Neural networks

Deep learning - difficulty of training
Topics: multilayer neural network

- Could have \(L \) hidden layers:
 - layer input activation for \(k > 0 \) (\(h^{(0)}(x) = x \))
 \[a^{(k)}(x) = b^{(k)} + W^{(k)} h^{(k-1)}(x) \]
 - hidden layer activation (\(k \) from 1 to \(L \)):
 \[h^{(k)}(x) = g(a^{(k)}(x)) \]
 - output layer activation (\(k=L+1 \)):
 \[h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x) \]
Topics: why training is hard

- First hypothesis: optimization is harder (underfitting)
 - vanishing gradient problem
 - saturated units block gradient propagation

- This is a well known problem in recurrent neural networks
Topics: why training is hard

- Second hypothesis: overfitting
 - we are exploring a space of complex functions
 - deep nets usually have lots of parameters
- Might be in a high variance / low bias situation
Topics: why training is hard

• Second hypothesis: overfitting
 ‣ we are exploring a space of complex functions
 ‣ deep nets usually have lots of parameters

• Might be in a high variance / low bias situation
DEEP LEARNING

Topics: why training is hard

- Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting): use better optimization
 - this is an active area of research

- If second hypothesis (overfitting): use better regularization
 - unsupervised learning
 - stochastic «dropout» training