Neural networks
Training neural networks - parameter initialization
Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - initialize $\boldsymbol{\theta}$ \quad ($\boldsymbol{\theta} \equiv \{\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \ldots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)}\}$
 - for N iterations
 - for each training example \ (\mathbf{x}^{(t)}, y^{(t)})
 \[\begin{align*}
 \Delta &= -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) - \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta}) \\
 \boldsymbol{\theta} &\leftarrow \boldsymbol{\theta} + \alpha \Delta
 \end{align*} \]
 \[\text{training epoch} \]
 \[\text{iteration over all examples} \]
- To apply this algorithm to neural network training, we need
 - the loss function $l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
 - a procedure to compute the parameter gradients $\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
 - the regularizer $\Omega(\boldsymbol{\theta})$ (and the gradient $\nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta})$
 - initialization method
Topics: initialization

• For biases
 ‣ initialize all to 0

• For weights
 ‣ Can't initialize weights to 0 with tanh activation
 - we can show that all gradients would then be 0 (saddle point)
 ‣ Can't initialize all weights to the same value
 - we can show that all hidden units in a layer will always behave the same
 - need to break symmetry
 ‣ Recipe: sample $W_{i,j}^{(k)}$ from $U[-b, b]$ where $b = \frac{\sqrt{6}}{\sqrt{H_k + H_{k-1}}}$
 - the idea is to sample around 0 but break symmetry
 - other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)