
Neural networks
Natural language processing - neural network language model

LANGUAGE MODELING
2

Topics: n-gram model

¥ Issue: data sparsity
! we want n to be large, for the model to be realistic

! however, for large values of n, it is likely that a given n-gram will not have been
observed in the training corpora

! smoothing the counts can help

- combine count(w1 , w2 , w3 , w4), count(w2 , w3 , w4), count(w3 , w4), and count(w4) to
estimate p(w4 |w1, w2, w3)

! this only partly solves the problem

NEURAL NETWORK LANGUAGE MODEL
3

Topics: neural network language model

¥ Solution: model the conditional
p(wt | wt! (n! 1) , ... ,wt! 1)
with a neural network
! learn word representations

to allow transfer to n-grams
not observed in training corpus

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look! up
Table

. . .

C

C

wt! 1wt! 2

C(wt! 2) C(wt! 1)C(wt! n+1)

wt! n+1

i-th output =P(wt = i | context)

Figure 1: Neural architecture:f (i,wt! 1,ááá,wt! n+1) = g(i,C(wt! 1),ááá,C(wt! n+1)) whereg is the
neural network andC(i) is thei-th word feature vector.

parameters of the mappingC are simply the feature vectors themselves, represented by a|V| " m
matrixC whose rowi is the feature vectorC(i) for word i. The functiong may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters! . The
overall parameter set is" = (C,!).

Training is achieved by looking for" that maximizes the training corpus penalized log-likelihood:

L =
1
T #

t
log f (wt,wt! 1,ááá,wt! n+1; ")+R("),

whereR(") is a regularization term. For example, in our experiments,R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parametersonly scales linearlywith V, the number of
words in the vocabulary. It alsoonly scales linearlywith the ordern : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layerC, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with asoftmaxoutput layer, which guarantees
positive probabilities summing to 1:

öP(wt|wt! 1,áááwt! n+1) =
eywt

i eyi
.

3. Thebiasesare the additive parameters of the neural network, such asb andd in equation 1 below.

1142

Bengio, Ducharme,
Vincent and Jauvin, 2003

NEURAL NETWORK LANGUAGE MODEL
3

Topics: neural network language model

¥ Solution: model the conditional
p(wt | wt! (n! 1) , ... ,wt! 1)
with a neural network
! learn word representations

to allow transfer to n-grams
not observed in training corpus

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look! up
Table

. . .

C

C

wt! 1wt! 2

C(wt! 2) C(wt! 1)C(wt! n+1)

wt! n+1

i-th output =P(wt = i | context)

Figure 1: Neural architecture:f (i,wt! 1,ááá,wt! n+1) = g(i,C(wt! 1),ááá,C(wt! n+1)) whereg is the
neural network andC(i) is thei-th word feature vector.

parameters of the mappingC are simply the feature vectors themselves, represented by a|V| " m
matrixC whose rowi is the feature vectorC(i) for word i. The functiong may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters! . The
overall parameter set is" = (C,!).

Training is achieved by looking for" that maximizes the training corpus penalized log-likelihood:

L =
1
T #

t
log f (wt,wt! 1,ááá,wt! n+1; ")+R("),

whereR(") is a regularization term. For example, in our experiments,R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parametersonly scales linearlywith V, the number of
words in the vocabulary. It alsoonly scales linearlywith the ordern : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layerC, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with asoftmaxoutput layer, which guarantees
positive probabilities summing to 1:

öP(wt|wt! 1,áááwt! n+1) =
eywt

i eyi
.

3. Thebiasesare the additive parameters of the neural network, such asb andd in equation 1 below.

1142

Bengio, Ducharme,
Vincent and Jauvin, 2003

NEURAL NETWORK LANGUAGE MODEL
3

Topics: neural network language model

¥ Solution: model the conditional
p(wt | wt! (n! 1) , ... ,wt! 1)
with a neural network
! learn word representations

to allow transfer to n-grams
not observed in training corpus

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look! up
Table

. . .

C

C

wt! 1wt! 2

C(wt! 2) C(wt! 1)C(wt! n+1)

wt! n+1

i-th output =P(wt = i | context)

Figure 1: Neural architecture:f (i,wt! 1,ááá,wt! n+1) = g(i,C(wt! 1),ááá,C(wt! n+1)) whereg is the
neural network andC(i) is thei-th word feature vector.

parameters of the mappingC are simply the feature vectors themselves, represented by a|V| " m
matrixC whose rowi is the feature vectorC(i) for word i. The functiong may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters! . The
overall parameter set is" = (C,!).

Training is achieved by looking for" that maximizes the training corpus penalized log-likelihood:

L =
1
T #

t
log f (wt,wt! 1,ááá,wt! n+1; ")+R("),

whereR(") is a regularization term. For example, in our experiments,R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parametersonly scales linearlywith V, the number of
words in the vocabulary. It alsoonly scales linearlywith the ordern : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layerC, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with asoftmaxoutput layer, which guarantees
positive probabilities summing to 1:

öP(wt|wt! 1,áááwt! n+1) =
eywt

i eyi
.

