Neural networks
Sparse coding - online dictionary learning algorithm
Topics: learning algorithm (putting it all together)

- Learning alternates between inference and dictionary learning

While \mathbf{D} has not converged

- find the sparse codes $\mathbf{h}(\mathbf{x}^{(t)})$ for all $\mathbf{x}^{(t)}$ in my training set with ISTA
- update the dictionary:
 - $\mathbf{A} \leftarrow \sum_{t=1}^{T} \mathbf{x}^{(t)} \mathbf{h}(\mathbf{x}^{(t)})^\top$
 - $\mathbf{B} \leftarrow \sum_{t=1}^{T} \mathbf{h}(\mathbf{x}^{(t)}) \mathbf{h}(\mathbf{x}^{(t)})^\top$
 - run block-coordinate descent algorithm to update \mathbf{D}

Similar to the EM algorithm
Topics: online learning algorithm

- This algorithm is “batch” (i.e. not online)
 - single update of the dictionary per pass on the training set
 - for large datasets, we’d like to update D after visiting each $x(t)$
- Solution: for each $x(t)$
 - perform inference of $h(x(t))$ for the current $x(t)$
 - update running averages of the quantities required to update D:
 - $B \leftarrow \beta B + (1 - \beta) x(t) h(x(t))^T$
 - $A \leftarrow \beta A + (1 - \beta) h(x(t)) h(x(t))^T$
 - use current value of D as “warm start” to block-coordinate descent
Topics: online learning algorithm

- Initialize D (not to 0!)
- While D hasn’t converged
 - for each $x(t)$
 - infer code $h(x(t))$
 - update dictionary
 - $B \leftarrow \beta B + (1 - \beta) x(t) h(x(t))^T$
 - $A \leftarrow \beta A + (1 - \beta) h(x^{(T+1)}) h(x^{(T+1)})^T$
 - while D hasn’t converged
 - for each column $D_{.,j}$ perform gradient update
 - $D_{.,j} \leftarrow \frac{1}{A_{j,j}} (B_{.,j} - D A_{.,j} + D_{.,j} A_{j,j})$
 - $D_{.,j} \leftarrow \frac{D_{.,j}}{||D_{.,j}||_2}$