Neural networks

Training neural networks - parameter gradient
MACHINE LEARNING

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - initialize $\vec{\theta}$ ($\vec{\theta} \equiv \{\vec{W}^{(1)}, \vec{b}^{(1)}, \ldots, \vec{W}^{(L+1)}, \vec{b}^{(L+1)}\}$
 - for N iterations
 - for each training example $(x^{(t)}, y^{(t)})$
 - $\Delta = -\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)}) - \lambda \nabla_{\theta} \Omega(\theta)$
 - $\vec{\theta} \leftarrow \vec{\theta} + \alpha \Delta$
 - training epoch = iteration over all examples

- To apply this algorithm to neural network training, we need
 - the loss function $l(f(x^{(t)}; \theta), y^{(t)})$
 - a procedure to compute the parameter gradients $\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)})$
 - the regularizer $\Omega(\theta)$ (and the gradient $\nabla_{\theta} \Omega(\theta)$)
 - initialization method
Topics: loss gradient of parameters

- Partial derivative (weights):

\[
\frac{\partial}{\partial W_{i,j}^{(k)}} - \log f(x)_y \\
= \frac{\partial - \log f(x)_y}{\partial a^{(k)}(x)_i} \frac{\partial a^{(k)}(x)_i}{\partial W_{i,j}^{(k)}} \\
= \frac{\partial - \log f(x)_y}{\partial a^{(k)}(x)_i} h^{(k-1)}_j(x)
\]

REMINDER

\[a^{(k)}(x)_i = b^{(k)}_i + \sum_j W^{(k)}_{i,j} h^{(k-1)}(x)_j \]
Topics: loss gradient of parameters

- Gradient (weights):

\[
\nabla_w f^{(k)} - \log f(x)_y \\
= (\nabla_a^{(k)}(x) - \log f(x)_y) h^{(k-1)}(x)^T
\n\]
Topics: loss gradient of parameters

- Partial derivative (biases):

\[
\frac{\partial}{\partial b_i^{(k)}} - \log f(x)_y \\
= \frac{\partial - \log f(x)_y}{\partial a^{(k)}(x)_i} \frac{\partial a^{(k)}(x)_i}{\partial b_i^{(k)}} \\
= \frac{\partial - \log f(x)_y}{\partial a^{(k)}(x)_i}
\]

REMAINDER

\[a^{(k)}(x)_i = b_i^{(k)} + \sum_j W_{i,j}^{(k)} h^{(k-1)}(x)_j \]
Topics: loss gradient of parameters

- Gradient (biases):

\[\nabla b^{(k)} = \log f(x)_y \]
\[= \nabla a^{(k)}(x) - \log f(x)_y \]

REMINDER

\[a^{(k)}(x)_i = b^{(k)}_i + \sum_j W^{(k)}_{i,j} h^{(k-1)}(x)_j \]