
Neural networks
Natural language processing - word representations

NATURAL LANGUAGE PROCESSING
2

Topics: one-hot encoding
• The major problem with the one-hot representation is that it

is very high-dimensional
‣ the dimensionality of e(w) is the size of the vocabulary

‣ a typical vocabulary size is ≈100 000

‣ a window of 10 words would correspond to an input vector of at least 1 000 000
units!

• This has 2 consequences:
‣ vulnerability to overfitting

- millions of inputs means millions of parameters to train in a regular neural network

‣ computationally expensive
- not all computations can be sparsified (ex.: reconstruction in autoencoder)

WORD REPRESENTATIONS
3

Topics: continuous word representation
• Idea: learn a continuous representation of words
‣ each word w is associated with a real-valued vector C(w)

Word w C(w)
‘‘ the ’’ 1 [0.6762, -0.9607, 0.3626, -0.2410, 0.6636]

‘‘ a ’’ 2 [0.6859, -0.9266, 0.3777, -0.2140, 0.6711]

‘‘ have ’’ 3 [0.1656, -0.1530, 0.0310, -0.3321, -0.1342]

‘‘ be ’’ 4 [0.1760, -0.1340, 0.0702, -0.2981, -0.1111]

‘‘ cat ’’ 5 [0.5896, 0.9137, 0.0452, 0.7603, -0.6541]

‘‘ dog ’’ 6 [0.5965, 0.9143, 0.0899, 0.7702, -0.6392]

‘‘ car ’’ 7 [-0.0069, 0.7995, 0.6433, 0.2898, 0.6359]

...

WORD REPRESENTATIONS
4

Topics: continuous word representation
• Idea: learn a continuous representation of words
‣ we would like the distance ||C(w)-C(w’)|| to reflect meaningful similarities

between words

0.0 0.2 0.4 0.6 0.8 1.0

SDE

PCA

Figure 1: Eigenvalues from principal component analysis (PCA) and semidefinite embed-
ding (SDE), applied to bigram distributions of the 2000 most frequently occuring words in
the corpus. The eigenvalues, shown normalized by their sum, measure the relative variance
captured by individual dimensions.

The optimization is convex, and its global maximum can be computed in polynomial
time [4]. The optimization here differs slightly from the one used by Weinberger et al. [14]
in that here we only preserve local distances, as opposed to local distances and angles.

After computing the matrix Dij by semidefinite programming, a low dimensional embed-
ding ~xi is obtained by metric multidimensional scaling [1, 9, 14]. The top eigenvalues of
the Gram matrix measure the variance captured by the leading dimensions of this embed-
ding. Thus, one can compare the eigenvalue spectra from this method and PCA to ascertain
if the variance of the nonlinear embedding is concentrated in fewer dimensions. We refer
to this method of nonlinear dimensionality reduction as semidefinite embedding (SDE).
Fig. 1 compares the eigenvalue spectra of PCA and SDE applied to the 2000 most frequent
words2 in the corpus described in section 4. The figure shows that the nonlinear embedding
by SDE concentrates its variance in many fewer dimensions than the linear embedding by
PCA. Indeed, Fig. 2 shows that even the first two dimensions of the nonlinear embedding
preserve the neighboring relationships of many words that are semantically similar. By
contrast, the analogous plot generated by PCA (not shown) reveals no such structure.

 MAY, WOULD, COULD, SHOULD,

MIGHT, MUST, CAN, CANNOT,

COULDN'T, WON'T, WILL

ONE, TWO, THREE,

FOUR, FIVE, SIX,

SEVEN, EIGHT, NINE,

TEN, ELEVEN,

TWELVE, THIRTEEN,

FOURTEEN, FIFTEEN,

SIXTEEN,

SEVENTEEN,

EIGHTEEN

 JANUARY

 FEBRUARY

 MARCH

 APRIL

 JUNE

 JULY

 AUGUST

 SEPTEMBER

 OCTOBER

 NOVEMBER

 DECEMBER

 MILLION

BILLION

 MONDAY

 TUESDAY

 WEDNESDAY

 THURSDAY

 FRIDAY

 SATURDAY

 SUNDAY

ZERO

Figure 2: Projection of the normalized bigram counts of the 2000 most frequent words
onto the first two dimensions of the nonlinear embedding obtained by semidefinite pro-
gramming. Note that semantically meaningful neighborhoods are preserved, despite the
massive dimensionality reduction from V = 60000 to d = 2.

2Though convex, the optimization over distance matrices for SDE is prohibitively expensive for
large matrices. For the results in this paper—on the corpus described in section 4—we solved the
semidefinite program in this section to embed the 2000 most frequent words in the corpus, then used
a greedy incremental solver to embed the remaining 58000 words in the vocabulary. Details of this
incremental solver will be given elsewhere. Though not the main point of this paper, the nonlinear
embedding of V = 60000 words is to our knowledge one of the largest applications of recently
developed spectral methods for nonlinear dimensionality reduction [9, 14].

(from Blitzer et al. 2004)

WORD REPRESENTATIONS
5

Topics: continuous word representation
• Idea: learn a continuous representation of words
‣ we could then use these representations as input to a neural network

‣ to represent a window of 10 words [w1, ... , w10], we concatenate the
representations of each word

 x = [C(w1)⊤, ... , C(w10)⊤] ⊤

•We learn these representations by gradient descent
‣ we don’t only update the neural network parameters

‣ we also update each representation C(w) in the input x with a gradient step

where l is the loss function optimized by the neural network

Natural language processing

Hugo Larochelle
D

´

epartement d’informatique

Universit
´
e de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 12, 2012

Abstract

Math for my slides “Natural language processing”.

•
C(w) (= C(w)� ↵rC(w)l

1

WORD REPRESENTATIONS
6

Topics: word representations as a lookup table
• Let C be a matrix whose rows are the representations C(w)
‣ obtaining C(w) corresponds to the multiplication e(w)⊤ C

‣ view differently, we are projecting e(w) onto the columns of C

- this is a reduction of the dimensionality of the one-hot representations e(w)

‣ this is a continuous transformation, through which we can propagate gradients

• In practice, we implement C(w) with a lookup table, not with
a multiplication
‣ C(w) returns an array pointing to the wth row of C

