
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 18

Indexing
Structures for

Files

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

n Utilisé conformément aux conditions établies par
les auteurs

n Adapté et annoté par Luc Lavoie

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths

n A single-level index is an auxiliary file that makes
it more efficient to search for a record in the data
file.

n The index is usually specified on one field of the
file (although it could be specified on several
fields).

n One form of an index is a file of entries
<field value, pointer to record>,

which is ordered by field value
n The index is called an access path on the field.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths (cont.)

n The index file usually occupies considerably less disk
blocks than the data file because its entries are much
smaller.

n A binary search on the index yields a pointer to the file
record (or file block containing the record).

n Indexes can also be characterized as dense or sparse.
n A dense index has an index entry for every search key

value (and hence every record) in the data file.
n A sparse (or nondense) index, on the other hand, has

index entries for only some of the search values

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths (cont.)
n Example: Given the following data file

EMPLOYEE (NAME, SSN, ADDRESS, JOB, SAL, ...)

n Suppose that:
n record size R = 150 bytes;
n block size B = 512 bytes;
n number or records r = 30 000 records.

n Then, we get:
n blocking factor Bfr

= B div R
= 512 div 150
= 3 records/block

n number of file blocks b
= ceiling (r/Bfr)
= ceiling (30 000 / 3)
= 10 000 blocks

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths (cont.)
n For an index on the SSN field, assume

n field size VSSN= 9 bytes,
n record pointer size PR= 7 bytes.

n Then:
n index entry size RI

= (VSSN+ PR) = (9+7) = 16 bytes,
n index blocking factor BfrI

= B div RI = 512 div 16 = 32 entries/block,
n number of index blocks b

= (r/ BfrI) = ceiling (30000/32) = 938 blocks,
n binary search needs log2b

= log2938 = 10 block accesses.
n This is compared to an average linear search cost of:

n (b/2) = 30000/2 = 15000 block accesses.
n or, if the file records are ordered, a binary search cost of:

n log2b= log230000= 15 block accesses.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Single-Level Indexes

n Primary Index
n Defined on an ordered data file.
n The data file is ordered on a key field.
n Includes one index entry for each block in the data file; the

index entry has the key field value for the first record in the
block, which is called the block anchor.

n A similar scheme can use the last record in a block.
n A primary index is a nondense (sparse) index, since it

includes an entry for each disk block of the data file and the
keys of its anchor record rather than for every search value.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Primary Index
on the Ordering
Key Field

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Single-Level Indexes

n Clustering Index
n Defined on an ordered data file.
n The data file is ordered on a non-key field unlike primary

index, which requires that the ordering field of the data file
have a distinct value for each record.

n Includes one index entry for each distinct value of the field;
the index entry points to the first data block that contains
records with that field value.

n It is another example of nondense index where Insertion
and Deletion is relatively straightforward with a clustering
index.

Hum, revoyons voir la définition
de dense et non dense

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

A Clustering
Index
Example

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Another
Clustering
Index
Example

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Single-Level Indexes
n Secondary Index

n A secondary index provides a secondary means of
accessing a file for which some primary access already
exists.

n The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

n The index is an ordered file with two fields.
n The first field is of the same data type as some
non-ordering field of the data file that is an indexing field.

n The second field is either a block pointer or a record pointer.
n There can be many secondary indexes (and hence, indexing

fields) for the same file.
n Includes one entry for each record in the data file; hence, it

is a dense index.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of
a Dense
Secondary
Index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of
a Secondary
Index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Properties of Index Types

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-Level Indexes

n Because a single-level index is an ordered file, we can
create a primary index to the index itself.
n In this case, the original index file is called the first-level

index and the index to the index is called the second-level
index.

n We can repeat the process, creating a third, fourth, ..., top
level until all entries of the top level fit in one disk block.

n A multi-level index can be created for any type of first-
level index (primary, secondary, clustering) as long as the
first-level index consists of more than one disk block.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

A Two-Level
Primary Index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-Level Indexes

n Such a multi-level index is a form of search tree
n However, insertion and deletion of new index

entries is a severe problem because every level of
the index is an ordered file.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

A Node in a Search Tree with Pointers to
Subtrees Below It

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees

n Most multi-level indexes use B-tree or B+-tree data
structures because of the insertion and deletion problem
n This leaves space in each tree node (disk block) to allow for

new index entries
n These data structures are variations of search trees that

allow efficient insertion and deletion of new search values.
n In B-Tree and B+-Tree data structures, each node

corresponds to a disk block
n Each node is kept between half-full and completely full

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees (cont.)

n An insertion into a node that is not full is quite
efficient
n If a node is full the insertion causes a split into two

nodes
n Splitting may propagate to other tree levels
n A deletion is quite efficient if a node does not

become less than half full
n If a deletion causes a node to become less than

half full, it must be merged with neighboring
nodes

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Difference between B-tree and B+-tree

n In a B-tree, pointers to data records exist at all
levels of the tree

n In a B+-tree, all pointers to data records exists at
the leaf-level nodes

n A B+-tree can have less levels (or higher capacity
of search values) than the corresponding B-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

B-tree Structures

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

The Nodes of a B+-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of
an Insertion
in a B+-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of
a Deletion in
a B+-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Summary

n Types of Single-level Ordered Indexes
n Primary Indexes
n Clustering Indexes
n Secondary Indexes

n Multilevel Indexes
n Dynamic Multilevel Indexes Using B-Trees

and B+-Trees
n Indexes on Multiple Keys

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Facteurs à considérer dans la
construction du schéma physique

n Requêtes (et transactions)
n attributs de jointure (clés référentielles, clés

candidates, autres)
n attributs de comparaison (égalité,

ordonnancement, intervalles)
n type (consultation, insertion, retrait, modification)
n exigence de performance
n fréquence d’utilisation

n Index
n encombrement
n nombre d’opérations requises par type de fonction

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Facteurs de mise en oeuvre d’un
schéma physique

n Établissement de critères quantifiés
n Automatisation de la mise en oeuvre
n Mise à jour permanente des facteurs de décision
n Établissement d’intervalle de stabilité

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Les colles du prof!

n Tout au long de cette présentation, on s’est
fondée sur des hypothèses implicites –
lesquelles ?

n Sont-elles encore toutes d’actualité ?
n L’élimination des contraintes découlant des

hypothèses caduques change-t-elle les choix
privilégies pour la représentation et l’indexation
des relations ?

