Chapter 18

Indexing
Structures for
Files

Addison-Wesley
is an imprint of

'R

Sixth Edition
Fundamentals of

Database

Systems

Elmasri» Navathe

P EARS ON Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

= Utilisé conformément aux conditions établies par
les auteurs

s Adapté et annote par Luc Lavoie

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Eimasri and Shamkant Navathe

Indexes as Access Paths

= A single-level index is an auxiliary file that makes
It more efficient to search for a record in the data
file.

= [he index is usually specified on one field of the

file (although it could be specified on several
fields).

s One form of an index is a file of entries
<field value, pointer to record>,
which is ordered by field value

s [he index is called an access path on the field.

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths (cont.)

= The index file usually occupies considerably less disk
blocks than the data file because its entries are much
smaller.

= A binary search on the index yields a pointer to the file
record (or file block containing the record).

= |Indexes can also be characterized as dense or sparse.

= A dense index has an index entry for every search key
value (and hence every record) in the data file.

= A sparse (or nondense) index, on the other hand, has
index entries for only some of the search values

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Eimasri and Shamkant Navathe

Indexes as Access Paths (cont.)

s Example: Given the following data file

EMPLOYEE (NAME, SSN, ADDRESS, JOB, SAL, ...)

s Suppose that:
= record size R = 150 bytes;
= block size B = 512 bytes;
= number or records r = 30 000 records.

= Then, we get:

= blocking factor Bfr
=B divR
=512 div 150
= 3 records/block

= number of file blocks b
= ceiling (r/Bfr)
= ceiling (30 000 / 3)
=10 000 blocks

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Eimasri and Shamkant Navathe

Indexes as Access Paths (cont.)

= For anindex on the SSN field, assume
n field size Vgq= 9 bytes,
= record pointer size Pzx= 7 bytes.

= [hen:
= Index entry size R,
= (Vssnt Pr) = (9+7) = 16 bytes,
= index blocking factor Bifr,
=B div R, =512 div 16 = 32 entries/block,

= humber of index blocks b
= (r/ Bfr,) = ceiling (30000/32) = 938 blocks,

= binary search needs log,b
= 109,938 = 10 block accesses.

= Thisis compared to an average linear search cost of:
= (b/2) =30000/2 = 15000 block accesses.

= or, if the file records are ordered, a binary search cost of:
= log,b= 10g,30000= 15 block accesses.

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Single-Level Indexes

= Primary Index

Addison-Wesley
is an imprint of

Defined on an ordered data file.
The data file is ordered on a key field.

Includes one index entry for each block in the data file; the
index entry has the key field value for the first record in the
block, which is called the block anchor.

A similar scheme can use the /last record in a block.

A primary index is a nondense (sparse) index, since it
includes an entry for each disk block of the data file and the
keys of its anchor record rather than for every search value.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Primary Index
on the Ordering
Key Field

Addison-Wesley
is an imprint of

Figure 18.1
Primary index on the ordering key field of
the file shown in Figure 17.7.

Index file
(<K(i), P(i)> entries)

Block anchor

(Primary
key field)

Name

Ssn

Birth_date

Job

Salary

Sex

Aaron, Ed

Abbot, Diane

Acosta, Marc

Adams, John

Adams, Robin

Akers, Jan

Alexander, Ed

Alfred, Bob

Allen, Sam

Allen, Troy

Anders, Keith

Anderson, Rob |

Anderson, Zach

Angel, Joe

Archer, Sue

Arnold, Mack

Arnold, Steven

Atkins, Timothy

Wong, James

Wood, Donald

primary key Block
value pointer
Aaron, Ed .
Adams, John o
Alexander, Ed ©
Allen, Troy °
Anderson, Zach °
Arnold, Mack °
Wong, James .
Wright, Pam °

Copyright © 2011 Ramez Eimasri and Shamkant Navarhe

Woods, Manny

Wright, Pam

Wyatt, Charles

Zimmer, Byron

Types of Single-Level Indexes

s Clustering Index
s Defined on an ordered data file.

