Neural networks

Feedforward neural network - multilayer neural network
ARTIFICIAL NEURON

Topics: capacity of single neuron

- Can't solve non linearly separable problems...

\[
\text{XOR}(x_1, x_2)
\]

\[
\text{AND}(x_1, \overline{x_2})
\]

\[
\text{AND}(\overline{x_1}, x_2)
\]

- ... unless the input is transformed in a better representation
Topics: single hidden layer neural network

- **Hidden layer pre-activation:**
 \[
 a(x) = b^{(1)} + W^{(1)}x \\
 (a(x)_i = b^{(1)}_i + \sum_j W^{(1)}_{i,j} x_j)
 \]

- **Hidden layer activation:**
 \[
 h(x) = g(a(x))
 \]

- **Output layer activation:**
 \[
 f(x) = o\left(b^{(2)} + w^{(2)^T}h^{(1)}x\right)
 \]
Topics: softmax activation function

• For multi-class classification:
 ‣ we need multiple outputs (1 output per class)
 ‣ we would like to estimate the conditional probability \(p(y = c | x) \)

• We use the softmax activation function at the output:

\[
o(a) = \text{softmax}(a) = \left[\frac{\exp(a_1)}{\sum_c \exp(a_c)} \ldots \frac{\exp(a_C)}{\sum_c \exp(a_c)} \right]^T
\]

 ‣ strictly positive
 ‣ sums to one

• Predicted class is the one with highest estimated probability
Topics: multilayer neural network

- Could have L hidden layers:
 - layer pre-activation for $k > 0$: $h^{(0)}(x) = x$
 \[
 a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}(x)
 \]
 - hidden layer activation (k from 1 to L):
 \[
 h^{(k)}(x) = g(a^{(k)}(x))
 \]
 - output layer activation ($k = L+1$):
 \[
 h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x)
 \]