in Section 3.1. 

Scale 
Factors 

 

Very Low 

 

Low 

 

Nominal 

 

High 

 

Very High 

 

Extra High 

 

PREC 

thoroughly 
unpreceden
ted 

largely 
unpreceden
ted 

somewhat 
unpreceden
ted 

generally 
familiar 

largely 
familiar 

thoroughly 
familiar 

FLEX 
rigorous occasional 

relaxation 
some 
relaxation 

general 
conformity 

some 
conformity 

general 
goals 

RESL 
little (20%) some (40%) often (60%) generally 

(75%) 
mostly 
(90%) 

full (100%) 

 

TEAM 

very difficult 
interactions 

some 
difficult 
interactions 

basically 
cooperative 
interactions 

largely 
cooperative 

highly 
cooperative 

seamless 
interactions 

 The estimated Equivalent Process Maturity Level (EPML) or 

PMAT 
SW-CMM 
Level 1 
Lower 

SW-CMM 
Level 1 
Upper 

SW-CMM 
Level 2 

SW-CMM 
Level 3 

SW-CMM 
Level 4 

SW-CMM 
Level 5 

The rating scales for the Post-Architecture model cost drivers are given below in Table 
62 and discussed in Section 3.2.1.  The cost drivers for the Early Design model are discussed in 
Section 3.2.2 
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Cost 
Drivers 

 

Very Low 

 

Low 

 

Nominal 

 

High 

 

Very High 

 

Extra High 

RELY 
slight 

inconvenienc
e 

low, easily 
recoverable 

losses 

moderate, 
easily 

recoverable 
losses 

high financial 
loss 

risk to human 
life 

 

DATA 
 Testing DB 

bytes / Pgm 
SLOC < 10 

10 ≤ D/P < 
100 

100 ≤ D/P < 
1000 

D/P > 1000  

CPLX see Table 19 

RUSE 
 none across 

project 
across 

program 
across 

product line 
across 
multiple 

product lines 

DOCU 
Many life-

cycle needs 
uncovered 

Some life-
cycle needs 
uncovered. 

Right-sized to 
life-cycle 
needs 

Excessive for 
life-cycle 
needs 

Very 
excessive for 
life-cycle 
needs 

 

TIME 
  ≤ 50% use of 

available 
execution 
time 

70% 85% 95% 

STOR 
  ≤ 50% use of 

available 
storage 

70% 85% 95% 

PVOL 
 major change 

every 12 mo.; 
minor change 
every 1 mo. 

major: 6 mo.; 
minor: 2 wk. 

major: 2 mo.; 
minor: 1 wk. 

major: 2 wk.; 
minor: 2 days 

 

ACAP 
15th 

percentile 
35th 

percentile 
55th 

percentile 
75th 

percentile 
90th 

percentile 
 

PCAP 
15th 

percentile 
35th 

percentile 
55th 

percentile 
75th 

percentile 
90th 

percentile 
 

PCON 
48% / year 24% / year 12% / year 6% / year 3% / year  

APEX ≤ 2 months 6 months 1 year 3 years 6 years  

PLEX ≤ 2 months 6 months 1 year 3 years 6 year  

LTEX ≤ 2 months 6 months 1 year 3 years 6 year  

TOOL 
edit, code, 

debug 
simple, 
frontend, 
backend 
CASE, little 
integration 

basic lifecycle 
tools, 
moderately 
integrated 

strong, 
mature 
lifecycle 
tools, 
moderately 
integrated 

strong, 
mature, 
proactive 
lifecycle 
tools, well 
integrated 
with 
processes, 
methods, 
reuse 
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Cost 
Drivers 

 

Very Low 

 

Low 

 

Nominal 

 

High 

 

Very High 

 

Extra High 

SITE: 

Collo-
cation 

International Multi-city and 
multi-
company 

Multi-city or 
multi-
company 

Same city or 
metro area 

Same 
building or 
complex 

Fully 
collocated 

SITE: 

Com-
muni-
cation 

Some phone, 
mail 

Individual 
phone, FAX 

Narrow-band 
email 

Wide-band 
electronic 
communica-
tion. 

Wide-band 
elect. comm, 
occasional 
video conf. 

