Neural networks

Deep learning - unsupervised pre-training
Topics: why training is hard

- Depending on the problem, one or the other situation will tend to prevail

- If first hypothesis (underfitting): use better optimization
 - this is an active area of research

- If second hypothesis (overfitting): use better regularization
 - unsupervised learning
 - stochastic «dropout» training
Topics: unsupervised pre-training

- **Solution:** initialize hidden layers using unsupervised learning
 - force network to represent latent structure of input distribution
 - encourage hidden layers to encode that structure

![character image](image1.png)

![random image](image2.png)
Topics: unsupervised pre-training

- Solution: initialize hidden layers using unsupervised learning
 - force network to represent latent structure of input distribution

- encourage hidden layers to encode that structure

Why is one a character and the other is not?
Topics: unsupervised pre-training

- Solution: initialize hidden layers using unsupervised learning
 - this is a harder task than supervised learning (classification)
 - hence we expect less overfitting

Why is one a character and the other is not?

character image

random image
Topics: unsupervised pre-training

- We will use a greedy, layer-wise procedure
 - train one layer at a time, from first to last, with unsupervised criterion
 - fix the parameters of previous hidden layers
 - previous layers viewed as feature extraction
Topics: unsupervised pre-training

• We call this procedure unsupervised pre-training

 ‣ first layer: find hidden unit features that are more common in training inputs than in random inputs

 ‣ second layer: find combinations of hidden unit features that are more common than random hidden unit features

 ‣ third layer: find combinations of combinations of ...

 ‣ etc.

• Pre-training initializes the parameters in a region such that the near local optima overfit less the data
Topics: fine-tuning

- Once all layers are pre-trained
 - add output layer
 - train the whole network using supervised learning
- Supervised learning is performed as in a regular feed-forward network
 - forward propagation, backpropagation and update
- We call this last phase fine-tuning
 - all parameters are “tuned” for the supervised task at hand
 - representation is adjusted to be more discriminative
DEEP LEARNING

Topics: pseudocode

• for \(l = 1 \) to \(L \)

 ‣ build unsupervised training set (with \(h^{(0)}(x) = x \)):

 \[
 \mathcal{D} = \left\{ h^{(l-1)}(x^{(t)}) \right\}_{t=1}^{T}
 \]

 ‣ train “greedy module” (RBM, autoencoder) on \(\mathcal{D} \)

 ‣ use hidden layer weights and biases of greedy module to initialize the deep network parameters \(W^{(l)}, b^{(l)} \)

• Initialize \(W^{(L+1)}, b^{(L+1)} \) randomly (as usual)

• Train the whole neural network using (supervised) stochastic gradient descent (with backprop)
DEEP LEARNING

Topics: pseudocode

- for \(l = 1 \) to \(L \)
 - build unsupervised training set \((\text{with } h^{(0)}(x) = x)\):
 \[
 D = \left\{ h^{(l-1)}(x^{(t)}) \right\}_{t=1}^T
 \]
 - train “greedy module” (RBM, autoencoder) on \(D \)
 - use hidden layer weights and biases of greedy module to initialize the deep network parameters \(W^{(l)}, b^{(l)} \)
- Initialize \(W^{(L+1)}, b^{(L+1)} \) randomly (as usual)
- Train the whole neural network using (supervised) stochastic gradient descent (with backprop)
Topics: pseudocode

- for $l=1$ to L
 - build unsupervised training set (with $h^{(0)}(x) = x$):
 $$\mathcal{D} = \left\{ h^{(l-1)}(x^{(t)}) \right\}_{t=1}^{T}$$
 - train “greedy module” (RBM, autoencoder) on \mathcal{D}
 - use hidden layer weights and biases of greedy module to initialize the deep network parameters $W^{(l)}, b^{(l)}$

- Initialize $W^{(L+1)}, b^{(L+1)}$ randomly (as usual)
- Train the whole neural network using (supervised) stochastic gradient descent (with backprop)
WHAT KIND OF UNSUPERVISED LEARNING?

Topics: stacked RBMs, stacked autoencoders

• Stacked restricted Boltzmann machines:
 ‣ Hinton, Teh and Osindero suggested this procedure with RBMs
 - A fast learning algorithm for deep belief nets.
 Hinton, Teh, Osindero., 2006.
 - To recognize shapes, first learn to generate images.

• Stacked autoencoders:
 ‣ Bengio, Lamblin, Popovici and Larochelle studied and generalized the procedure to autoencoders
 ‣ Ranzato, Poultney, Chopra and LeCun also generalized it to sparse autoencoders
 - Efficient Learning of Sparse Representations with an Energy-Based Model.
WHAT KIND OF UNSUPERVISED LEARNING?

Topics: stacked RBMs, stacked autoencoders

• Stacked denoising autoencoders:
 ‣ proposed by Vincent, Larochelle, Bengio and Manzagol

• And more:
 ‣ stacked semi-supervised embeddings
 ‣ stacked kernel PCA
 ‣ stacked independent subspace analysis
 - Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis, Le, Zou, Yeung and Ng, 2011.