Assignment 2 : Conditional random fields

IMPORTANT : Please do not share your solution to this assignment on the web or with
anyone !

In this assignment, you must implement in Python a linear chain conditional random field for classification.

The implementation of the CRF must be contained in a class named LinearChainCRF, that inherits from
the class Learner of the MLPython library. The definition of the class must be placed in a file named crf . py.
This class supports the use of the hyper-parameters :

— 1r : learning rate of stochastic gradient descent (float)

— dc : decrease constant for the learning rate

— L2 : L2 regularization of the weight matrices of the CRF (float)
— L1 : L1 regularization of the weight matrices of the CRF (float)
— n_epochs : number of training iterations (int)

A skeleton of the LinearChainCRF class is provided in the file crf.py available on the course’s website.
The skeleton also specifies the signature of all methods that you must implement. It is important to use
the Numpy library in your implementation, so that it is efficient.

A method called verify_gradients is already implemented. It compares the computation of the gradients
with a finite difference approximation. It is important to use this method to test whether your implementation
of belief propagation inference and gradients computation are correct. A script run_verify_gradients.py
that verifies the gradients for different configurations of hyper-parameters is also provided. The reported
differences between your implementation and the finite difference approximation should be smaller than
10710,

Moreover, a script run_crf.py is available to train a linear chain CRF on the OCR Letters data set
(sequential classification version), using early stopping. The script’s arguments are the values of the hyper-
parameters, as follows :

Usage: python run_crf.py 1lr dc L2 L1
Ex.: python run_crf.py 0.1 0 0 O

The script will print the CRF errors on the training and validation sets after every epoch of training. At
the end of training, the errors on the training, validation and test sets will also be appended into a text file
named results_crf_ocr_letters_sequential.txt. The standard deviation of these average errors (i.e. the
standard error) will also be given (required to compute confidence intervals). Each new execution of the script
will append a new line. The errors that must be computed in your implementation are the classification errors
and the regularized negative log-likelihood. Early stopping will use the classification error on the validation
set to determine when to stop and will use a “look ahead” of 5.

For the script to work properly, you must first download the OCR Letters data set (sequential classification
version) using the script download ocr_letters_sequential.py available on the course website. Make sure
to define the MLPYTHON DATASET REPO environment variable and use the script as follows :

python download_ocr_letters_sequential.py



Once your implementation is complete, you can generate results on this OCR letters data set to assess the
performance of your implementation. Specifically, try to :

report the classification error rates on the training and validation sets for at least 15 different
choices of hyper-parameter configurations;

illustrate the progression of the classification error on the training and validation sets, for
a configuration of your choice of the hyper-parameters;

also illustrate the progression of the average negative log-likelihood on the training and
validation sets, for a configuration of your choice of the hyper-parameters;

report the classification error rate on the test set only for the hyper-parameter configuration
having the best performance on the validation set ;

specify a 95% confidence interval of the test set classification error.

Good luck!