Interactive 
multimedia 

SCED 
75% of 
nominal 

85% of 
nominal 

100% of 
nominal 

130% of 
nominal 

160% of 
nominal 

 

8.3 COCOMO II Version Parameter Values 

8.3.1 COCOMO II.2000 Calibration 

The following table, Table 62,  shows the COCOMO II.2000 calibrated values for Post-
Architecture scale factors and effort multipliers. 

Table 62. COCOMO II 2000 Calibrated Post-Architecture Model Values 
Baseline Effort Constants: A = 2.94; B = 0.91 
Baseline Schedule Constants: C = 3.67; D = 0.28 

Driver Symbol VL L N H VH XH 

PREC SF1 6.20 4.96 3.72 2.48 1.24 0.00 
FLEX SF2 5.07 4.05 3.04 2.03 1.01 0.00 
RESL SF3 7.07 5.65 4.24 2.83 1.41 0.00 
TEAM SF4 5.48 4.38 3.29 2.19 1.10 0.00 
PMAT SF5 7.80 6.24 4.68 3.12 1.56 0.00 
RELY EM1 0.82 0.92 1.00 1.10 1.26  
DATA EM2  0.90 1.00 1.14 1.28  
CPLX EM3 0.73 0.87 1.00 1.17 1.34 1.74 
RUSE EM4  0.95 1.00 1.07 1.15 1.24 
DOCU EM5 0.81 0.91 1.00 1.11 1.23  
TIME EM6   1.00 1.11 1.29 1.63 
STOR EM7   1.00 1.05 1.17 1.46 
PVOL EM8  0.87 1.00 1.15 1.30  
ACAP EM9 1.42 1.19 1.00 0.85 0.71  
PCAP EM10 1.34 1.15 1.00 0.88 0.76  
PCON EM11 1.29 1.12 1.00 0.90 0.81  
APEX EM12 1.22 1.10 1.00 0.88 0.81  
PLEX EM13 1.19 1.09 1.00 0.91 0.85  
LTEX EM14 1.20 1.09 1.00 0.91 0.84  
TOOL EM15 1.17 1.09 1.00 0.90 0.78  
SITE EM16 1.22 1.09 1.00 0.93 0.86 0.80 
SCED EM17 1.43 1.14 1.00 1.00 1.00  
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Table 63 shows the COCOMO II.2000 calibrated values for Early Design effort 
multipliers.  The scale factors are the same as for the Post-Architecture model. 

Table 63. COCOMO II.2000 Calibrated Early Design Model Values 
Baseline Effort Constants: A = 2.94; B = 0.91 
Baseline Schedule Constants: C = 3.67; D = 0.28 

Driver Symbol XL VL L N H VH XH 

PERS EM1 2.12 1.62 1.26 1.00 0.83 0.63 0.50 
RCPX EM2 0.49 0.60 0.83 1.00 1.33 1.91 2.72 
PDIF EM3   0.87 1.00 1.29 1.81 2.61 
PREX EM4 1.59 1.33 1.12 1.00 0.87 0.74 0.62 
FCIL EM5 1.43 1.30 1.10 1.0 0.87 0.73 0.62 

RUSE EM6   0.95 1.00 1.07 1.15 1.24 
SCED EM7  1.43 1.14 1.00 1.00 1.00  

8.3.2 COCOMO II.1997 Calibration 

The following table shows the COCOMO II.1997 calibrated values for scale factors and 
effort multipliers. 

 
Baseline Effort Constants: A = 2.45; B = 1.01 
Baseline Schedule Constants: C = 2.66; D = 0.33 