= The data file is ordered on a non-key field unlike primary
index, which requires that the ordering field of the data file
have a distinct value for each record.

= Includes one index entry for each distinct value of the field;
the index entry points to the first data block that contains
records with that field value.

= Itis another example of nondense index where Insertion
and Deletion is relatively straightforward with a clustering
index.

Hum, revoyons voir la définition
iy de dense et non dense

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Data file

(Clustering
field)
. Dept_number | Name | Ssn [Job [Birth_date | Salary
A Clustering T
— 1
Index |
2
p Index file —> 2
(<K(i), P(i)> entries) 3
3
Clustering Block 3
field value pointer
1 . — 3
2 . 3
3 * 4
4 . 4
5 [

6 ° \—> 5
8 o 5
5
5
e 6
6
6
6
- 6
8
Figure 18.2 8

Addison-Wesley A clustering index on the Dept_number ordering
i, ki nonkey field of an EMPLOYEE file. 8

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Another
Clustering
Index
Example

Addison-Wesley
is an imprint of

Figure 18.3

Clustering index with a
separate block cluster for
each group of records
that share the same value
for the clustering field.

Index file
(<K(i), P(i)> entries)

Clustering Block
field value pointer

Data file

1

O |O|A|WOIN
p

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

(Clustering
field)
Dept_number | Name | Ssn | Job [Birth_date | Salary
1
1
1
Block pointer 0—1
_L_NULL pointer
2 -
2
Block pointer —
_] NULL pointer
3 -
3
3
3
Block pointer e——
I
3 [|
Block pointer 0—1
L NULL pointer
4 =
4
Block pointer —
NULL pointer
5 -
5
5
5
Block pointer 0—1
_L_NULL pointer
6 -
6
6
6
Block pointer e———
|
6 [|
Block pointer 0—1
L NULL pointer
8 =
8
8

Block pointer

_L_NULL pointer

Types of Single-Level Indexes

= Secondary Index

= A secondary index provides a secondary means of
accessing a file for which some primary access already
exists.

= The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

= The index is an ordered file with two fields.

= The first field is of the same data type as some
non-ordering field of the data file that is an indexing field.

« The second field is either a block pointer or a record pointer.

= There can be many secondary indexes (and hence, indexing
fields) for the same file.

= Includes one entry for each record in the data file; hence, it
IS a dense index.

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of
a Dense
Secondary
Index

Addison-Wesley
is an imprint of

Figure 18.4
A dense secondary index (with block pointers) on a nonordering key field of a file.

Index file Data flle
(<K(i), P(i)> entries) Indexing field
(secondary
key field)
' Index BIpck o= 9
field value pointer —— >
‘ = 5
1 - - 13
: : 8
4 ® >
5 . - >
= 5 e 15
7 e > 3
8 = 17
> 21
9 g = 11
L = > 16
11 b 2
12 .
13 — i 24
14 N > 10
15 ¢ 20
16 7 1
[
17 : > 4
18 . - 23
19 ~— 18
20 e 14
21 °
22 Lant > 12
23 . = 7
24 - o 19
22

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Figure 18.5 Data file
A secondary index (with
record pointers) on a non-
key field implemented

(Indexing field)

Dept_number | Name | Ssn | Job |Birth_date | Salary

_ o . 3
E I f using one level of indirec- Blscka ot
Xal I lp e O tion so that index entries P i >
are of fixed length and pointers |—_> 1
a S eCO n d a r have unique field values. ; ™ 8
y m— | ! I o
: > 2
Index . T
= 4
Index file —t—'—l = 8
(<K(0), P(i)> entries) !
Field Block L [ITiT. . 6
value pointer 8
1 e 1 _
| > 4
2 e i—l— | 1
3 N .
T
5 ~—1 : T 6
6 . | =
_L i 2
8 . — = 2
L : . 5)
[
e|é]e
= = 5
r
- = 1
: | = 6
—| o | ? I = = 3
1
> 6
L 3
= 8
Addison-Wesley ——
is an imprint of °

