Neural networks

Training CRFs - loss function
LINEAR CHAIN CRF

Topics: reminder of notation

- Then we have:
 \[
p(y|X) = \exp \left(\sum_{k=1}^{K} a_u(y_k) + \sum_{k=1}^{K-1} a_p(y_k, y_{k+1}) \right) / Z(X)
 \]
 where
 \[
 Z(X) = \sum_{y_1'} \sum_{y_2'} \cdots \sum_{y_K'} \exp \left(\sum_{k=1}^{K} a_u(y_k') + \sum_{k=1}^{K-1} a_p(y_k', y_{k+1}') \right)
 \]
- Two types of (log-)factors:
 - unary: \(a_u(y_k) = a^{(L+1,0)}(x_k) y_k + \)
 \[
 1_{k>1} a^{(L+1,-1)}(x_{k-1}) y_k + \\
 1_{k<K} a^{(L+1,+1)}(x_{k+1}) y_k
 \]
 - pairwise: \(a_p(y_k, y_{k+1}) = 1_{1 \leq k < K} v_{y_k, y_{k+1}} \)
MACHINE LEARNING

Topics: empirical risk minimization, regularization

- Empirical risk minimization
 - framework to design learning algorithms
 \[
 \arg\min_{\theta} \frac{1}{T} \sum_{t} l(f(X^{(t)}; \theta), y^{(t)}) + \lambda \Omega(\theta)
 \]
 - $l(f(X^{(t)}; \theta), y^{(t)})$ is a loss function
 - $\Omega(\theta)$ is a regularizer (penalizes certain values of θ)

- Learning is cast as optimization
 - ideally, we'd optimize classification error, but it's not smooth
 - loss function is a surrogate for what we truly should optimize
MACHINE LEARNING

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - initialize \(\theta \)
 - for N iterations
 - for each training example \((X^{(t)}, y^{(t)})\)
 - \(\Delta = -\nabla_{\theta} l(f(X^{(t)}; \theta), y^{(t)}) - \lambda \nabla_{\theta} \Omega(\theta) \)
 - \(\theta \leftarrow \theta + \alpha \Delta \)

- To apply this algorithm to a CRF, we need
 - the loss function \(l(f(X^{(t)}; \theta), y^{(t)}) \)
 - a procedure to compute the parameter gradients \(\nabla_{\theta} l(f(X^{(t)}; \theta), y^{(t)}) \)
 - the regularizer \(\Omega(\theta) \) (and the gradient \(\nabla_{\theta} \Omega(\theta) \))
 - initialization method
LOSS FUNCTION

Topics: loss function for sequential classification with CRF

- CRF estimates $p(y | X)$
 - we could maximize the probabilities of $y^{(t)}$ given $X^{(t)}$ in the training set

- To frame as minimization, we minimize the negative log-likelihood

$$l(f(X), y) = -\log p(y | X)$$

- unlike for non-sequential classification, we never explicitly compute the value of $p(y | X)$ for all values of y