Driver Symbol VL L N H VH XH 

PREC SF1 4.05 3.24 2.43 1.62 0.81 0.00 
FLEX SF2 6.07 4.86 3.64 2.43 1.21 0.00 
RESL SF3 4.22 3.38 2.53 1.69 0.84 0.00 
TEAM SF4 4.94 3.95 2.97 1.98 0.99 0.00 
PMAT SF5 4.54 3.64 2.73 1.82 0.91 0.00 
RELY EM1 0.75 0.88 1.00 1.15 1.39  
DATA EM2  0.93 1.00 1.09 1.19  
RUSE EM3  0.91 1.00 1.14 1.29 1.49 
DOCU EM4 0.89 0.95 1.00 1.06 1.13  
CPLX EM5 0.75 0.88 1.00 1.15 1.30 1.66 
TIME EM6   1.00 1.11 1.31 1.67 
STOR EM7   1.00 1.06 1.21 1.57 
PVOL EM8  0.87 1.00 1.15 1.30  
ACAP EM9 1.50 1.22 1.00 0.83 0.67  
PCAP EM10 1.37 1.16 1.00 0.87 0.74  
PCON EM11 1.24 1.10 1.00 0.92 0.84  
APEX EM12 1.22 1.10 1.00 0.89 0.81  
PLEX EM13 1.25 1.12 1.00 0.88 0.81  
LTEX EM14 1.22 1.10 1.00 0.91 0.84  
TOOL EM15 1.24 1.12 1.00 0.86 0.72  
SITE EM16 1.25 1.10 1.00 0.92 0.84 0.78 
SCED EM17 1.29 1.10 1.00 1.00 1.00  
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8.4 Source Code Counting Rules 

What is a line of source code? This checklist, adopted from the Software Engineering 
Institute [Park 1992], attempts to define a logical line of source code. The intent is to define a 
logical line of code while not becoming too language specific for use in collection data to 
validate the COCOMO 2.0 model. 

Table 64. COCOMO II SLOC Checklist 
Definition Checklist for Source Statements Counts 

Definition name:  Logical Source Statements  Date:_______________ 
   (basic definition)   Originator: COCOMO II 
Measurement unit: Physical source lines     
 Logical source statements √    
Statement type Definition √ Data Array   Includes Excludes 
When a line or statement contains more than one type, 
classify it as the type with the highest precedence. 

    

1 Executable  Order of precedence: 1 √  
2 Nonexecutable    

3 Declarations 2 √  
4 Compiler directives 3 √  
5 Comments    

6 On their own lines 4  √ 
7 On lines with source code 5  √ 
8 Banners and non-blank spacers 6  √ 
9 Blank (empty) comments 7  √ 

10 Blank lines 8  √ 
How produced Definition √ Data array   Includes Excludes 
1 Programmed  √  
2 Generated with source code generators   √ 
3 Converted with automated translators  √  
4 Copied or reused without change  √  
5 Modified  √  
6 Removed   √ 
Origin Definition √ Data array   Includes Excludes 
1 New work: no prior existence  √  
2 Prior work: taken or adapted from    

3 A previous version, build, or release  √  
4 Commercial, off-the-shelf software (COTS), other than libraries   √ 
5 Government furnished software (GFS), other than reuse libraries   √ 
6 Another product   √ 
7 A vendor-supplied language support library (unmodified)   √ 
8 A vendor-supplied operating system or utility (unmodified)   √ 
9 A local or modified language support library or operating system   √ 
10 Other commercial library   √ 
11 A reuse library (software designed for reuse)  √  
12 Other software component or library  √  

Usage Definition √ Data array   Includes Excludes 



Version 2.1  78 

© 1995 – 2000 Center for Software Engineering, USC 

Table 64. COCOMO II SLOC Checklist 
Definition Checklist for Source Statements Counts 

Definition name:  Logical Source Statements  Date:_______________ 
   (basic definition)   Originator: COCOMO II 
1 In or as part of the primary product  √  
2 External to or in support of the primary product   √ 
Delivery Definition √ Data array   Includes Excludes 
1 Delivered:    

2 Delivered as source  √  
3 Delivered in compiled or executable form, but not as source   √ 

4 Not delivered:    
5 Under configuration control   √ 
6 Not under configuration control   √ 

Functionality Definition √ Data array   Includes Excludes 
1 Operative  √  
2 Inoperative (dead, bypassed, unused, unreferenced, or 

unaccessible): 
   

3 Functional (intentional dead code, reactivated for special 
purposes) 

 √  

4 Nonfunctional (unintentionally present)   √ 
Replications Definition √ Data array   Includes Excludes 
1 Master source statements (originals)  √  
2 Physical replicates of master statements, stored in the master code  √  
3 Copies inserted, instantiated, or expanded when compiling or linking   √ 
4 Postproduction replicates—as in distributed, redundant, or 

reparameterized systems 
  √ 

Development status Definition √ Data array   Includes Excludes 
Each statement has one and only one status, usually that of its 
parent unit. 