3. Thebiasesare the additive parameters of the neural network, such asb andd in equation 1 below.

1142

Bengio, Ducharme,
Vincent and Jauvin, 2003

NEURAL NETWORK LANGUAGE MODEL
3

Topics: neural network language model

¥ Solution: model the conditional
p(wt | wt! (n! 1) , ... ,wt! 1)
with a neural network
! learn word representations

to allow transfer to n-grams
not observed in training corpus

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look! up
Table

. . .

C

C

wt! 1wt! 2

C(wt! 2) C(wt! 1)C(wt! n+1)

wt! n+1

i-th output =P(wt = i | context)

Figure 1: Neural architecture:f (i,wt! 1,ááá,wt! n+1) = g(i,C(wt! 1),ááá,C(wt! n+1)) whereg is the
neural network andC(i) is thei-th word feature vector.

parameters of the mappingC are simply the feature vectors themselves, represented by a|V| " m
matrixC whose rowi is the feature vectorC(i) for word i. The functiong may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters! . The
overall parameter set is" = (C,!).

Training is achieved by looking for" that maximizes the training corpus penalized log-likelihood:

L =
1
T #

t
log f (wt,wt! 1,ááá,wt! n+1; ")+R("),

whereR(") is a regularization term. For example, in our experiments,R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parametersonly scales linearlywith V, the number of
words in the vocabulary. It alsoonly scales linearlywith the ordern : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layerC, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with asoftmaxoutput layer, which guarantees
positive probabilities summing to 1:

öP(wt|wt! 1,áááwt! n+1) =
eywt

i eyi
.

3. Thebiasesare the additive parameters of the neural network, such asb andd in equation 1 below.

1142

Bengio, Ducharme,
Vincent and Jauvin, 2003

NEURAL NETWORK LANGUAGE MODEL
4

Topics: neural network language model

¥ Can potentially generalize to contexts not seen in training set
! example: p(ÔÔ eating ÕÕ | ÔÔ the ÕÕ, ÔÔ cat ÕÕ, ÔÔ is ÕÕ)

- imagine 4-gram [ÔÔ the ÕÕ, ÔÔ cat ÕÕ, ÔÔ is ÕÕ, ÔÔ eating ÕÕ] is not in training corpus,

but [ÔÔ the ÕÕ, ÔÔ dog ÕÕ, ÔÔ is ÕÕ, ÔÔ eating ÕÕ] is

- if the word representations of ÔÔ cat ÕÕ and ÔÔ dog ÕÕ are similar, then the neural network will
be able to generalize to the case of ÔÔ cat ÕÕ

- neural network could learn similar word representations for those words based on other
4-grams:
 [ÔÔ the ÕÕ, ÔÔ cat ÕÕ, ÔÔ was ÕÕ, ÔÔ sleeping ÕÕ]
 [ÔÔ the ÕÕ, ÔÔ dog ÕÕ, ÔÔ was ÕÕ, ÔÔ sleeping ÕÕ]

NEURAL NETWORK LANGUAGE MODEL
5

Topics: word representation gradients

¥ We know how to propagate gradients
in such a network
! we know how to compute the gradient for the

linear activation of the hidden layer

! letÕs note the submatrix connecting wt!i and the
hidden layer as W i

¥ The gradient wrt C(w) for any w is

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look! up
Table

. . .

C

C

wt! 1wt! 2

C(wt! 2) C(wt! 1)C(wt! n+1)

wt! n+1

i-th output =P(wt = i | context)

Figure 1: Neural architecture:f (i,wt! 1,ááá,wt! n+1) = g(i,C(wt! 1),ááá,C(wt! n+1)) whereg is the
neural network andC(i) is thei-th word feature vector.

parameters of the mappingC are simply the feature vectors themselves, represented by a|V| " m
matrixC whose rowi is the feature vectorC(i) for word i. The functiong may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters! . The
overall parameter set is" = (C,!).

Training is achieved by looking for" that maximizes the training corpus penalized log-likelihood:

L =
1
T #

t
log f (wt,wt! 1,ááá,wt! n+1; ")+R("),

whereR(") is a regularization term. For example, in our experiments,R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parametersonly scales linearlywith V, the number of
words in the vocabulary. It alsoonly scales linearlywith the ordern : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layerC, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with asoftmaxoutput layer, which guarantees
positive probabilities summing to 1:

öP(wt|wt! 1,áááwt! n+1) =
eywt

i eyi
.

