Neural networks

Sparse coding - debnition



UNSUPERVISED LEARNING

Topics: unsupervised learning
¥ Unsupervised learning: only use the imptts  for learning

| automatically extract meaningful features for your data
| leverage the availablility of unlabeled data

| add a data-dependent regularizer to trainings

¥ \We will see 3 neural networks for unsupervised learning

| restricted Boltzmann machines

| autoencoders

| sparse coding model



SPARSE CODING

Topics: sparse coding
¥ For eachx') pbnd a latent representati®h  such that:

| it is sparse: the vectbt!)  has many zeros

| we can reconstruct the original inpui) as well as possible

¥ More formally:
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I we also constrain the columns [Of to be of norm 1

- otherwiseD could grow big whit#¢!)  becomes small to satisfy the prior

| sometimes the columns are constrained to be no greater than 1
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Topics: sparse coding
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I D Is equivalent to the autoencoder output weight matrix

I howeverh(x®) is now a complicated functionx&?

. A !
- encoder is the minimizatiomgx ) = arg min §||x<t> I DhOZ+ 1h Y|
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SPARSE CODING

Topics: dictionary "

¥ Can also writk) = D h (x(V) = D a4k h(xV)
K s.t.
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I we also refer t®® as the dictionary

- In certain applications, we know what dictionary matrix to use

- often however, we have to learn it
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