Neural networks

Autoencoder - denoising autoencoder
OVERCOMPLET E HIDDEN LAYER

Topics: overcomplete representation

- Hidden layer is overcomplete if greater than the input layer
 - no compression in hidden layer
 - each hidden unit could copy a different input component
- No guarantee that the hidden units will extract meaningful structure

\[
\hat{x} \quad c_k \\
\circ \quad \circ \quad \circ \\
\circ
\]

\[
W^* = W^T \quad \text{(tied weights)}
\]

\[
h(x) \quad b_j \\
\circ \quad \circ \\
\circ
\]

\[
x
\]
Topics: denoising autoencoder

- Idea: representation should be robust to introduction of noise:
 - random assignment of subset of inputs to 0, with probability ν
 - Gaussian additive noise
- Reconstruction \hat{x} computed from the corrupted input \tilde{x}
- Loss function compares \hat{x} reconstruction with the noiseless input x
Topics: denoising autoencoder

• Idea: representation should be robust to introduction of noise:
 ‣ random assignment of subset of inputs to 0, with probability \(\nu \)
 ‣ Gaussian additive noise
• Reconstruction \(\hat{x} \) computed from the corrupted input \(\tilde{x} \)
• Loss function compares \(\hat{x} \) reconstruction with the noiseless input \(x \)
Topics: denoising autoencoder

- Idea: representation should be robust to introduction of noise:
 - random assignment of subset of inputs to 0, with probability \(\nu \)
 - Gaussian additive noise
- Reconstruction \(\hat{x} \) computed from the corrupted input \(\tilde{x} \)
- Loss function compares \(\hat{x} \) reconstruction with the noiseless input \(x \)
\[\hat{x} = \text{sigm}(c + W^* h(\tilde{x})) \]
\[p(\tilde{x}|x) \]
\[\hat{x} = \text{sigm}(c + W^* h(\tilde{x})) \]

\[p(\tilde{x}|x) \]
Denoising Autoencoder

\[\hat{x} = \text{sigm}(c + W^* h(\tilde{x})) \]

\[p(\tilde{x}|x) \]

\[\text{Extracting and Composing Robust Features with Denoising Autoencoders} \]
\[\hat{x} = \text{sigm}(c + W^* h(\tilde{x})) \]
FILTERS (DENOISING AUTOENCODER)
(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

- No corrupted inputs (cross-entropy loss)
FILTERS (DENOISING AUTOENCODER)
(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

- 25% corrupted inputs
FILTERS (DENOISING AUTOENCODER)
(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

- 50% corrupted inputs
SQUARED ERROR LOSS

- Training on natural image patches, with squared-difference loss
 - PCA is not the best solution
SQUARED ERROR LOSS

- Training on natural image patches, with squared-difference loss
 - Not equivalent to weight decay