3. Thebiasesare the additive parameters of the neural network, such asb andd in equation 1 below.

1142

Bengio, Ducharme,
Vincent and Jauvin, 2003

Natural language processing

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 13, 2012

Abstract

Math for my slides “Natural language processing”.

¥
C(w) ! = C(w) " ! # C (w) l

¥

C (w) l =
n ! 1!

i =1

1(wt ! i = w) W "
i # a(x) l

¥ W 1 W 2 W n ! 1

1

Natural language processing

Hugo Larochelle
D«epartement dÕinformatique

Universit«e de Sherbrooke
hugo.larochelle@usherbrooke.ca

November 13, 2012

Abstract

Math for my slides ÒNatural language processingÓ.

¥
C(w) (= C(w)� ! rC(w)l

¥

rC(w)l =
n! 1X

i=1

1(wt! i=w) W "
i ra(x)l

¥ W 1 W 2 W n! 1

1

W n-1 W 2 W 1

NEURAL NETWORK LANGUAGE MODEL
6

Topics: word representation gradients

¥ Example: [ÔÔ the ÕÕ, ÔÔ dog ÕÕ, ÔÔ and ÕÕ, ÔÔ the ÕÕ, ÔÔ cat ÕÕ]

! the loss is l = ! log p(ÔÔ cat ÕÕ | ÔÔ the ÕÕ, ÔÔ dog ÕÕ, ÔÔ and ÕÕ, ÔÔ the ÕÕ)

!

!

!

! for all other words w

¥ Only need to update the representations C(3), C(14) and
C(21),

w3 w4 w5 w6=

21

=

3

=

14

=

21
w7

Natural language processing

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 13, 2012

Abstract

Math for my slides “Natural language processing”.

¥
C(w) ! = C(w) " ! # C (w)l

¥

C (w)l =
n ! 1!

i=1

1(wt ! i =w) W "
i # a(x)l

¥ W 1 W 2 W n ! 1

¥ # C (3)l = W "
3 # a(x)l

¥ # C (14)l = W "
2 # a(x)l

¥ # C (21)l = W "
1 # a(x)l + W "

4 # a(x)l

¥ # C (w)l = 0

1

Natural language processing

Hugo Larochelle
D«epartement dÕinformatique

Universit«e de Sherbrooke
hugo.larochelle@usherbrooke.ca

November 13, 2012

Abstract

Math for my slides ÒNatural language processingÓ.

•
C(w) (= C(w)� ! rC (w) l

•

rC (w) l =
n ! 1X

i =1

1(wt! i= w) W "
i ra(x) l

• W 1 W 2 W n ! 1

• rC (3) l = W "
3 ra(x) l

• rC (14) l = W "
2 ra(x) l

• rC (21) l = W "
1 ra(x) l + W "

4 ra(x) l

• rC (w) l = 0

1

Natural language processing

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 13, 2012

Abstract

Math for my slides “Natural language processing”.

¥
C(w) ! = C(w) " ↵# C (w) l

¥

C (w) l =
n�1!

i =1

1(wt�i= w) W >
i #

a(x) l

¥ W 1 W 2 W n�1

¥ # C (3) l = W >
3 #

a(x) l

¥ # C (14) l = W >
2 #

a(x) l

¥ # C (21) l = W >
1 #

a(x) l + W >
4 #

a(x) l

¥ # C (w) l = 0

1

Natural language processing

Hugo Larochelle
D«epartement dÕinformatique

Universit«e de Sherbrooke
hugo.larochelle@usherbrooke.ca

November 13, 2012

Abstract

Math for my slides ÒNatural language processingÓ.

¥
C(w) ! = C(w) " ! # C (w) l

¥

C (w) l =
n ! 1!

i =1

1(wt ! i = w) W "
i # a(x) l

¥ W 1 W 2 W n ! 1

¥ # C (3) l = W "
3 # a(x) l

¥ # C (14) l = W "
2 # a(x) l

¥ # C (21) l = W "
1 # a(x) l + W "

4 # a(x) l

¥ # C (w) l = 0

1

NEURAL NETWORK LANGUAGE MODEL
7

Topics: performance evaluation

¥ In language modeling, a common evaluation metric is the
perplexity
! it is simply the exponential of the average negative log-likelihood

¥ Evaluation on Brown corpus
! n-gram model (Kneser-Ney smoothing): 321

! neural network language model: 276

! neural network + n-gram: 252

Bengio, Ducharme,
Vincent and Jauvin, 2003

NEURAL NETWORK LANGUAGE MODEL
8

Topics: performance evaluation

¥ A more interesting (and less straightforward) way of
evaluating a language model is within a particular application
! does a language model improve the performance of a machine translation or

speech recognition system

¥ Later work has shown improvements in both cases
! Connectionist language modeling for large vocabulary continuous speech

recognition
Schwenk and Gauvain, 2002

! Continuous-Space Language Models for Statistical Machine Translation
Schwenk, 2010