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Properties of Index Types

Table 18.2 Properties of Index Types

Tvpe of Index Number of (First-level) Dense or Nondense Block Anchoring
P Index Entries (Sparse) on the Data File
Primary Number of blocks in Nondense Yes
data file
Clustering Number of distinct Nondense Yes/no?
index field values
Secondary (key) Number of records in Dense No
data file
Secondary (nonkey) Number of records? or Dense or Nondense No

number of distinct index
field values®©

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-Level Indexes

= Because a single-level index is an ordered file, we can
create a primary index to the index itself.

= In this case, the original index file is called the first-level
index and the index to the index is called the second-level

index.

= \We can repeat the process, creating a third, fourth, ..., top
level until all entries of the top level fit in one disk block.

= A multi-level index can be created for any type of first-
level index (primary, secondary, clustering) as long as the
first-level index consists of more than one disk block.

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Figure 18.6
A two-level primary index resembling ISAM (Indexed Sequential
Access Method) organization.

A TW O . L e V e I Two-level index Data file

First (base) Primary
key field

Primary Index T
EN= T

24 .
12
o 15
21
— 24
Second (top) 29

level
2 o |—> 35 —r> 35
35 -— 39 ° 36

55 . 44 o
39

85 L 51 -
41
L 44
46
— 51
52
—»| 55 e 55
63 - 58

71 .
80 % 63
66
e 71
78
o5 | — 80

S *—t

82
Addison-Wesley il
is an imprint of 89

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-Level Indexes

s Such a multi-level index is a form of search tree

= However, insertion and deletion of new index
entries is a severe problem because every level of
the index is an ordered file.

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Eimasri and Shamkant Navathe

A Node in a Search Tree with Pointers to
Subtrees Below It

Figure 18.8 P, K, e | K

A node in a search ® .
tree with pointers to / l , \

subtrees below it.

X<K, K_ < X<K K, <X

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Figure 18.9 E| Tree node pointer

A search tree of _
order p = 3. |:| Null tree pointer

yd

/

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

12

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees

= Most multi-level indexes use B-tree or B+-tree data
structures because of the insertion and deletion problem

= This leaves space in each tree node (disk block) to allow for
new index entries

m [hese data structures are variations of search trees that
allow efficient insertion and deletion of new search values.

s |In B-Tree and B+-Tree data structures, each node
corresponds to a disk block

= Each node is kept between half-full and completely full

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees (cont.)

= An insertion into a node that is not full is quite
efficient

= If a node is full the insertion causes a split into two
nodes

n Splitting may propagate to other tree levels

= A deletion is quite efficient if a node does not
become less than half full

s |f a deletion causes a node to become less than
half full, it must be merged with neighboring
nodes

is an imprint of

Copyright © 2011 Ramez Eimasri and Shamkant Navathe

Difference between B-tree and B+-tree

= |n a B-tree, pointers to data records exist at all
evels of the tree

= |n a B+-tree, all pointers to data records exists at
the leaf-level nodes

s A B+-tree can have less levels (or higher capacity
of search values) than the corresponding B-tree

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

B-tree Structures

(a) rP1 K1 .Pr1 /.32 . i<l'—1 .PI'I-_1 ?PI /(I .PI'I- Kq_1 .Prq_1 Pq 1
Tree Tree
Y Y pointer Y Y pointer
Trge Data Data Data Data
pointer pointer ’ pointer pointer pointer
Tree
pointer
X< K, Ko <X<K K1 <X
(b) of[5|o||[e]|[8|of]e ® | Tree node pointer
o | Data pointer
Null tree pointer
\/ Y vy L
1]o 3 |o 6 |o 7 |o 9 |o 12|o
Figure 18.10

B-tree structures. (a) A node in a B-tree with g — 1 search values. (b) A B-tree
of order p = 3.The values were inserted in the order 8,5, 1,7, 3, 12, 9, 6.

