Neural networks

Natural language processing - neural network language n



LANGUAGE MODELING

Topics: n-gram model

¥ Issue: data sparsity

I we wantn to be large, for the model to be realistic

I however, for large valuesmngfit is likely that a givargram will not have been
observed In the training corpora

I smoothing the counts can help

- combinecount(w: , W, , Ws, W,), count(w. , ws, W,), count(ws , w,), andcount(ws) to
estimatgp(w, |wi, Wz, Ws)

I this only partly solves the problem
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Topics: neural network language model
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Topics: neural network language model
¥ Can potentially generalize to contexts not seen In training set

~N N AN A N NN AN NN

I examplep(Oéxting J@the OG0 GOQO0

~N N AN A N NN A N N

~N N AN A N NN AN N N

but [Oﬂle 000, 000eding O@

- if the word representations G@¢xt CdOdbg Odk similar, then the neural network will
be able to generalize to the casdiat OO

- neural network could learn similar word representations for those words based on other
4-grams:

~N N AN A N NN AN A N NN
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Topics: word representation gradients

¥We knOW hOW to propagate gradlents i-th output =P(w; = i | contex)
INn such a network et e R oo SR

I we know how to compute the gradient for the
linear activation of the hidden laygyx)|

hidden layer ad/ i

¥ The gradient wr€(w) for anyw Is

Jod ) Bengio, Ducharme,
# oyl = Lw, =w) Wi #ap0)l Vincent and Jauvin, 2003

=1
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Topics: word representation gradients

~N N AN A N NN AN A N NN AN A N NN AN A N NN

Ws\ W4\ Ws\ Ws 3 W
SRR RN Y|

~N N AN A N NN AN A N NN AN A N NN

| the lossis=! log p(O&xat Q@the OQIHO D00 RO
| # C(S)I — WS H a(x)l

! VC(14)Z — W2 Va(x)l

| # C(21)| = W il_# a(x)l + WI# a(x)l

| # cw)l =0 for all other wordsv

¥ Only need to update the representatid@&), C(14) and
C(21),
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Topics: performance evaluation

¥ In language modeling, a common evaluation metric is the
perplexity
I 1t Is simply the exponential of the average negative log-likelihood

¥ Evaluation on Brown corpus

I n-gram model (Kneser-Ney smoothi@g)t Bengio, Ducharme

Vincent and Jauvin, 2003
I neural network language mo@&16

I neural network -gram252
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Topics: performance evaluation

¥ A more Interesting (and less straightforward) way of
evaluating a language model is within a particular application

I does a language model improve the performance of a machine translation or
speech recognition system

¥ Later work has shown improvements in both cases

I Connectionist language modeling for large vocabulary continuous speech
recognition
Schwenk and Gauvain, 2002

I Continuous-Space Language Models for Statistical Machine Translation
Schwenk, 2010



