Neural networks

Computer vision - pooling and subsampling
Topics: computer vision

- We can design neural networks that are specifically adapted for such problems
 - must deal with very high-dimensional inputs
 - 150 x 150 pixels = 22500 inputs, or 3 x 22500 if RGB pixels
 - can exploit the 2D topology of pixels (or 3D for video data)
 - can build in invariance to certain variations we can expect
 - translations, illumination, etc.

- Convolutional networks leverage these ideas
 - local connectivity
 - parameter sharing
 - pooling / subsampling hidden units
Topics: parameter sharing

- Each feature map forms a 2D grid of features
 - can be computed with a discrete convolution (*) of a kernel matrix k_{ij} which is the hidden weights matrix W_{ij} with its rows and columns flipped

\[y_j = g_j \tanh \left(\sum_i k_{ij} \ast x_i \right) \]

- x_i is the ith channel of input
- k_{ij} is the convolution kernel
- g_j is a learned scaling factor
- y_j is the hidden layer

(coULD HAVE ADDED A BIAS)
Topics: pooling and subsampling

• Third idea: pool hidden units in same neighborhood
 ‣ pooling is performed in non-overlapping neighborhoods (subsampling)

\[
y_{ijk} = \max_{p,q} x_{i,j+p,k+q}
\]

Jarret et al. 2009

• \(x_{i,j,k}\) is value of the \(i^{th}\) feature map at position \(j,k\)
• \(p\) is vertical index in local neighborhood
• \(q\) is horizontal index in local neighborhood
• \(y_{ijk}\) is pooled and subsampled layer
Topics: pooling and subsampling

- Third idea: pool hidden units in same neighborhood
 - an alternative to “max” pooling is “average” pooling

\[
y_{ijk} = \frac{1}{m^2} \sum_{p,q} x_{i,j+p,k+q}
\]

- \(x_{i,j,k}\) is value of the \(j^{th}\) feature map at position \(j,k\)
- \(p\) is vertical index in local neighborhood
- \(q\) is horizontal index in local neighborhood
- \(y_{ijk}\) is pooled and subsampled layer
- \(m\) is the neighborhood height/width

Jarret et al. 2009
Topics: pooling and subsampling

• Illustration of pooling/subsampling operation

• Solves the following problems:
 ‣ introduces invariance to local translations
 ‣ reduces the number of hidden units in hidden layer
Topics: pooling and subsampling

- Illustration of local translation invariance
 - both images given the same feature map after pooling/subsampling