   

1Estimated or planned   √ 
2 Designed   √ 
3 Coded   √ 
4 Unit tests completed   √ 
5 Integrated into components   √ 
6 Test readiness review completed   √ 
7 Software (CSCI) tests completed   √ 
8 System tests completed  √  
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Table 64. COCOMO II SLOC Checklist 
Definition Checklist for Source Statements Counts 

Definition name:  Logical Source Statements  Date:_______________ 
   (basic definition)   Originator: COCOMO II 
Language Definition √ Data array   Includes Excludes 

List each source language on a separate line.    
1 Separate totals for each language  √  
Clarifications Definition √ Data array   Includes Excludes 

(general)    
1 Nulls, continues, and no-ops  √  
2 Empty statements, e.g. “;;” and lone semicolons on separate lines   √ 
3 Statements that instantiate generics  √  
4 Begin...end and {...} pairs used as executable statements  √  
5 Begin...end and {...} pairs that delimit (sub)program bodies   √ 
6 Logical expressions used as test conditions   √ 
7 Expression evaluations used as subprograms arguments   √ 
8 End symbols that terminate executable statements   √ 
9 End symbols that terminate declarations or (sub)program bodies   √ 
10 Then, else, and otherwise symbols   √ 
11 Elseif statements  √  
12 Keywords like procedure division, interface, and implementation  √  
13 Labels (branching destinations) on lines by themselves   √ 
Clarifications Definition √ Data array   Includes Excludes 

(language specific)    
Ada    

1 End symbols that terminate declarations or (sub)program bodies   √ 
2 Block statements, e.g. begin...end  √  
3 With and use clauses  √  
4 When (the keyword preceding executable statements)   √ 
5 Exception (the keyword, used as a frame header)  √  
6 Pragmas  √  

Assembly    
1 Macro calls  √  
2 Macro expansions   √ 

C and C++    
1 Null statement, e.g. “;” by itself to indicate an empty body   √ 
2 Expression statements (expressions terminated by semicolons)  √  
3 Expression separated by semicolons, as in a “for” statement  √  
4 Block statements, e.g. {...} with no terminating semicolon  √  
5 “;”, “;” or “;” on a line by itself when part of a declaration   √ 
6 “;” or “;” on a line by itself when part of an executable statement   √ 
7 Conditionally compiled statements (#if, #ifdef, #ifndef)  √  
8 Preprocessor statements other than #if, #ifdef, and #ifndef  √  

CMS-2    
1 Keywords like SYS-PROC and SYS-DD  √  

COBOL    
1 “PROCEDURE DIVISION”, “END DECLARATIVES”, etc.  √  
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Table 64. COCOMO II SLOC Checklist 
Definition Checklist for Source Statements Counts 

Definition name:  Logical Source Statements  Date:_______________ 
   (basic definition)   Originator: COCOMO II 
FORTRAN    

1 END statements  √  
2 Format statements  √  
3 Entry statements  √  

Pascal    
1 Executable statements not terminated by semicolons  √  
2 Keywords like INTERFACE and IMPLEMENTATION  √  
3 FORWARD declarations  √  

