Neural networks

Restricted Boltzmann machine - extensions
Topics: RBM, visible layer, hidden layer, energy function

Energy function:

\[E(x, h) = -h^T \mathbf{W} x - c^T x - b^T h \]

\[= - \sum_j \sum_k W_{j,k} h_j x_k - \sum_k c_k x_k - \sum_j b_j h_j \]

Distribution:

\[p(x, h) = \exp(-E(x, h))/Z \]

partition function (intractable)
GAUSSIAN-BERNOULLI RBM

Topics: Gaussian-Bernoulli RBM

- Inputs \(\mathbf{x} \) are unbounded reals
 - add a quadratic term to the energy function
 \[
 E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^T \mathbf{W} \mathbf{x} - \mathbf{c}^T \mathbf{x} - \mathbf{b}^T \mathbf{h} + \frac{1}{2} \mathbf{x}^T \mathbf{x}
 \]
 - only thing that changes is that \(p(\mathbf{x}|\mathbf{h}) \) is now a Gaussian distribution with mean \(\mu = \mathbf{c} + \mathbf{W}^T \mathbf{h} \) and identity covariance matrix
 - recommended to normalize the training set by
 - subtracting the mean of each input
 - dividing each input \(x_k \) by the training set standard deviation
 - should use a smaller learning rate than in the regular RBM
FILTERS

(LAROCHELLE ET AL., JMLR2009)
OTHER TYPES OF OBSERVATIONS

Topics: extensions to other observations

- Extensions support other types:
 - real-valued: Gaussian-Bernoulli RBM
 - Binomial observations:
 - Rate-coded Restricted Boltzmann Machines for Face Recognition.
 Yee Whye Teh and Geoffrey Hinton, 2001
 - Multinomial observations:
 - Replicated Softmax: an Undirected Topic Model.
 Ruslan Salakhutdinov and Geoffrey Hinton, 2009
 - Training Restricted Boltzmann Machines on Word Observations.
 George Dahl, Ryan Adam and Hugo Larochelle, 2012
 - and more (see course website)
Topics: Boltzmann machine

- The original Boltzmann machine has lateral connections in each layer

\[
E(x, h) = -h^\top W x - c^\top x - b^\top h - \frac{1}{2} x^\top V x - \frac{1}{2} h^\top U h
\]

- when only one layer has lateral connection, it’s a semi-restricted Boltzmann machine
BOLTZMANN MACHINE

Topics: Boltzmann machine

- The original Boltzmann machine has lateral connections in each layer

\[
E(x, h) = -x^T \mathbf{W} x - c^T x - b^T h - \frac{1}{2} x^T \mathbf{V} x - \frac{1}{2} h^T \mathbf{U} h
\]

- when only one layer has lateral connection, it’s a semi-restricted Boltzmann machine
BOLTZMANN MACHINE

Topics: Boltzmann machine

- The original Boltzmann machine has lateral connections in each layer

\[
E(x, h) = -h^\top W x - c^\top x - b^\top h - \frac{1}{2}x^\top V x - \frac{1}{2}h^\top U h
\]

- when only one layer has lateral connection, it's a semi-restricted Boltzmann machine