Neural networks

Natural language processing - one-hot encoding
Topics: one-hot encoding

- From its word ID, we get a basic representation of a word through the one-hot encoding of the ID

 - the one-hot vector of an ID is a vector filled with 0s, except for a 1 at the position associated with the ID

 - ex.: for vocabulary size $D=10$, the one-hot vector of word ID $w=4$ is

 $$e(w) = [0 0 0 1 0 0 0 0 0 0]$$

 - a one-hot encoding makes no assumption about word similarity

 - $||e(w) - e(w')||^2 = 0$ if $w = w'$

 - $||e(w) - e(w')||^2 = 2$ if $w \neq w'$

 - all words are equally different from each other

 - this is a natural representation to start with, though a poor one
Topics: one-hot encoding

• The major problem with the one-hot representation is that it is very high-dimensional
 ‣ the dimensionality of $e(w)$ is the size of the vocabulary
 ‣ a typical vocabulary size is $\approx 100\,000$
 ‣ a window of 10 words would correspond to an input vector of at least $1\,000\,000$ units!

• This has 2 consequences:
 ‣ vulnerability to overfitting
 - millions of inputs means millions of parameters to train in a regular neural network
 ‣ computationally expensive
 - not all computations can be sparsified (ex.: reconstruction in autoencoder)