 
Summary of Statement Types 

Executable statements 
Executable statements cause runtime actions. They may be simple statements such as 
assignments, goto’s, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls, no-
ops, empty statements, and FORTRAN’s END. Or they may be structured or compound statements, 
such as conditional statements, repetitive statements, and “with” statements. Languages like Ada, C, 
C++, and Pascal have block statements [begin...end and {...}] that are classified as executable when 
used where other executable statements would be permitted. C and C++ define expressions as 
executable statements when they terminate with a semicolon, and C++ has a <declaration> 
statement that is executable. 
Declarations 
Declarations are nonexecutable program elements that affect an assembler’s or compiler’s 
interpretation of other program elements They are used to name, define, and initialize; to specify 
internal and external interfaces; to assign ranges for bounds checking; and to identify and bound 
modules and sections of code. Examples include declarations of names, numbers, constants, 
objects, types, subtypes, programs, subprograms, tasks, exceptions, packages, generics, macros, 
and deferred constants. Declarations also include renaming declarations, use clauses, and 
declarations that instantiate generics. Mandatory begin...end and {...} symbols that delimit bodies of 
programs and subprograms are integral parts of program and subprogram declarations. Language 
superstructure elements that establish boundaries for different sections of source code are also 
declarations. Examples include terms such as PROCEDURE DIVISION, DATA DIVISION, 
DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION, SYS-PROC and SYS-
DD. Declarations, in general, are never required by language specifications to initiate runtime 
actions, although some languages permit compilers to implement them that way. 
Compiler Directives 
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems) to 
perform special actions. Some, such as Ada’s pragma and COBOL’s COPY, REPLACE, and USE, 
are integral parts of the source language. In other languages like C and C++, special symbols like # 
are used along with standardized keywords to direct preprocessor or compiler actions. Still other 
languages rely on nonstandardized methods supplied by compiler vendors. In these languages, 
directives are often designated by special symbols such as #, $, and {$}. 
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Acronyms and Abbreviations 
3GL Third Generation Language 
4GL Fourth Generation Language 
A Effort coefficient that can be calibrated 
ATPROD Automatic translation productivity 
AA Percentage of reuse effort due to assessment and assimilation 
AAF Adaptation Adjustment Factor, a component of the overall Adaptation 

Adjustment Multiplier for reuse sizing, including the effects of Design 
Modified, Code Modified, and Integration Modified factors (COCOMO 
Reuse model).  

AAM  Adaptation Adjustment Multiplier for reuse sizing (COCOMO Reuse 
model) 

ACAP Analyst Capability Cost Driver 
APEX Applications Experience Cost Driver 
API Application Program Interface 
ASLOC Adapted Source Lines of Code, used in reuse sizing (COCOMO Reuse 

model) 
AT Automated Translation 
B The scaling base-exponent for the effort equation that can be calibrated 
C Coefficient that can be calibrated 
CASE Computer Aided Software Engineering 
CCB Change Control Board 
CD Commercial technology and DoD general practice 
CDR Critical Design Review milestone (Waterfall development process) 
CII COCOMO II.2000 
CM  Percentage of code modified during reuse (COCOMO Reuse model) 
CM Configuration Management 
CMM Capability Maturity Model 
COCOMO  Constructive Cost Model; refers collectively to COCOMO 81 and 

COCOMO II. 
COCOMO 81  The original version of the Constructive Cost Model, published in 1981 
COCOMO II  The revised version of the Constructive Cost Model, first released in 1997 
COCOMO II.1997  The original year 1997 calibration of the revised Constructive Cost Model 
COCOMO II.2000  The year 2000 calibration of the revised Constructive Cost Model 
COCOTS Constructive COTS cost model 
COPROMO Constructive Productivity improvement Model 
COPSEMO Constructive Phased Schedule & Effort Model 
COQUALMO Constructive Quality Model 
CORADMO Constructive RAD cost model 
Cost Driver  A particular characteristic of the software development that has a 

multiplicative effect of increasing or decreasing the amount of 
development effort, e.g. required product reliability, execution time 
constraints, project team application experience. 

COTS Commercial-off-the-shelf 
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CPLX Product Complexity Cost Driver 
D The scaling base-exponent for the schedule equation that can be calibrated 
DATA Database Size Cost Driver 
DBMS Database Management System 
DM Percentage of design modified during reuse (COCOMO Reuse model) 
DOCU Documentation Match to Lifecycle Needs Cost Driver 
E The scaling exponent for the schedule equation that can be calibrated 
EAF Effort Adjustment Factor – product of Cost Drivers 
EM Effort  Multiplier; a value associated with a specific Cost Driver rating 
ESLOC Equivalent Source Lines of Code for reuse software (COCOMO Reuse 

model) 
F Scaling exponent for the schedule equation 
FCIL Facilities 
FLEX Development Flexibility scale factor 
FP Function Points 
FSP Full-time Software Personnel 
GUI Graphical User Interface 
H High driver rating 
IFPUG International Function Point Users Group 
IM Integration Modified: percentage of integration and test redone during 

reuse (COCOMO Reuse model) 
IOC Initial Operational Capability milestone (MBASE/RUP development 

process) 
IECT Inception, Elaboration, Construction, and Transition phases for the 