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

The Nodes of a B+-tree

Figure 18.11
The nodes of a Bf-tree. (a) Internal node of a B™-tree with g — 1 search values.
(b) Leaf node of a B*-tree with g — 1 search values and g — 1 data pointers.

(a) WP K| | K |oP | K Kii| Pye

. e
Tree Tree Tree
pointer pointer pointer

X<K, K_ < X<LK; K1 < X
(b) i
K, |.Pr KoloPra| - [KPr| - [Kot]oPros| Proc o |l o s;’;?tlz;o
node in
Y Y Y Y tree
Data Data Data Data
pointer pointer pointer pointer

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Insertion sequence: 8,5,1,7 3,12,9, 6

~— Insert 1: overflow (new level)

- |
B
B

-t| o

E] Tree node pointer

Example of —t
an Insertion] [elel -
In a B+-tree »

I(r;zc;g 3: overflow I-“

[i1o] (o] |+~

Data pointer

-+—Insert 7 D Null tree pointer

Insert 12: overflow (split, propagates,
new level)

:

v

El

-
-

JE = EL = = EY = E | E

o
-

[]

e

Insert 9
)

= L70o] [8]o] | +r>{ [12]o]

[]

v r

L7[o] [e]o]|ep={[e]o][r2]]

L

Insert 6: overflow (split, propagates)

- o
-

[«]

-1

v v
L6lo] [7]o] 18lo] t{[2]0] [12]0]

[1]o] [s]o]]+~

Figure 18.12
An example of insertion in a B*-tree with p =3 and p, = 2.

]
B

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Deletion sequence: 5,12, 9

°

~

[3
-

Example of
a Deletion In =
a B+-tree e ——4[[¢

?
y
Y
o
o
J
©
L]
-

8
i
B
E
i
8
&
]
H
B

?

; \
é

o

(o]

?

-

©

[

-

Delete 12: underflow
‘ (redistribute)

i ‘
Py

o
(o]

?

T DY
@

L

-

Delete 9: underflow

i I ¢ (merge with left, redistribute)
l

T 7 .
| l
o [7]°] . e

HE o

Figure 18.13
“.;’2?‘.’:,‘,;’,’::‘:}’ An example of deletion from a B*-tree.

Copyright © 2011 Ramez Eimasri and Shamkant Navathe

Summary

s [ypes of Single-level Ordered Indexes
= Primary Indexes
= Clustering Indexes
= Secondary Indexes

= Multilevel Indexes

= Dynamic Multilevel Indexes Using B-Trees
and B+-Trees

= Indexes on Multiple Keys

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Facteurs a considérer dans la
construction du schema physique

s Requétes (et transactions)

= attributs de jointure (clés referentielles, clés
candidates, autres)

= attributs de comparaison (egalite,
ordonnancement, intervalles)

= type (consultation, insertion, retrait, modification)
= exigence de performance
= frequence d'utilisation
s [ndex
= encombrement
== o nombre d’opérations requises par type de fonction

Copyright © 2011 Ramez Elmasri'and Shamkant Navathe i

Facteurs de mise en oeuvre d’un
schema physique

s Etablissement de critéres quantifiés

s Automatisation de la mise en oeuvre

= Mise a jour permanente des facteurs de decision
s Etablissement d’intervalle de stabilité

is an imprint of

Copyright © 2011 Ramez Eimasri and Shamkant Navathe

Les colles du prof!

= [out au long de cette présentation, on s’est
fondée sur des hypotheses implicites —
lesquelles ?

m Sont-elles encore toutes d’actualité ?

= L’elimination des contraintes decoulant des
hypotheses caduques change-t-elle les choix

privilégies pour la representation et I'indexation
des relations ?

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