MBASE/RUP lifecycle model 
IRR Initial Readiness Review milestone (MBASE/RUP development process) 
KASLOC Thousands of Adapted Source Lines of Code (COCOMO Reuse model) 
KESLOC Thousands of Equivalent Source Lines of Code (COCOMO Reuse model) 
KNCSS Thousands of Non-Commented Source Statements 
KSLOC Thousands (K) of Source Lines of Code 
L Low driver rating 
LCA Life cycle Architecture milestone (MBASE/RUP development process) 
LCO Life cycle Objectives milestone (MBASE/RUP development process) 
LCR Life cycle Concept Review milestone (MBASE/RUP development 

process) 
LEXP Programming Language Experience, used in COCOMO 81 
LOC Lines of Code 
LTEX Language and Tool Experience Cost Driver 
MAF Maintenance Adjustment Factor; used to account for software 

understanding and unfamiliarity effects (COCOMO Reuse and 
Maintenance models) 

MBASE Model-Based (System) Architecting and Software Engineering 
MCF Maintenance Change Factor: fraction of legacy code modified or added 

(COCOMO Maintenance model) 
Mo Months 
N Nominal driver rating 
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NIST National Institute of Standards and Technology 
PCAP Programmer Capability Cost Driver 
PCON Personnel continuity Cost Driver 
PDIF Platform Difficulty: composite Cost Driver for Early Design model 
PDR Product Design Review milestone (Waterfall development process) 
PERS Personnel Capability: composite Cost Driver for Early Design model 
PLEX Platform Experience Cost Driver 
PM Person-Months; a person month is the amount of time one person spends 

working on the software development project for one month; in 
COCOMO normally assumed to be 152 person-hours. 

PMAUTO Person-months effort from automatic translation activities 
PMNS Person-months estimated without the SCED cost driver (Nominal 

Schedule) 
PMAT Process Maturity scale factor 
PR Productivity Range 
PREC Precedentedness scale factor 
PRED(X) Prediction Accuracy: percentage of estimates within X% of the actuals 
PREX Personnel Experience: composite Cost Driver for Early Design model 
PROD Productivity rate 
PVOL Platform Volatility Cost Driver 
RAD Rapid Application Development; applies to both schedule and effort 
RCPX Product Reliability and Complexity: composite Cost Driver for Early 

Design model 
RELY Required Software Reliability Cost Driver 
RESL Architecture and Risk Resolution scale factor 
REVL Requirements Evolution and Volatility: size adjustment factor 
ROI Return on Investment 
RUP Rational Software Corporation’s Unified Process 
RUSE Developed for Reusability Cost Driver 
RVOL Requirements Volatility, used in COCOMO 81 
SAR Software Acceptance Review milestone (Waterfall development process) 
Scale Factor A particular characteristic of the software development that has an 

exponential effect of increasing or decreasing the amount of development 
effort, e.g. precedentedness, process maturity. 

SCED Required Development Schedule: project-level Cost Driver 
SCED% Required Schedule Compression percentage 
SECU Classified Security Application, used in Ada COCOMO 
SEI Software Engineering Institute 
SF Scale Factor; a value for a specific rating of a Scale Factor 
SITE Multi-site Development Cost Driver 
SLOC Source Lines of Code 
SRR Software Requirements Review milestone (Waterfall development 

process) 
STOR Main Storage Constraint Cost Driver 
SU Percentage of reuse effort due to software understanding (COCOMO 

Reuse model) 
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SW-CMM Software Capability Maturity Model 
T&E Test and Evaluation 
TCR Transition Completion Review milestone (MBASE/RUP development 

process) 
TDEV Time to Develop (in months) 
TEAM Team Cohesion scale factor 
TIME Execution Time Constraint Cost Driver 
TOOL Use of Software Tools Cost Driver 
UNFM Programmer Unfamiliarity; factor used in reuse and maintenance 

estimation (COCOMO Reuse and Maintenance models) 
USAF/ESD U.S. Air Force Electronic Systems Division 
UTC Unit Test Completion milestone (Waterfall development process) 
VH Very High driver rating 
VL Very Low driver rating 
XH Extra High driver rating 
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